Sweeper

A Sweet Pepper Robotic Harvester

“Digitising agriculture and food value chains”
Session: Digital solutions to meet agriculture challenges

Jos Balendonck

Brussels, November 17th, 14:00-15:30h
Robotics Use Case (Innovation Action)

Technology transfer using **leading edge science and technology**, a targeted effort will aim at **introducing, testing and validating** promising and innovative **robotics solutions** in industrial and service sectors. The focus on **robust operational deployment** of these robotic solutions, based on performance objectives, metrics, and user needs. The strong **involvement** of all **relevant stakeholders** in the value chain is essential.
High-tech greenhouse industry

- Mass production
- Hygiene
- Legislation
- labour costs: 30% - 50%
- Foodsafety
- Quality specs
- Humid and hot environment
- Traceability
- Added Value & fast reliable delivery
Case: Sweet Pepper Harvesting

SWEEPER’s **main objective** is to put the **first generation greenhouse harvesting robots onto the market**. Until now this has never been achieved and it will ensure Europe’s leading role in agricultural robotics.
Main challenges for robotic harvesting

- **Unstructured environment**
 - Delicate product
 - Limited space
 - Occlusion
 - Fruit clustering

- **Detection**
 - Target and non-target
 - Ripeness and quality
 - 3D localization

- **Economic feasibility**
 - Harvesting success rate (no damage)
 - Cycle time
Lessons learned

- **Manipulator**
 - 6 DOF off the shelf robot arm
 - Robotic Operating System (ROS)
 - Mobile platform + post-harvest logistics

- **End-effector (grasp/cut)**
 - lip-type, smaller/light-weight

- **Camera system**
 - Ripeness and localization
 - 3D camera + illumination

- **Model based vision and control**
 - deep learning, obstacle avoidance
 - eye-hand coordination (visual servoing)

- **Economic evaluation**
 - adapted crop morphology (crop management)
Advanced camera sensor

- One camera, placed in the end-effector
- Strobed active LED illumination
- Combined 3D data and colour image
Deep-Learning for plant part localization

- **Need:** Large annotated datasets
- **Approach:** Synthetic dataset to bootstrap the model
- **Result:** Trained network for real-time obstacle detection and to determine best end-effector alignment
Real-time target approach using visual servoing

Software framework for **eye-in-hand sensing** and robot motion control
Society and it’s ideas about agriculture robots

- **Growers:** skilled labour, cost and availability
 - Need for economic feasible robotics concepts
 - More management information

- **Workers:** hard work (hot, humid)
 - Make work less hard:
 - robots assist in repetitive work under harsh conditions
 - Change work type to a higher level:
 - supervision of robots

- **General public:** afraid to loosing jobs
 - Create new jobs:
 - appeal to human intelligence and expertise
 - human/robot collaboration
Precision farming requires digital solutions

- Treatment of individual plants on a row or m²
 - AGV, Mobile platforms, drones, master-slave
 - From arable-crops towards horticulture

- HiRes Crop/field status (sensors, IoT, cloud computing)
 - Crop yield, diseases, phenotyping (for breeding)
 - From monitoring data towards management information (DSS)

- Precision application/treatment equipment (robots)
 - Fertilisers, spraying, crop protection, weeding, selective harvesting
Future research topics

- **Deep-learning** (to support navigation in unstructured environments)
- **Crop monitoring** (for early detection of diseases/pests and crop quality/yield)
- Combine **robotic** developments with **plant breeding** expertise (to enhance robotic performance)
- **Human-robot collaboration** (safe robot-assisted human work to reduce workload/environmental issues)
Expected impact

- **Increase Europe's market share in industrial robotics**
 to one third of the market and maintain and strengthen Europe's market share of 50% in professional service robotics by 2020.

- **Improve competitiveness of Europe's manufacturing sector**, in particular **SMEs**, address pressing technological challenges and the effect of an aging workforce.

- **Improve Technology Readiness Levels** of robotics technologies.

- **Increase Industry-Academia cross-fertilisation** and tighter connection between industrial needs and academic research via technology transfer, common projects, scientific progress on industry-driven challenges.
Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 644313