Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Health & life sciences

Last Update: 13-05-2011  
Related category(ies):
Human resources & mobility  |  Health & life sciences  |  Pure sciences

 

Add to PDF "basket"

Scientists find link between cell migration and cancer metastasis

A two-man research team at the Fred Hutchinson Cancer Research Center in the United States has discovered how cells migrate in the developing brain and how other types of cells may travel inside the body. Part of this study was backed with a Marie Curie Fellowship grant via the EU. Presented in the journal Nature Neuroscience, the results could provide major insight into neurological development and help elucidate cancer metastasis.

Image showing normal and abnormal neuron migration © Yves Jossin
Image showing normal and abnormal neuron migration
©  Yves Jossin

Cells divide and position themselves in appropriate patterns during the body's normal development, and specialise to create discrete tissues and organs. Normal development of a human body is contingent on how cells manage their migratory patterns. Another critical element is the process by which they differentiate or evolve from less specialised cells into more specialised cell types, according to researchers. Bad coordination could trigger abnormal development, and in turn lead to cancer.

Dr Jonathan Cooper from the Sciences Division of the Fred Hutchinson Cancer Research Center and Dr Yves Jossin, a research fellow in Dr Cooper's laboratory, probed the migration of cells in the cerebral cortex of the developing brain. The cerebral cortex, which is the grey matter of the cerebrum, plays a significant role in the human body, specifically controlling memory, attention, perceptual awareness, language, consciousness and thought.

Highly developed in humans, the cerebral cortex is composed of horizontal layers of specialised neurons and connected vertically into circuits. When nerve cells are located in wrong layers, it could result in defective wiring and cause neurological disorders such as autism, schizophrenia and epilepsy.

If we take a look at a human foetus, the cortex grows 'from the inside out' through the addition of new nerve cells. These neurons move from the inside and pass between neurons already located in intermediate layers. They then create new layers on the outside, the researchers say. The long—standing question is: how are the migrations regulated?

Drs Cooper and Jossin found a number of signals that control a specific stage in a cortical neuron's trip. According to them, new nerve cells start moving from the inside to the outside in a straight line until they reach a layer known as the 'intermediate zone', which is a niche for some neurons but a major spot for many axons (connecting fibres).

Once the new neurons reach this layer, they get lost and move erratically. When they finally leave the intermediate zone, the neurons realign with the original direction of movement and race ahead through layers of differentiated neurons towards the cortex's exterior surface, according to the team.

So how do neurons find their way after exiting the mess in the intermediate zone? Drs Cooper and Jossin identified a signalling protein called Reelin, which is created by cells found in the cortex's most outer layer. It's no secret that mutations in the Reelin gene trigger significant abnormalities in cortical layers. But no one has been able to figure out when cell migration goes awry in the absence of Reelin. The findings indicate that new nerve cells respond to Reelin as they emerge from the intermediate zone.

'This is remarkable because the top layer of the cortex, where Reelin is made, is widely separated from the top of the intermediate zone, where it acts, so the Reelin protein must be diffuse (sic),' Dr Cooper said. 'It is also remarkable that Reelin seems not to be a direction signal itself. Rather, Reelin triggers changes in the membranes of the migrating neurons that allow the cells to respond to direction signals.'

The membrane protein N—cadherin swells on the surface of the cells when Reelin enters the picture. This boost enables the neuron to select the appropriate direction for its next migration stage.

'This represents a new and surprising function for N—cadherin because normally this protein acts as a cellular stabiliser and not as an orchestrator of migration,' Dr Jossin pointed out. 'The new role for N—cadherin in orienting migrating cells is quite unexpected and suggests that cadherins on the surface of other types of normal or cancer cells may also be involved in helping them move rather than stay in place. This finding could provide new clues to how normal and cancerous cells migrate within the body.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Fred Hutchinson Cancer Research Center
Nature Neuroscience





  Top   Research Information Center