Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
  E-Commerce
  Information technology
  Internet
  Microelectronics and nanotechnology
  Multimedia
  Telecommunications
  Other
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sweden
  Switzerland
  Taiwan
  Turkey
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 10-11-2011  
Related category(ies):
Innovation  |  Information society  |  Research policy

 

Add to PDF "basket"

European researchers drive semiconductor technology

Europeans continue to rise to the challenge of advancing communication, imaging and radar integrated circuits (IC) to work at high frequencies. A case in point is a team at Interuniversitair Micro-Electronica Centrum Vzw (imec) in Belgium; they recently presented the device 'fT/fMAX 245/450 GHz SiGe:C heterojunction bipolar transistor (HBT)'. This sophisticated device will help facilitate future high-volume millimetre-wave low-power circuits to be used in automotive radar applications. The study was funded in part by the DOTFIVE ('Towards 0.5 terahertz silicon/germanium hetero-junction bipolar technology') project, which received EUR 9.7 million under the 'Information and communication technologies' Theme of the EU's Seventh Framework Programme (FP7).

Innovation is high on the European agenda © Shutterstock
Innovation is high on the European agenda
©  Shutterstock

HBT devices are instrumental in helping silicon-based millimetre-wave circuits penetrate what is known as the terahertz (THz) gap. They enable enhanced imaging systems for security, medical and scientific applications, according to the researchers.

The team says the HBT devices are very fast and have a fully self-aligned architecture: self-alignment of the emitter, base and collector region. They can implement an optimised collector doping profile, they add. Where SiGe:C HBTs differ, in comparison with III-V-HBT devices, is that they combine high-density and low-cost integration. On account of this, they are better suited to consumer applications.

The researchers say these types of high-speed devices can also open up new application areas. They can work at very high frequencies with lower power dissipation, or with applications that require a reduced impact of process, and voltage and temperature variations at lower frequencies for better circuit reliability, the imec group said in a statement.

In order to secure the ultra-high speed requirements, sophisticated SiGe:C HBTs require additional upscaling of the device performance. For the most part, thin sub-collector doping profiles are considered a must for this upscaling. The collector dopants are typically introduced at the start of the processing and are therefore exposed to the complete thermal budget of the process flow. Because of this, the accurate positioning of the buried collector is harder to obtain.

In their statement, the imec researchers pointed out that performing in situ arsenic doping during the simultaneous growth of the sub-collector pedestal and the SiGe:C base allowed them to introduce both a thin, well-controlled, lowly doped collector region close to the base and a sharp transition to the highly doped collector, without further complicating the process.

This led to a significant increase in the overall HBT device performance: peak fMAX values above 450 GHz are obtained on devices with a high early voltage, a BVCEO of 1.7 V and a sharp transition from the saturation to the active region in the IC-VCE output curve. According to the researchers, the collector-base capacitance values did not rise much even though they performed aggressive scaling of the sub-collector doping profile. They said the current gain is well defined, with an average around 400; the emitter-base tunnel current, visible at low VBE values, is limited as well.

The DOTFIVE project, which is headed by the STMicroelectronics SA group of France, brought together researchers and industry players from Belgium, Germany, France and Italy.


Convert article(s) to PDF

No article selected


loading


Search articles
To restrict search results to articles in the Information Centre, i.e. this site, use the search box at the top of the page to the right of the menu and then select "Information Centre" in the "Filter by" menu on the results page.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

imec
DOTFIVE





  Top   Research Information Center