Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
  Other
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport
Video reports



This page was published on 12/08/2009
Published: 12/08/2009

   Science & business

Last Update: 12-08-2009  
Related category(ies):
Science & business  |  Research policy

 

Add to PDF "basket"

Infrared thermography finds niche in plastics

Researchers at the Spanish Toy Technological Institute (AIJU) have found that infrared thermography is a technique that can be used in the plastics industry, specifically for process optimisation and quality improvement. The research is part of the EU-funded Custom-Fit ('A knowledge-based manufacturing system, established by integrating rapid manufacturing, IST (information society technologies) and material science to improve the quality of life of European citizens through custom fit products') project. Supported under the Sixth Framework Programme (FP6), financing for Custom-Fit stands at EUR 9.25 million).

Injected piece after 15, 30 and 60 seconds of cooling time © AIJU
Injected piece after 15, 30 and 60 seconds of cooling time
© AIJU

Concerning the thermoplastic injection process, the researchers said extensive information about the transformation process can be gathered when thermographic images are taken of injected pieces that are either in the mould or have been extracted, or even in the mould surface itself. The AIJU team assessed the injection process on a toy hobby-horse mould in their study.

The German-born British astronomer, Sir Frederick William Herschel, discovered infrared radiation in 1800. He observed that the heat going through coloured filters he used to look at the sun was dependant on the colour of the filter. Herschel shone the light through a crystal prism to produce a spectrum (the rainbow) and then measured the colours' temperature. Based on his observations, the temperature was higher on the red side. This side's light was invisible to the human eye. 'Caloric rays' was the term given to this radiation, and was later coined 'infrared radiation'.

Around 80 years later, American scientist Samuel Pierpont Langley invented the world's first ever bolometer (infrared radiation detector). This detector could detect radiation by the rise in temperature generated by a heat-absorbing body. During the 1980s, researchers developed micro-bolometers, which are now being used in thermographic cameras.

According to the AIJU researchers, all objects that have a temperature higher than 'absolute zero' (-273.15°C) produce waves in the infrared band. The higher an object's temperature, the more energy generated in a lower wavelength. They noted that infrared radiation, visible light and ultraviolet light are forms of energy found in the electromagnetic spectrum that vary in wavelength.

The study revealed that the human eye can only see a limited range of wavelengths. However, thermographic cameras can detect infrared energy that is not visible to the human eye. These innovative cameras can register normal temperatures ranging from -20°C to 500°C, but they also can register from -40°C at the bottom end up to 2 000°C at the top end.

According to the researchers, the thermographic cameras transform the infrared energy into an image with a colour map that indicates the temperature of the object at each point. The end result is a versatile camera equipped with an infinite range of applications in various sectors.

The AIJU researchers are currently working with industry actors on various research and development (R&D) projects in the plastics sector.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

AIJU
Custom-Fit
'EU project saves time and money with CUSTOM-FIT products'





  Top   Research Information Center