Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


This page was published on 28/03/2008
Published: 28/03/2008

   Health & life sciences

Last Update: 28-03-2008  
Related category(ies):
Health & life sciences

 

Add to PDF "basket"

Malaria fears allayed

According to the World Health Organization (WHO), 40 percent of the global population, mostly those living in the world’s poorest countries, are at risk of malaria. Every year, more than 500 million people become severely ill with malaria. Africa is most at risk where one in every five childhood deaths is a direct result of the disease. As borders come down, and international trade and migration increases, there are growing concerns regarding a severe outbreak of malaria in industrialised countries. New modelling, however, shows that such fears are currently unwarranted.

Mosquitoes: a major carrier of malaria © Shutterstock
Mosquitoes: a major carrier of malaria
© Shutterstock

Malaria is caused by a parasite called Plasmodium, which is transmitted via the bites of infected mosquitoes. In the human body, the parasites multiply in the liver, and then infect red blood cells. The disease can be transmitted to people of all ages. If not treated promptly with the appropriate medicines, malaria can be fatal. In certain cases, lack of access to appropriate treatments and overburdened health systems have led to a resurgence of the disease in the developing world.

Modern health providers are keenly aware that diseases know no boundaries and that whatever affects developing countries is just as likely to impact developed countries. This point was struck home when the Avian Influenza H5N1 flu virus spread from Asia to Europe. While the threat can be real, people may be prone to overreact; this is why a detailed understanding of diseases and how they spread is needed. This is where the work of researchers at the Instituto Gulbenkian de Ciência (IGC), in Portugal comes into play.

Now, Gabriela Gomes and her team at the IGC’s Theoretical Epidemiology department developed a mathematical model which, for the first time, estimates the parameters underlying the dynamics of malaria transmission in different populations. The researchers applied their model to data from hospital admissions of children with malaria, provided by researchers working in eight different regions in sub-Saharan Africa, where malaria is endemic.

The model shows that, contrary to what was previously thought, in regions of moderate transmission - there is a threshold for malaria eradication, separating endemic and malaria-free states. Any intervention success depends critically on reducing occurrence of the disease below this threshold, which the model predicts to be possible in areas of moderate transmission, which is the case for most of Africa.

Industrialised nations sit well below this threshold, in the malaria-free state, since the number of clinically-immune people is extremely low, making any re-emergence of malaria in these countries highly improbable.

‘Huge efforts are being put into fighting malaria in developing countries. Our model presents a very optimistic outlook for eradicating the disease in areas where it is moderately endemic, contrary to current thinking. We are now looking for research partners who may provide us with more clinical data, from more regions in Africa, which we could use to strengthen our model, and feed into effective eradication programmes,’ explains Prof. Gomes.

‘This is a very powerful model, since it should allow us to determine quantifiable targets for reducing transmission of malaria (by providing mosquito nets, for example) and for fighting the disease (through mass- handing out of anti-malaria drugs), for a specific region,’ says Ricardo Águas, one of the researchers involved.

The results of the research were recently published in PLoS ONE.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

PLoS One
Surveillance of Malaria in the EU





  Top   Research Information Center