Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
  Galileo
  Space exploration
  Space hardware
  Space policy
  Teledetection
  Other
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 29-10-2010  
Related category(ies):
Space  |  Pure sciences

 

Add to PDF "basket"

Astronomers reveal results of asteroid crash

Astronomers have used the Hubble space telescope to observe what happens after asteroids crash together. This was the first time scientists have studied the aftermath of a collision, relying normally on models to make predictions about the frequency of such crashes and the amount of dust they produce. They say the findings will help explain where the dust in the Solar System comes from and may offer answers to other mysteries including how the dusty debris discs around other stars were produced.

Hubble captures aftermath of asteroid collision  © NASA, ESA and D. Jewitt (UCLA)
Hubble captures aftermath of asteroid collision
© NASA, ESA and D. Jewitt (UCLA)

Last January astronomers thought they had witnessed a fresh collision between two asteroids when images from Hubble revealed an X-shaped object at the head of a comet-like trail of material. 'When I saw the image I knew it was something special,' said astronomer Jessica Agarwal from the European Space Agency (ESA) in the Netherlands. 'The nucleus seemed almost detached from the dust cloud and there were intricate structures within the dust.'

The astronomers presumed the crash had just occurred, but after using Hubble to track the oddball body for five months, they were surprised to find they had missed the suspected smash-up by a year. 'We expected the debris field to expand dramatically, like shrapnel flying from a hand grenade,' said David Jewitt from the University of California in Los Angeles (UCLA) in the US. 'But…we found that the object is expanding very, very slowly.'

The Hubble images, taken from January to May 2010, reveal a point-like object about 120 metres wide, with a long, flowing dust tail behind an X-shaped pattern. The observations also show that the object retained its X-shape even as the debris field slowly expanded. Particle sizes in the tail are estimated to vary from about 1 millimetre to 2.5 centimetres in diameter.

The object in the Hubble image is the remnant of a slightly larger precursor body, and the astronomers think a smaller rock slammed into the larger one. The pair probably collided at high speed, at about 18 000 kilometres an hour, smashing and vaporising the small asteroid and stripping material from the larger one.

Professor Jewitt estimated that the violent encounter was as powerful as the detonation of a small atomic bomb. Radiation pressure from the Sun then swept the debris behind the remnant asteroid, forming a comet-like tail. The tail contains enough dust to make a ball 20 metres wide, most of it blown out of the bigger body by the explosion that followed the impact.

'These observations are important because we need to know where the dust in the Solar System comes from, and how much of it comes from colliding asteroids as opposed to "outgassing" comets,' Professor Jewitt explained. 'We can also apply this knowledge to the dusty debris discs around other stars, because these are thought to be produced by collisions between unseen bodies in the discs. Knowing how the dust was produced will yield clues about those invisible bodies.'

He said this study was particularly important because 'catching colliding asteroids on camera is difficult because large impacts are rare, while small ones, such as [this] one…are exceedingly faint'. The UCLA professor explained that 'the two asteroids whose remains make up [the object] were unknown before the smash-up because they were too faint to be noticed', while 'the collision was unobservable because it happened when the asteroids were in the same direction as the Sun'.

The astronomers plan to use Hubble again in 2011 to view the remnant asteroid and hope to see how far the dust has been swept back by the Sun's radiation and how the mysterious X-shaped structure has evolved.

The results of the study appear in the journal Nature.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

ESA
Nature
'New technique set to aid exploration of comets'





  Top   Research Information Center