Navigation path

Themes
Agriculture & food
Energy
Environment
  Atmosphere
  Biodiversity
  Clean technology and recycling
  Climate & global change
  Cultural heritage
  Earth Observation
  Ecosystems, incl. land, inland waters, marine
  Health & environment
  Land management
  Natural disasters
  Sustainable development
  Urban living
  Other
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Environment

Last Update: 16-11-2011  
Related category(ies):
Environment  |  Pure sciences

 

Add to PDF "basket"

Scientists identify protein behind plant's oxygen-sensing mechanism

Regardless of whether you're a botanist or a weekend gardener, you know that too much water can kill your plants. Flooding or water logging of plants doesn't allow them to take up enough of the oxygen required to ensure their cellular respiration and energy production. In order to deal with this state of hypoxia, plants stimulate specific genes. But exactly how plants sense the oxygen concentration has remained a mystery, until now. Researchers in Europe have identified a protein able to bind to certain regions of deoxyribonucleic acid (DNA), thus triggering the transcription of stress response genes. The results, published in the journal Nature, could lead to improving a crop's tolerance of flooding events.

Arabidopsis thaliana © Shutterstock
Arabidopsis thaliana
©  Shutterstock

A number of recent studies observed how a protein that activates genes so as to respond to hypoxia, a so-called transcription factor, is released from the cell membrane to build up in the nucleus and prompt the expression of stress response genes. Scientists from Germany, Italy and the Netherlands say they have identified a branch of the ubiquitin-dependent N-end rule pathway for protein degradation, which is active in both mammals and plants, function as an oxygen-sensing mechanism in Arabidopsis thaliana, a small flowering plant that is widely used as a model organism in plant biology.

The findings show that plants with an overexpression of the RAP2.12 protein have a higher tolerance of submergence and are better able to recover from flooding events.

'When the oxygen concentration is low — as during flooding — RAP2.12 is released from the plasma membrane and accumulates in the nucleus to activate gene expression for hypoxia acclimation.' the authors write in the paper. 'Our discovery of an oxygen-sensing mechanism opens up new possibilities for improving flooding tolerance in crops.'

In the spotlight is the role of the N-terminus of the protein (the start of the amino acid chain). A change to this amino acid sequence, whether it is an addition or removal of amino acids, results in the deterioration of a plant's response to low oxygen availability.

Normal aerobic conditions facilitate the RAP2.12's attachment to the cell membrane. When oxygen levels drop, the protein detaches from the membrane and accumulates in the nucleus where it can perform its role as a transcription factor and stimulate specific genes. When the oxygen availability increases to normal levels, the RAP2.12 is quickly degraded to stop the transcription of the stress response genes, according to the researchers.

They point out that in plants that express an N-terminally modified RAP2.12, the protein is located within the nucleus even before the oxygen stress begins. The modified protein accumulated in the nucleus when hypoxia kicked in, but it was not degraded when the oxygen levels reached normal conditions again.

Adding to their discovery is the role of the N-end rule. 'According to the N-end rule, the first amino acid of a protein determines its life span,' says co-author and team leader Joost van Dongen of Max Planck Institute of Molecular Plant Physiology in Germany. 'There are stabilising and destabilising amino acids. Our discovery of RAP2.12 as a central component of the oxygen sensing mechanism in plants opens up interesting possibilities to increase the flooding tolerance in crops.'

Around 10% of the world's arable land is subject to temporary flooding every year.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Max Planck Institute of Molecular Plant Physiology
Nature
'How genetic flexibility spurs plant survival vis-à-vis climate change'





  Top   Research Information Center