Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Infocentre

Last Update: 04-10-2011  
Related category(ies):
Innovation  |  Information society

 

Add to PDF "basket"

World's first tunable broadband RF device emerges

A team of researchers from the Universitat Politècnica de València's iTEAM (El Instituto de Telecomunicaciones y Aplicaciones Multimedia) in Spain has created the first, tunable broadband radio frequency (RF) photonic phase shifter. Because it is based on a single semiconductor element, the device will be cheap to manufacture and help save up to 80% on energy consumption. The study was funded in part by the GOSPEL ('Governing the speed of light') project, which was backed under the 'Information and communication technologies' (ICT) Theme of the EU's Seventh Framework Programme (FP7) to the tune of EUR 2.19 million. The findings of the study are published in the journal Optics Express.

European researchers are driving RF technology © Shutterstock
European researchers are driving RF technology
©  Shutterstock

José Capmany, the head of UPV's iTEAM, says there are two key significant factors of this contribution. 'The relevance of this contribution is twofold,' Dr Capmany says. 'First, a 75% reduction — in comparison with previous designs — in the number of components needed will make it possible to save some of the space that the phase shifter occupies when it is integrated into a chip, and, consequently, to save in the production cost too. Moreover, reducing the number of active elements from 5 to 1 means a saving in energy consumption of up to 80%.'

Experts say optical phase shifters for RF signals are important components for the installation of hybrid broadband telecommunication systems. They combine optic fibre transmission and radio transmission. They are the basis of convergence between networks, a required step for either accessing the Internet or swapping the orientation of radar and satellite antennas.

According to the researchers, there are several applications of the phase shifter, including radio astronomy and terrestrial satellites, as well as radar antennas, ultra wideband communications, radio link systems and RF applications for automobiles. These applications help boost the flow of information transmission, effectively mitigating traffic and guaranteeing the best performance of the entire communication system.

Writing in the paper, the researchers say: 'In our particular case, within a bandwidth greater than 1 gigahertz can be achieved. Narrower filters would allow operating at lower frequencies but at the cost of using less frequency bandwidth. Investigations are being conducted to achieve broadband operation and provide output power equalisation.'

Commenting on the results, iTEAM researcher Salvador Sales says: 'Traditional phase shifters, based on microwave technologies, are limited in bandwidth and the possibility of tuning is also limited. By using photonic technology instead, we have been able to overcome both limitations.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

UPV'S iTEAM
Optics Express
'EU-funded project improves global data transmission'





  Top   Research Information Center