Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Morocco
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 24-02-2011  
Related category(ies):
Innovation  |  International cooperation  |  Environment  |  Pure sciences

 

Add to PDF "basket"

Chemical structure of fossils revealed

A UK-US team of scientists has succeeded in revealing the chemical structure of ancient fossils with a powerful microscope. They discovered that even fossils dating from the Palaeozoic era, which spanned from around 542 to 251 million years ago, contained the polysaccharide chitin and structural protein. These materials are easily degraded by microorganisms. The scientists believe these findings, published in the journal Geology, could have major implications for our understanding of the organic fossil record.

Powerful microscope reveals chemical structure of ancient fossils © Cody, Carnegie Institute for Science
Powerful microscope reveals chemical structure of ancient fossils
©  Cody, Carnegie Institute for Science

The team included Professor George Cody from the Geophysical Laboratory at the Carnegie Institution for Science in Washington in the US and Professor Andrew C. Scott from the Department of Earth Sciences at Royal Holloway, University of London in the UK.

The oldest molecular signature of chitin-protein complex was previously discovered in 25-million-year-old Cenozoic fossils, while remnants of structural protein were found in 80 million-year-old Mesozoic fossils. But in this latest study, scientists found relicts of protein-chitin complex in fossils of arthropods from the Palaeozoic era — a finding that no one would have ever imagined.

Among other common features, arthropods have exoskeletons or cuticles. The outer portions of these cuticles are made up of a composite of chitin fibres that are embedded in a protein matrix. As chitin and structural protein are easily degraded by microorganisms, scientists presumed they would only be present in more recent fossils. While studying the fossil remains of a 310-million-year-old scorpion cuticle from the US state of Illinois and a 417-million-year-old eurypterid — an extinct scorpion-like arthropod, possibly related to horseshoe crabs — from Ontario in Canada, Professor Cody and his team discovered it wasn't true.

Using sophisticated analytical instrument at the Advanced Light Source facility in the US, the researchers measured the absorption spectra of low-energy X-rays by carbon, nitrogen and oxygen in the fossils. These measurements were taken at a resolution in the order of 25 nanometres. The researchers showed that the majority of carbon, nitrogen and oxygen found in these fossils from the Palaeozoic era came from a protein-chitin complex.

'This study shows that fossil arthropod cuticle exists as a nanoscale composite of waxes and degraded, but still nitrogen-rich, chitin-protein complex,' the authors wrote.

Not surprisingly, the protein-chitin material was somewhat degraded, either by chemical processes or partial bacterial degradation, according to the scientists.

'It is clear that the fossil macromolecule differs considerably from the initial chitin-protein composite of the modern cuticle,' the authors write. 'These differences can be interpreted as a result of extensive (but not complete) bacterial degradation and possibly subsequent diagenetic alteration,' they add.

'Extensive degradation of ester, amide, and glycosidic bonds likely destroyed much of the chitin-protein complex and freed fatty acids', while 'water elimination from chitin yielded unsaturated carbon that increases absorption intensity in the aromatic and/or olefinic region.'

Professor Scott says the research would 'aid our understanding of the fossilisation process and this new technique allows us to reveal the chemical nature of the fossil without total destruction'.

The vestigial protein-chitin complex may play a 'critical role in organic fossil preservation by providing a substrate protected from total degradation by a coating waxy substances that protect the arthropods from desiccation', he says.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Carnegie Institution for Science
Royal Holloway, University of London
Geology





  Top   Research Information Center