Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


  

Last Update: 20-11-2012  
Related category(ies):
Information society  |  Success stories

 

Countries involved in the project described in the article:
Turkey
Add to PDF "basket"

REALMARS – Breakthrough antenna research to boost wireless transmission

New developments in how antennas handle signals in today's crowded airwaves should help make wireless communication and location services faster and vastly more accurate. Emergency services, e-health, cyber security and other areas depending on reliable data transmission stand to benefit from a breakthrough EU-funded research that improves location estimation accuracy by 60%.

©Fotolia
© Fotolia

The better a radio antenna can capture signals, the more reliable the data transfer. Good data transfer improves the quality of reception in the case of a cell phone or the ability to use proximity or location-based services, such as in emergency situations, tracing cyber-security threats, or for advertising and marketing.

For example, if you are searching for a pharmacy, accurate proximity could take you to within 40 metres of the store. But if you are lost in rough seas, nothing less than, say, three-metre accuracy would do. The EU-funded project, 'Research on location estimation in multi-carrier systems' (Realmars), is expected to help mobile carriers keep ahead of the growing demand being put on the airwaves.

"There is only so much traffic that can pass through the airwaves before signals start interfering with one another and affecting the quality of service," explains Günes Karabulut Kurt of Istanbul's Technical University's Faculty of Electrical and Electronics Engineering who headed the Realmars project.

The telecom sector needs to find smarter ways to use the available spectrum – the radio frequencies on which all communication signals travel – more efficiently. According to the Digital Agenda for Europe's mid-term review, greater data consumption and a shift to mobile technologies, such as smartphones and mobile services, are the most significant trends in the telecoms sector.

Clever way of boosting signals

Realmars' breakthrough is expected to help telecom carriers deliver better services despite the added pressure on mobile systems caused by greater demand for data and better transmission quality. The project developed algorithms (tiny programs) which read the data being transmitted to and from antennas much better, thus greatly improving the accuracy of signal approximation.

"This could make a big difference in life-saving situations," says Dr Kurt. She came up with the idea for Realmars following her PhD studies on signal estimation and later work with the Turkish telecom giant Turkcell on multi-carrier (MC) systems – these tackle the crowding of radio waves by splitting and sending data over separate carrier signals.

Under Dr Kurt's guidance, Realmars examined a clever way of boosting 'Orthogonal frequency division multiplexing' (OFDM). This is an MC technology used today in many wireless platforms like WiMAX and late-generation mobile internet (3G, 4G, LTE). The project's focus was on how to upgrade OFDM antenna systems to make them more adaptive or indeed 'receptive' to incoming signals.

Dr Kurt worked on ways to enhance incoming signal strength by improving an antenna's ability to judge or 'estimate' the angles of arrival (AOA). This, she predicted (correctly), would create more possibilities for location-based services, especially in important areas such as e-health, emergency response and cyber security.

"Using MC signals and our AOA algorithms and tools, we can improve location estimation accuracy by 60% compared to current technologies on the market," notes Dr Kurt. These results were reached through a complex process, including innovative use of physical layer characteristics with higher application layers and the integration of so-called "tree search structures" into these algorithms to further boost performance.

Realmars developed a toolbox or framework that is easy to use for marketing and high-tech applications, for instance. Part of the work carried out by the team is available on the project website as open source for anyone to use or further develop. Other commercially protected parts are being further developed by Dr Kurt's former employer Turkcell. Patents have also been filed for Realmars' location estimation system.

Project details

  • Participants: Turkey (coordinator)
  • FP7 Proj. N° 231042
  • Total costs: € 50 000
  • EU contribution: € 50 000
  • Duration: July 2009 to July 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center