Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
  Galileo
  Space exploration
  Space hardware
  Space policy
  Teledetection
  Other
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Space

Last Update: 01-04-2011  
Related category(ies):
Innovation  |  Space  |  Pure sciences

 

Add to PDF "basket"

How hot matter is not always doomed

The Integral gamma—ray observatory of the European Space Agency (ESA) recently spotted super hot matter just a millisecond before it got lost in a black hole. But is the matter done for? Astronomers believe some of the matter may be making a great escape.

An artist's impression of the Cygnus X-1 black hole system. Gas from a nearby supergiant star spirals down into the black hole but a small fraction is diverted by magnetic fields into jets that shoot back into space © ESA
An artist's impression of the Cygnus X-1 black hole system. Gas from a nearby supergiant star spirals down into the black hole but a small fraction is diverted by magnetic fields into jets that shoot back into space
©  ESA

Experts say being close to a black hole would play with anyone's nerves. Particles and radiation are in great supply in space, and vast storms of particles are doomed at close to the speed of light. The result is a boost in temperature, as high as millions of degrees.

Under normal circumstances, particles cross the final distance within just a millisecond. But a tiny fraction of them may actually be able to be 'saved.' The new Integral observations have allowed the scientists to determine that this chaotic region is threaded by magnetic fields. It is the first time ever that astronomers have succeeded in identifying magnetic fields in the vicinity of a black hole. Integral shows that they are highly structured magnetic fields that are creating an escape tunnel for some particles that were done for.

Philippe Laurent of the Centre d'Etudes Nucléaires de Saclay (CEA Saclay) in France and colleagues made the discovery by investigating the nearby black hole, Cygnus X—1, which is tearing a companion star to pieces and feeding on its gas.

Their work shows that the magnetic field is so strong that it can tear away particles from the black hole's gravitational hold and funnel them outwards. So jets of matter end up being spewed into space. The researchers say the particles in these jets are being drawn into spiral trajectories as they climb the magnetic field to freedom. This is impacting a property of their gamma—ray light, what experts call polarisation.

A gamma ray is identified as a wave whose orientation is known as its polarisation. Fast particles spiralling in a magnetic field generate a kind of light, what astronomers call 'synchrotron emission', which displays a characteristic pattern of polarisation. It is this polarisation that the researchers discovered in the gamma rays. This was no easy feat.

'We had to use almost every observation Integral has ever made of Cygnus X—1 to make this detection,' Dr Laurent says.

Repeated observations of the black hole, over a 7—year period, amounted to more than 5 million seconds of observing time, which is like snapping one image with an exposure time of over 2 months. The team compiled everything together to generate such an exposure.

'We still do not know exactly how the infalling matter is turned into the jets. There is a big debate among theoreticians; these observations will help them decide,' explains Dr Laurent.

In the past, researchers identified jets around black holes by using radio telescopes. But they were unable to see the black hole in sufficient detail to determine how close to the black hole the jets originate. And this is where this study differs.

'This discovery of polarized emission from a black hole jet is a unique result demonstrating that Integral, which is covering the high—energy band in ESA's wide spectrum of scientific missions, continues to produce key results more than eight years after its launch,' comments Christoph Winkler, ESA Integral Project Scientist.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

European Space Agency (ESA)
Centre d'Etudes Nucléaires de Saclay
'Astrophysicists confirm black hole tops solar mass'





  Top   Research Information Center