Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
  Industrial
  Nanoelectronics
  Nanomaterials
  Nanomedicine
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


This page was published on 14/07/2006
Published: 14/07/2006

   Headlines

Last Update: 14-07-2006  
Related category(ies):
Information society  |  Industrial research  |  International cooperation  |  Nanotechnology  |  Pure sciences

 

Add to PDF "basket"

Putting the right spin on nano-electronics

Thanks to a quantum physics breakthrough, European and American physicists are, electron-by-electron, pushing back the resistance barriers stifling current generation computers and high-speed, high-powered electronics. But as fundamental researchers, they say their work is not about end products, but the thrill of discovery.

Danish physicists provide a fundamental building block in molecular electronics. Could we, one day, mix transistors in a test tube? © PhotoDisc
Danish physicists provide a fundamental building block in molecular electronics. Could we, one day, mix transistors in a test tube?
© PhotoDisc
Today, all electronics are based on transistors, and they are getting smaller, faster and more powerful – a trend likely to continue in light of recent news reported in a July issue of Nature Physics. Two Danish physicists at the Copenhagen University (CU) have mastered a technique for migrating electrons in a nano-transistor. Using quantum physics, the scientists have got the electrons at either end of a carbon nano-tube 'talking' to each other in perfect pitch.

Jens Paaske of the Nano-Science Centre and Niels Bohr Institute at CU, who was responsible for the theoretical part of the experiment, said the breakthrough was made possible thanks to excellent collaboration with his experimental colleague Jesper Nygård of the Niels Bohr Institute and colleagues at Universität Karslruhe, Germany, and Harvard University, USA. A relationship borne out of friendship and international training.

“I first started working with tiny molecular transistors and theories for how to push electrons through single-walled carbon nanotubes about four years ago in Germany where I was doing postdoc work,” Paaske told Headlines. But there was only so far he could go with his ideas without input from experimental physicists who could help with the cooling of the electrons – entering the quantum realm.

Basically, he explains, at temperatures near absolute zero (–270°C), the so-called ‘spin' of the electrons gets each one acting like a little magnet, jumping one-by-one from one end of the nanotube to the other and building up momentum until they reach ‘quantum mechanic cohesion' – technically known as a Kondo resonance. “By this stage, we're getting clean communication between the two poles with perfect flow of electrons, lowering resistance and heat build up,” he notes. “The electrons are actually helping each other through the molecule in the nano-transistor.”

It's still fundamental, though
This achievement is not only a breakthrough in the fundamental research of nanotechnology, the Niels Bohr Institute notes in a statement, “it also influences the development of tomorrow's electronics, such as future super-fast quantum computers”.

But Paaske still stresses the fundamental nature of the demonstration. “We're looking at the result in two ways,” he says. First, it is a fundamental building block in molecular electronics, with the idea of one day mixing transistors in a test tube, pouring them out and letting them organise, or ‘talk', amongst themselves. “This would make them not only cheaper but also faster, as they self-organise,” he adds.

The second factor is that, by controlling the spin over the electrons – pure quantum electronics – you are then controlling it well enough to manipulate a “quantum bit”, which is the basic building block in a ‘quantum computer'. Significant research efforts worldwide are being put into the quest to develop this quantum computer. While it is still at the vision stage, the result from Copenhagen shows that the necessary quantum properties can be realised in a nanotube transistor at low temperatures.

Nygård says discovering how to control the way electrons move through nano-transistors is all the more satisfying as it is a shared experience built on years of work spanning two continents. Guided by the work of Harvard professor Charlie Marcus in the field of quantum electronics, Nygård returned to Denmark and began what turned out to be a very successful partnership with Paaske, resulting in a worldwide breakthrough in quantum nano-electronics.

In another example of international collaboration, Paaske has also been taking part in the EU-funded CANEL project, which is a three-country – Sweden, Denmark, the Netherlands – tie up to integrate carbon-based nano-electromechanical devices into silicon technology. The 36-month project, funded to the tune of €1.8 million by the EU's Information Society Technologies programme, kicked off in 2004 and is focusing on applications in information technology, such as switches and memory elements.

University of Copenhagen, ISTweb, Jens Paaske, Jesper Nygård

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Non-equilibrium singlet-triplet Kondo effect in carbon nanotubes(Nature Physics letters July 2006)
CANEL project sheet
CANEL page (on Chalmers, Gothenburg University)
Niels Bohr Institute

  Top   Research Information Center