Navigation path

Themes
Agriculture & food
  Agriculture
  Animal health and welfare
  Food safety & health risks
  Forestry
  Marine resources & aquaculture
  Other
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


This page was published on 08/04/2009
Published: 08/04/2009

   Headlines

Last Update: 08-04-2009  
Related category(ies):
Agriculture & food  |  Health & life sciences  |  Research policy

 

Add to PDF "basket"

Tobacco gets new, healthy image

Tobacco use triggers a number of common diseases in humans including heart disease and lung cancer. However, a group of scientists from Europe may be tobacco's saving grace. They successfully used genetically modified tobacco plants to generate medicines for a number of autoimmune and inflammatory diseases. The study was part of the Pharma-Planta project, which was funded under the EU's Sixth Framework Programme (FP6) to the tune of EUR 12 million. The study's results were recently published in the open access journal BMC Biotechnology.

Tobacco plants find a niche in the medical world © Shutterstock
Tobacco plants find a niche in the medical world
© Shutterstock

The scientists targeted the creation of transgenic tobacco plants with the capacity to generate biologically-active interleukin-10 (IL-10), a small protein known as a cytokine that regulates the immune system.

Led by Professor Mario Pezzotti from the University of Verona in Italy, the team tested two different versions of IL-10 (viral and murine) and produced plants in which this protein was targeted to three different compartments within the cell in order to assess the most effective one.

The researchers noted that oral administration of this cytokine alone, or in combination with disease-associated autoantigens, could offer protection from the onset of a specific autoimmune disease through the 'induction of oral tolerance'.

Furthermore, the team found that the tobacco plants successfully processed both forms of IL-10. Active cytokine was produced at high enough levels making it possible to use tobacco leaves without wasting a lot of time for extraction or purification. Transgenic plants are able to increase proportionally at low cost and with low maintenance.

'The fact that they can be eaten, which delivers the drug where it is needed, thus avoiding lengthy purification procedures, is another plus compared with traditional drug synthesis,' explained Professor Pezzotti. 'These results clearly demonstrate that tobacco plants can express the viral and murine IL-10 genes, process and assemble the corresponding proteins into functional, biologically-active dimers,' he added.

The scientists are eager to use the plants to determine whether repeated small doses could help prevent type 1 diabetes mellitus (T1DM), in combination with other auto-antigens associated with the disease. They have set their sights on the 65-kDa isoform of the enzyme glutamic acid decarboxylase (GAD65) for the testing.

'The accumulation levels of both viral and murine IL-10 in tobacco leaves are high enough to provide sufficient material for oral administration in oral tolerance studies using the available mouse models,' Professor Pezzotti said.

'This study paves the way to performing feeding studies in mouse models of autoimmune diseases, which will allow the evaluation of the immunomodulatory properties and effectiveness of the viral IL-10 in inducing oral tolerance compared to the murine protein.'

Collaborating with the University of Verona were the Institute for Molecular Biotechnology (Germany), Fraunhofer Institute for Molecular Biology and Applied Ecology (Germany), Max-Planck-Institute of Molecular Plant Physiology (Germany), the University of Natural Resources and Applied Life Sciences (Austria) and the University of Perugia (Italy).


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Verona
Pharma-Plant
'Bringing drug-producing plants a step closer'





  Top   Research Information Center