Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Health & life sciences

Last Update: 05-05-2011  
Related category(ies):
Health & life sciences  |  Pure sciences

 

Add to PDF "basket"

Bacteria and antibiotic resistance: the role of IncP-1 plasmids

Scientists in Sweden have discovered that the part of bacterial deoxyribonucleic acid (DNA) that frequently carries antibiotic resistance has the capacity to move between several types of bacteria and adapt to widely differing bacterial species. The findings, which are presented in the journal Nature Communications, shed light on how IncP—1 plasmids can boost the potential for gene spreading.

Antibiotic resistance-carrying plasmids from different bacteria can meet and exchange genetic material. The result is plasmids consisting of genes that have each been adapted to different bacterial species. This facilitates further adaptation and mobility, and consequently also the spread of antibiotic resistance among different bacterial species © University of Gothenburg
Antibiotic resistance-carrying plasmids from different bacteria can meet and exchange genetic material. The result is plasmids consisting of genes that have each been adapted to different bacterial species. This facilitates further adaptation and mobility, and consequently also the spread of antibiotic resistance among different bacterial species
©  University of Gothenburg

Medical advances are providing more and better treatment for people who need it. But an increasing number of bacteria are also becoming resistant to our common antibiotics. Adding to this problem is the fact that more and more such bacteria are becoming resistant to all antibiotics available on the market. Experts call this problem 'multi—resistance'. They consider multi—resistance as being one of the most major future threats to public health.

Resistance to antibiotics can emerge in bacteria found in both our bodies and the environment, and can then be transferred to the bacteria that trigger diseases in people. This can occur regardless if the bacteria are related or not to each other.

Researchers from the University of Gothenburg and Chalmers University of Technology point out that conjugative plasmids, which contain tra genes, perform the complex process of conjugation, the transfer of plasmids to another bacterium. Conjugative plasmids are a part of the bacterial DNA, and plasmids can only exist and multiply within cells. These plasmids use the cell's machinery and can then move to another cell. The result is the spread of bacteria.

The team used advanced DNA analysis to investigate IncP—1 plasmids, a group of the known carriers of antibiotic resistance genes. They mapped the origin of various IncP—1 plasmids and their mobility among different bacterial species.

'Our results show that plasmids from the IncP—1 group have existed in, and adapted to, widely differing bacteria,' explains Peter Norberg from the Institute of Biomedicine at the University of Gothenburg, the lead author of the study. 'They have also recombined, which means that a single plasmid can be regarded as a composite jigsaw puzzle of genes, each of which has adapted to different bacterial species.'

Not only does this show very good adaptability, but it also suggests that these plasmids can move relatively freely among, and flourish in, widely differing bacterial species.

Commenting on the role of IncP—1, Professor Malte Hermansson from Gothenburg's Department of Cell and Molecular Biology says: 'IncP—1 plasmids are very potent 'vehicles' for transporting antibiotic resistance genes between bacterial species. Therefore, it does not matter much in what environment, in what part of the world, or in what bacterial species antibiotic resistance arises. Resistance genes could relatively easily be transported from the original environment to bacteria that infect humans, through IncP—1 plasmids, or other plasmids with similar properties, as 'vehicles'.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Gothenburg
Nature Communications





  Top   Research Information Center