Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


  

Last Update: 04-05-2013  
Related category(ies):
Industrial research  |  Success stories  |  Nanotechnology

 

Countries involved in the project described in the article:
Austria  |  France  |  Germany  |  Netherlands  |  United Kingdom
Add to PDF "basket"

Super surfaces at your service

Every time a firefighter braves an inferno, a scientist wonders if a new material or special flame-resistant coating could be created to protect him. Today, armed with nanocomposite techniques and insights into bio-based materials, new classes of smart, adaptable super-surface coatings are possible, according to European researchers.

©  Fotolia

Teams from Austria, France, Germany, the Netherlands, Slovenia and the UK investigated a new class of bio-based materials tailored to the needs of different fields, including medicine, the environment, electronics, manufacturing, and even health and safety applications.

These ground-breaking new materials are made up of extremely small layers of polysaccharides (a carbohydrate with a number of sugar molecules bonded together) coated with nanoparticles comprising other biological or mineral matter. When applied to the surface of other materials, to form a composite, the coating performs a very special role.

“The number of applications for this smart breed of new polymer compounds are boundless,” according to Dr Volker Ribitsch, University of Graz, Austria, who led EU-funded researchers in the Surface functionalisation of cellulose matrices using cellulose embedded nanoparticles (Surfuncell) project.

The six industrial and seven academic partners recently delivered the findings of their four demonstrators in the fields of pulp and paper, cellulosic yarns, cellulose films, and filter membranes.

Improved properties

Surfuncell investigated the effects of cellulose dissolution, structuration with nanoparticles and irreversible coatings. The project targeted, in particular, so-called surface compounds – where the compounding is strictly limited to the surface of the matrix polymer material. This, they predicted (accurately), would prevent deterioration of the compound structure, or matrices holding the materials together. Under different conditions, such as intense heat, cold or through other wear, tear and exposure, the chemical properties of the material could change and weaken the bond holding the compound together.

The improved properties of these materials, such as antimicrobial activity, selective adsorption, flame resistance, electrical conductivity, antimicrobial activity and barrier properties (for precise separation), could make them ideal for use in medical and hygiene devices, water-purification systems, as well as in the electronics industry.

“I’m confident, thanks to our open innovation approach, that our work will find its way into novel polymers and surface coatings, and also support wider nanoscience research,” says Dr Ribitsch.

Since the Surfuncell team had to start from the beginning with many aspects of its work, it called for new thinking and strategies to handle nanoparticles and to design nanostructured composite materials using renewable resources.

“The further we got into the project, the more important it became that the functional coatings not only reliably serve their purpose, but also serve the environment, which is especially good for a sustainable European industrial sector,” concludes Dr Ribitsch.

Project details

  • Project acronym: Surfuncell
  • Participants: Austria (Coordinator), France, Germany, the Netherlands, Slovenia, United Kingdom
  • Project FP7 214653
  • Total costs: € 7 996 704
  • EU contribution: € 5 472 795
  • Duration: December 2008 - November 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center