Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
  Astronomy
  Biology
  Chemistry
  Mathematics
  Physics
  Other
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Pure sciences

Last Update: 12-10-2011  
Related category(ies):
Research policy  |  Pure sciences

 

Add to PDF "basket"

Looking inside the quantum world

An international team of scientists may have found a way to study the elusive quantum behaviour of large 'macroscopic' objects. Presented in the journal Proceedings of the National Academy of Sciences (PNAS), their sophisticated method will allow researchers to break new ground when performing quantum experiments. The study was funded in part by a European Research Council (ERC) grant, worth EUR 1.6 million, under the EU's Seventh Framework Programme (the lead researcher of this grant is Dr Markus Aspelmeyer from the University of Vienna in Austria (ERC Starting Grant 2009)).

Pulsed quantum optomechanics can directly probe quantum mechanical behaviour, which is seen as the central rippling in this representation of a Schrödinger-cat state (left). Under constant observation, these quantum features are washed out (right).  © CQ/University of Vienna
Pulsed quantum optomechanics can directly probe quantum mechanical behaviour, which is seen as the central rippling in this representation of a Schrödinger-cat state (left). Under constant observation, these quantum features are washed out (right).
©  CQ/University of Vienna

Physicists have long tried to determine how far quantum phenomena extend into our daily lives. In order to do so, the quantum world must be investigated at a completely new scale of mass and size. This is a major challenge because as mass and size increase it is difficult to detect genuine quantum features.

Researchers at the Vienna Center for Quantum Science and Technology (VCQ) at the University of Vienna in have developed an innovative method using flashes of light to observe quantum features of large objects with exceptional resolution. The main idea is based on the fact that quantum objects, unlike classical objects, behave differently when they are being observed.

'In current approaches, objects are constantly monitored and the possible quantum features are being washed out,' says lead author Michael R. Vanner of the Vienna Doctoral Program on Complex Quantum Systems (CoQuS). 'This is in many ways analogous to the blurring of a photograph of a fast moving object. Loosely speaking, the flashes freeze the motion and create a sharp image of the quantum behaviour.'

The new tool will give researchers the ability to 'see' inside the world of quantum physics at a completely new scale of mass and size. The tool is unique in that it could be directly applied to ongoing experiments that try to prepare quantum phenomena in micromechanical resonators (i.e. mechanically vibrating massive objects).

'By analysing the dynamics of such behaviour, pulsed quantum optomechanics provides a path for investigating whether macroscopic mechanical objects can be used in future quantum technologies,' Dr Vanner says. 'It will also help shed light on nature’s apparent division between the quantum and the classical worlds.'

Experts from Imperial College London in the United Kingdom, the Institute for Quantum Optics and Quantum Information (IQOQI) in Austria, the Albert-Einstein Institute of the University of Hannover in Germany and the University of Queensland in Australia contributed to this study.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Vienna
European Research Council
PNAS
'Living out Einstein's dreams — French researchers make quantum breakthrough'





  Top   Research Information Center