Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
  Astronomy
  Biology
  Chemistry
  Mathematics
  Physics
  Other
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


This page was published on 22/03/2010
Published: 22/03/2010

   Pure sciences

Last Update: 22-03-2010  
Related category(ies):
Pure sciences

 

Add to PDF "basket"

23 steps for a quantum walk

A team of scientists led by the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences has successfully performed a quantum walk in a quantum system with up to 23 steps. The study's findings, funded in part by the EU, were published in the journal Physical Review Letters.

Trapped ions © C. Lackner
Trapped ions
© C. Lackner

A random walk is basically a mathematical formalisation of a trajectory that consists of taking successive random steps, and it is particularly used in physics and mathematics. Examples of random walks include the 'Galton board' which is used to show binomial distribution to students. Here, balls are dropped from the top and either bounce left or right in a random way as they hit pins that are stuck in the board. The 'Brownian motion' denotes the seemingly random movement of particles suspended in a fluid such as liquid or gas.

The researchers in this latest study used a hiker as an example. A hiker must determine the direction they want to take when they come to a junction. Lacking a map, they randomly decide on which path to follow. Whether they go through detours or not, they arrive at their destination finally.

The physicists used one and two trapped ions to show a quantum walk on a line in phase space (a space encompassing all possible states of a system). This study offers the physics world a first-time look at this quantum process using trapped ions.

IQOQI's Drs Christian Roos and Rainer Blatt, along with their colleagues, transferred this principle of random walk to quantum systems and stimulated an atom to 'take a quantum walk'.

'We trap a single atom in an electromagnetic ion trap and cool it to prepare it in the ground state,' Dr Roos explained. 'We then create a quantum mechanical superposition of two inner states and send the atom on a walk.'

According to the researchers, the two internal states correspond to the decision of the hiker to go left or right. The atom is distinct, however, in that it does not have to decide on a direction; the superposition of the two states allows the possibilities to be presented at the same time.

'Depending on the internal state, we shift the ion to the right or to the left,' Dr Roos pointed out. 'Thereby, the motional and internal states of the ion are entangled.'

The team modified the superposition of the inner states after each step. A laser pulse was used for the change. They then shifted the ion to the left or right. They successfully repeated this randomly controlled process up to 23 times and gathered data on the performance of quantum walks. The use of the second ion allowed the physicists to extend the experiment and enabled the walking ion to 'stay' rather than move left or right.

According to the scientists, by performing a statistical analysis of the 23 steps, they effectively confirmed that quantum walks are not the same as classical 'random' walks.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

IQOQI
'Where is the quantum revolution? '





  Top   Research Information Center