Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


  

Last Update: 07-11-2012  
Related category(ies):
Information society

 

Countries involved in the project described in the article:
Greece  |  United Kingdom
Add to PDF "basket"

Change the channel with a wave of your hand

A team of inventors from across Europe have done away with traditional remotes and have developed a sensor about the size of a wrist watch which is able to track the 3D movement of the hand and allows the user to remotely control any device. The researchers believe that their device could replace your television remote and games controller, and could even control your mobile phone – with just a wave of the hand. Their controller, 'Digits', was presented at the 25th Association for Computing Machinery Symposium on User Interface Software and Technology (ACM UIST).

Wrist-worn 3D hand tracker © Newcastle University
Wrist-worn 3D hand tracker
©  Newcastle University

Their invention represents a major breakthrough as it allows, for the first time, 3D interactions without being tied to any external hardware. Digits maps finger movement and orientation and it gives the user remote control anytime, anywhere, according to its developers, even allowing you to answer your phone while it's still in your pocket and you're walking down the street.

Digits was developed by David Kim, a Microsoft Research (MSR)-funded PhD student from Newcastle University's Culture Lab; Otmar Hilliges, Shahram Izadi, Alex Butler and Jiawen Chen of MSR Cambridge; Iason Oikonomidis of Greece's Foundation for Research & Technology; and Professor Patrick Olivier of Newcastle University's Culture Lab.

'The Digits sensor doesn't rely on any external infrastructure so it is completely mobile,' explains David Kim. 'This means users are not bound to a fixed space. They can interact while moving from room to room or even running down the street. What Digits does is finally take 3-D interaction outside the living room.'

To fulfil their ambitious target, Digits had to be lightweight, have a small power consumption footprint, and have the potential to be as small and comfortable as a watch. At the same time they also wanted Digits to accomplish a lot, such as deliver superior gesture sensing and 'understand' the human hand, from wrist orientation to the angle of each finger joint, so that interaction would not be limited to 3D points in space. Digits had to understand what the hand is trying to express, even while inside a pocket.

David Kim adds: 'We needed a system that enabled natural 3-D interactions with bare hands, but with as much flexibility and accuracy as data gloves. We wanted users to be able to interact spontaneously with their electronic devices using simple gestures without even having to reach for them. Can you imagine how much easier it would be if you could answer your mobile phone while it's still in your pocket or buried at the bottom of your bag?'

Their prototype, which they showcased at the prestigious ACM UIST 2012 conference, includes an infrared (IR) camera, IR laser line generator, IR diffuse illuminator, and an inertial-measurement unit (IMU) track.

Shahram Izadi explains the challenges they had to overcome, such as extrapolating natural-looking hand motions from a sparse sampling of the key points sensed by the camera.

'We had to understand our own body parts first before we could formulate their workings mathematically,' Shahram Izadi explains. 'We spent hours just staring at our fingers. We read dozens of scientific papers about the biomechanical properties of the human hand. We tried to correlate these five points with the highly complex motion of the hand. In fact, we completely rewrote each kinematic model about three or four times until we got it just right.'

The team agrees that the most exciting moment of the project came when team members saw the models succeed. 'At the beginning, the virtual hand often broke and collapsed. It was always very painful to watch,' David Kim explains. 'Then, one day, we radically simplified the mathematical model, and suddenly, it behaved like a human hand. It felt absolutely surreal and immersive, like in the movie Avatar. That moment gave us a big boost!'

Digits is just the tip of the iceberg; the researchers are also experimenting to further develop their invention. 'By understanding how one part of the body works and knowing what sensors to use to capture a snapshot,' Shahram Izadi says, 'Digits offers a compelling look at the possibilities of opening up the full expressiveness and dexterity of one of our body parts for mobile human-computer interaction.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Newcastle University
25th Association for Computing Machinery Symposium on User Interface Software and Technology





  Top   Research Information Center