Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport
  Aeronautics
  Intermodality
  Rail
  Road
  Water-borne - incl. marine, inland
  Other

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Transport

Last Update: 08-08-2011  
Related category(ies):
Innovation  |  Information society  |  Research policy  |  Transport

 

Add to PDF "basket"

European researchers driving road safety

Safety while driving is paramount, and Europeans are making efforts to ensure our well-being in vehicles — whether we are behind the steering wheel or in a passenger seat. The project partners have pushed the envelope by developing an inexpensive optical sensor system for the windshields of small and medium-sized cars. This driver-assistance system will help reduce the number of accidents on the roads. ADOSE ('Reliable application specific detection of road users with vehicle on-board sensors') is funded under the 'Information and communication technologies' (ICT) Theme of the EU's Seventh Framework Programme (FP7) to the tune of EUR 6.1 million.

Accident protection in the windshield © Fraunhofer IZM
Accident protection in the windshield
©  Fraunhofer IZM


Having the capacity to differentiate between fog and darkness, this latest system gives cars the 'intelligence' they need to respond to their surroundings. Led by the Centro Ricerche Fiat Societa Consortile per Azioni in Italy, the ADOSE consortium comprises research and industry experts from Austria, Belgium, Finland, Germany, Italy, Norway and Sweden.

The project partners point out that the number of traffic fatalities in Germany, for instance, has dropped in recent years. Based on data obtained in various studies, novel driver-assistance systems are increasingly reacting more quickly to critical situations than humans can. These systems not only have the capacity to identify risks, but they can also warn drivers of dangers and help them deal with critical situations. A case in point is radar sensors that scan surrounding traffic conditions, monitoring the car's blind spot or maintaining a safe distance from the car up ahead. Infrared detectors give night vision a boost, while fatigue sensors sound an alarm if a driver becomes drowsy. The downside of these systems is that they are available only for high-priced vehicles. This is where the ADOSE system comes in.

'Our multifunctional system consists of an entire camera, two sensors equipped with Fresnel lenses to detect light signals, and an infrared LED (light-emitting diode),' explains Dr Henning Schroeder, ADOSE partner and group manager of Fraunhofer Assembly and Packaging Technologies for Microsystems (IZM) in Germany. 'Because fog and darkness can exhibit optically identical spectra, it is difficult to distinguish between these two light phenomena. That's why the infrared LED emits light waves that are scattered back in fog, but not in conditions of darkness. It's particularly difficult to capture the light signal from a broad aperture angle, to bundle the signal and pass it along the circuit board to the four corners of the camera chip. Because the middle of the chip is reserved for recording the camera image.'

The researchers developed lightpipes in a hot stamping procedure to make this possible, they say. The lightpipes are hollow, mirrored tubes capable of deflecting a light signal by as much as 90°. While optical fibres were used to transmit these signals up to this point, they are vulnerable to snapping at even low bending radii. They are also costly and must be mounted in place manually and with great care.

'With the lightpipes, we have succeeded in making the optical signal transmission more efficient, making the entire system smaller and reducing costs as a result,' the Fraunhofer IZM researcher says.

A number of optical channels are produced in a single pass during the hot stamping method. This process effectively makes the assembly much easier to perform. A prototype of the sensor module is now available, and Centro Ricerche Fiat is already performing initial tests in the field.


Convert article(s) to PDF

No article selected


loading


Search articles
To restrict search results to articles in the Information Centre, i.e. this site, use the search box at the top of the page to the right of the menu and then select "Information Centre" in the "Filter by" menu on the results page.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

ADOSE
ICT Research in FP7





  Top   Research Information Center