Navigation path

Themes
Agriculture & food
Energy
Environment
  Atmosphere
  Biodiversity
  Clean technology and recycling
  Climate & global change
  Cultural heritage
  Earth Observation
  Ecosystems, incl. land, inland waters, marine
  Health & environment
  Land management
  Natural disasters
  Sustainable development
  Urban living
  Other
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


This page was published on 08/04/2008
Published: 08/04/2008

   Environment

Last Update: 08-04-2008  
Related category(ies):
Environment

 

Add to PDF "basket"

Tsunami fears for Mediterranean realistic

The tsunami of 26 December 2004 shocked the world. It killed over 225 000 people in 11 countries and served as a wake up call on the destructive capabilities of nature. The event also shook Europeans, especially those living in coastal areas, leaving them to wonder whether such an event could happen at home. The answer came in a recent study analysing the plate tectonics of the Mediterranean seafloor: it suggested that Europe may be in store for a tsunami a lot sooner than previously thought.

The powerful force of nature is revealed © Shutterstock
The powerful force of nature is revealed
© Shutterstock

For people living in the Mediterranean, earthquakes are a common occurrence. In fact the Hellenic arc is considered by many seismologists as the most active seismic region of the transition zone between the African and Eurasian plates. Earthquakes are caused when these tectonic plates bump into or slide past each other.

Thanks to ancient historians there is documented evidence of the last tsunami that struck the region, on 21 July 365 AD. One such historian was Ammianus Marcellus, who wrote about what he saw when the tsunami struck the port city of Alexandria. So devastating and far reaching was the tsunami that it drowned thousands of people and destroyed cities from the Nile Delta in Egypt to Croatia up on the Adriatic Coast.

However, up until now the precise location and tectonic setting of this earthquake had been uncertain. The location of the earthquake is important as it can help seismologists to predict approximately when the next earthquake will occur. Thanks to new evidence based on radiocarbon data and field observations from the day of the tsunami, the location of the epicentre of the earthquake can been located. According to field observations, Western Crete was lifted as high as 10 metres above sea level. The distribution of uplift combined with modern data on seismicity suggests that the earthquake occurred not on the subduction interface beneath Crete, but on a fault dipping at about 30 degrees within the overriding plate.

A subduction is where two of the Earth's plates meet, with one plate riding over a second plate that is gliding downwards at an angle into the planet's mantle. Subduction zones usually have measurable creep of, say, a few centimetres a year. But as the rock becomes brittle and deformed at greater depths, these zones can also deliver titanic quakes, displacing so much land that, when the slippage occurs on the ocean floor, a killer wave is generated.

By measuring the crustal shortening of the plate near Crete, seismologists were able to estimate that a repeat of the tsunami of 365 AD would occur in approximately 5,000 years. However, if the new evidence is correct and the location of the previous earthquake occurred in the Hellenic subduction zone, then the overall recurrence time of strong earthquakes could be closer to 800 years. Up until now the 365 AD earthquake was thought to have been caused by the subduction zone beneath Crete, and a fault in the overriding plate.

The University of Cambridge’s Professor Beth Shaw was able to reconstruct the earthquake uplift from 365 AD and the propagation of the resulting tsunami from radiocarbon data, field observations and model simulations. The last tsunami to hit the eastern Mediterranean occurred on 8 August 1303 and is thought to have originated off the coast of Rhodes. This indicates that the whole Hellenic subduction zone may represent a tsunami hazard for the eastern Mediterranean. And if the analysis is correct, we can expect to see another earthquake on the scale of the one seen in 365 AD a lot sooner than when we previously thought.

The findings of the study are published in Nature Geoscience.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

ESA: Global monitoring for Environment and Security
Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake





  Top   Research Information Center