Private Sector Interaction in the Decision Making Processes of Public Research Policies

Country Profile: Lithuania

1. Political, institutional and economic framework and important actors

In the course of its transition to a market economy, Lithuania has completed important privatisation, restructuring and market reorientation processes and achieved an impressive average economic growth in the last years. To maintain this growth, the country faces the challenge to develop high-value added and high-technology industries to avoid getting trapped in low-quality, low-technology sectors in the long-run. Today, most of Lithuania’s exports are in traditional, labour-intensive sectors with lower value added.

Lithuania’s R&D intensity has grown moderately from 0.68% of GDP in 2001 to 0.76% of GDP in 2004 and is still far from the EU’s Barcelona target. A particular challenge is the low level of Private Sector R&D investment. In 2004, only 17% of total R&D expenditure was financed by the business sector, while 65% came from the government, 14% from abroad and 5% from other national sources. The R&D potential of the business community has been lost in the course of the transition and has not recovered so far, even after the accession of Lithuania to the European Union on 1 May 2004.¹

Lithuania is a unitary state and all the main functions are concentrated in the hands of the central authorities. Given the small geographical size of the country, all R&D institutions are concentrated at a national level and local authorities have almost no competencies in research policy. Research is performed almost exclusively by public institutions (universities and state research institutes).

Figure 1 depicts the main actors of the Lithuanian Research and Innovation System.

Figure 1: Research and innovation policy making and delivery structures in Lithuania

¹ Sources of data: Eurostat, R&D Expenditure in Europe, Statistics in Focus 6/2206, Luxembourg, January 2006; European Trend Chart on Innovation, Annual Innovation Policy Trends and Appraisal Report Lithuania 2004-2005
a. Political and governmental authorities

The Parliament of the Republic of Lithuania (Seimas) is the policy instigating body which approves the Government’s programme and defines national R&D policy framework and its main objectives. The government is the executive body which prepares and implements research policies. Through its two ministries involved in research and innovation policy making, it develops and approves policy programmes and documents and implements these.

The Ministry of Education and Science controls a major part of financial and other resources for the implementation of most national research policies. The ministry makes also proposals for the establishment, reorganisation, and cessation of research institutions. The Ministry of Economy plays the leading role in the development and implementation of research and innovation policies which target the business sector. The recent establishment of the Innovation and Technology division in Ministry of Economy’s Industry and Business department is an expression of the increased importance attached to the development of research and innovation in Lithuania. The Ministry of Economy coordinates the establishment and the operations of innovation support organisations such as innovation centres, science and technology parks or business incubators, whose number has increased considerably during the last years. In their responsibilities for specific policy domains, other ministries are also active in sector-specific research policies. However, so far inter-ministerial coordination of research-related policies remains a weak point with considerable improvement potential.

To improve coordination between the government institutions involved in research and innovation policies, the Science and Technology Commission was established in 2002. The commission was merged with the Education and Science Commission to form the Science, Technology and Innovation Commission in 2005. This new commission, composed of public servants, has taken over the inter-ministerial coordination tasks and advises the Lithuanian government on related issues.

Formal high-level advice is provided by two independent councils. The Science Council of Lithuania advises the parliament and the government on research and higher education issues of strategic importance and acts as a major driving force for the development of the Lithuanian Science and Innovation System. For example, it has made major contributions to the implementation of the recommendations of the 2003 World Bank report ‘Lithuania - Aiming for the Knowledge economy’. The Science Council works through six permanent commissions: the Research Strategy and Governance Commission, the Research Priorities and Evaluation Commission, the Scientists’ Qualifications Commission, the Studies Commission, the Commission on Finances and the Commission on the Co-operation of Business, Science and Studies. As a part of its tasks, the Council participates in drafting the legal acts related to Lithuanian science and studies system; considers the drafts of the legal acts in public and submits modifications compiling the view of the academic community. The Council also submits the proposals on State aid to scientific publishing, on State scholarships to students and scientists, on the financing of national scientific programmes and on other issues. The council members include 15 scientists proposed by the science and studies institutions, 6 members proposed by the Ministry of Education and Science, and 11 members from different organisations representing the key actors and stakeholders in the national Science and Innovation system, including representatives of the Chamber of Agriculture and the Lithuanian Confederation of Industrialists.

In a complementary role, the Higher Education Council advises the Ministry of Higher Education and Science on issues of strategic development in higher education, e.g. the development strategy for higher education in Lithuania.

b. Intermediate bodies

The Lithuanian Academy of Sciences is an autonomous state-subsidised research performing institution, which brings together distinguished Lithuanian scientists and serves at the
same time as an independent advisory body to the Government on scientific and educational advancement.

In order to ensure financial support for the development of science and scientific education, the Lithuanian State Science and Study Foundation was set up by the Government. It funds scientific research on a competitive basis.

The Ministry of Economy promotes also a business and innovation support network, consisting of the Lithuanian Business Support Agency (which manages structural funds and state aid funds in Lithuania), the Lithuanian Development Agency, the Lithuanian Small Business Development Agency, the Lithuanian Innovation Centre, several Technology Parks and an SME support network. The Ministry of Economy installed also the Sunrise Commission as a permanent commission on the improvement of business conditions. However, the Commission’s mandate was not renewed in 2005.

c. Research performing institutions

There are several groups of public research institutes in Lithuania, which are relatively autonomous in defining their own research policies. University research institutes, established to carry out research of high international quality, focus mainly on basic research and provide the research basis for university education, doctoral studies, and for improving university personnel’s scientific qualifications. State research institutes carry out long-term research of international quality involving groups of specialised scientists and requiring data collection and specialised experimental instruments. The Ministry of Higher Education and Science provides guidelines for research by state research institutes.

State research establishments aim to carry out applied research and experimental development activities. The cooperation of the state research institutes with the Private Sector improved during the last years and is performed mostly on the base of mutual formal or informal agreements. However, the Private Sector has no considerable impact on the governance or the strategic decisions of these institutions.

Private Sector R&D is mostly based on autonomous efforts of enterprises and involves partners from other enterprises or from scientific institutions only occasionally, although activities of several enterprises are built on successful cooperation with national and foreign scientists and transfer of knowledge to industry. At the enterprise level, a group of companies in high-technology sectors (e.g. laser technology, biotechnology) represent success stories, e.g. Fermentas, a biotechnology company with considerable own R&D assets and a unique line of products for the biotechnology industry worldwide. However, these few success stories illustrate also the limitations of Lithuania’s current research and innovation potential, because so far they remain isolated ‘showcase’ examples which are atypical. Lithuania still needs to develop its research and innovation potential and the use of its knowledge assets.

d. Private Sector

The tradition of systematic business networks for innovation is not very developed in Lithuania. However, the Private Sector increasingly organises itself in formal structures such as The Confederation of Lithuanian Industrialists (unites 41 branches and 8 regional associations, over 2700 various enterprises, all which are starting to form their own research groups) and business associations such as Infobalt (association of IT companies) or the Association of Lithuanian Chambers of Commerce, Industry and Crafts (a voluntary union of Chambers of Commerce, Industry and Crafts). Through these formal structures, the Private Sector is...
represented in the public R&D structures and institutions (e.g. Science Council, Business Development Council, etc.).

Informal networks such as Business Club, Executive MBA Club, Vilnius Club etc. and international clubs, such as Rotary or Lions Clubs are operating in Lithuania as well. According to interviewed sources, such informal networks are leading to easier networking in research projects as well.

2. National research policy decision processes and Private Sector involvement

In a summary view, the efficiency of national research and innovation governance structures with their large number of institutions involved still needs to be improved to ensure efficient decision-making and research policy implementation.

Instigation and design stages

In their responsibility for research and innovation policy instigation, the responsible parliamentary committees hold regular public hearings where representatives of the Private Sector are invited to participate in debates. The regular interventions of Private Sector representatives are not obligatory, although they can informally influence the conclusions and recommendations of the committees. Lithuanian legislation contains a law regulating lobby activity in force. Thus the legal lobby is practised by formal Private Sector networks and business associations such as the international association Infobalt or the Lithuanian Confederation of Industrialists. It focuses on contributions to the drafting of laws, resolutions and regulations which are potentially advantageous for business.

The Science Council of Lithuania, the main scientific adviser to the Parliament and the Government in research and higher education policy issues, remains one of the major Lithuanian science and technology policy instigators. The Science Council is an institution which represents the interests of the science community and the state. But it interacts closely in both a formal and an informal way with stakeholders, especially with the Private Sector. For example, representatives of the Lithuanian Information Technology and Telecommunication firms have some advisory influence on the state R&D policy through this mechanism.

National research policy debates which involve stakeholders, especially scientists, enterprises, consumers and public authorities are taking place by means of conferences, seminars and workshops. The most recent important innovation policy event was the creation of the Lithuanian Innovation Award Lithuanian Innovation Prize, initiated 2005 by the Lithuanian Ministry of Economy in cooperation with the Lithuanian Industrial Confederation and the Lithuanian Development Agency. This event was also important because it brought various community actors together to discuss research and innovation in business. The main Private Sector representatives involved in national debates on R&D policy are the major companies. These include AB Snaigė (producer of refrigerators), UAB Fermentas (one of the leading biotechnology enterprises in Lithuania and one of the world’s top ten enterprises in the area of molecular biology products), UAB Alna (leading ITT Lithuanian company), AB Ekranas (manufacturer of kinescopes for TV sets) and AB Audėjas (textile manufacturer). The scientists are represented by institutions such as Kaunas Technology University, Semiconductor Physics Institute, Lithuanian Science Council, Mathematics and Informatics Institute and the Lithuanian Science Academy. The following governmental bodies and their officials take part

6 Especially the Committee on the Development of an Information society, Committee on Economics and Committee on Education, Science and Culture.

7 One of the major policy debates over the last two years related to the National Innovation Strategy which was developed by the EC European aid office (Tender No: EuropeAid/112187/D/SV/LT). Guidelines and recommendations of the National innovation strategy supported the development of the Single Programming Document adopted at the very end of 2003. Other important and broadly discussed documents, whose influence went beyond innovation policy, were the following reports of the World Bank: Lithuania. Aiming for the Knowledge economy (2003); Doing business in 2005 and Investment Climate Assessment in Lithuania, complemented by a separate Lithuanian study on the investment climate; and a study on Strengths and weaknesses of large enterprises and their influence on regional development and employment.
in stakeholder debates: the Ministry of Science and Education, the Ministry of Economy and the Ministry of Finance.

Based on these inputs, the design of research and innovation policies is the task of the responsible ministries. The Department of Science and Higher Education of the Ministry of Education and Science focuses on enhancing research activities in higher education institutions and on strengthening the co-operation between the research base and the Private Sector. The Ministry of Economy promotes research and innovation activities of Private Sector enterprises. The Government’s new Science, Technology and Innovation Commission participates intensively in these activities. For example, the draft programme on Innovation in Business and the concept for the Development of Science and Technology Parks were discussed intensively by members of the commission. Unfortunately, the commission meets irregularly and has no secretariat to support its policy formulation and co-ordination role.\(^8\)

In a summary view, these activities illustrate that the Government is committed to encouraging stakeholder debates on research policies in Lithuania.

Implementation and assessment/revision stages

For the better coordination of business development-related policies and programmes, the Business Development Council of the Ministry of Economy was established in 2001 and three new committees were set up at the Council.\(^9\) The SME Development Committee was responsible mainly for the co-ordination of existing business development programmes and for the allocation of funds. The council was a collegial advisory body to the Government and included representatives of the authorities entitled to make strategic decisions, the leading specialists of different business sectors, representatives of the Chamber of Industry, Trade and Crafts, scientific and research institutes, banks and of other institutions. The Council coordinated the actions of the executing agencies in the strategy implementation process. The Business Development Council was discontinued in 2004; its functions were taken over by the Business Project Selection Committee, which monitors today the implementation of the strategies, sets selection criteria and considers concrete projects. In addition, the Committee makes proposals to the Government regarding the improvement of relevant legal acts. However, decisions taken by the committee have the character of recommendations; the final decisions are made by the Minister for the Economy. Therefore the Committee’s real influence is limited; decision power remains concentrated in the internal governmental structures.

The Private Sector is involved in the implementation stage also through Private Sector R&D investments. For example, *Achemos grupe* (an enterprise specialising in the production of fertilizers) has sponsored the installation of a technological laboratory in Kaunas Technology University, Chemical Technology Faculty. In 2002, a mobile telephone service provider *Bite GSM* within its sales outlet in Kaunas established a laboratory of mobile solutions for carrying out research and practical experiments in the areas of mobile telecommunications and data transfer technologies.

In Lithuania, the effectiveness and impact of policy formulation and implementation on innovation is not duly measured. Due to the poor quality of data on the Lithuanian Science and Innovation System, there is no reliable database for long-term policy planning and decision-making or for ongoing monitoring and evaluation of performance. Accordingly, the Private Sector is not involved in any evaluation studies, though it recommends possible measures.

The development and implementation of R&D policies and programmes always involves a consultation with the wider business and R&D communities. However, evaluations of existing measures are only carried out as a result of pressures applied by third party funding providers (World Bank, European Commission, etc.). The full text of these evaluations, if carried out, usually remains unpublished and is available only to the managing agency of the grant scheme.

\(^8\) Following suggestions form the World Bank the Commission should develop into a permanently functioning council, responsible for integrated innovation policy development.

\(^9\) Export Promotion Committee, Committee of the Promotion of Competitiveness, SME Development Committee
Observations: Possible barriers and current initiatives

Considerable progress has been achieved in the creation of a cluster infrastructure and in fostering relations and co-operation between policy makers, science and the Private Sector. But a major critique of the Lithuanian Science and Innovation System is the lack of connections and coordination between the major policy makers. The fragmentation and largely isolated working mode of both the institutions which perform R&D and the public administration institutions which are involved in research and innovation policy making is a major barrier for a rapid and efficient development of the Science and innovation System. Lithuania has a growing need to redefine and clarify the allocation of tasks and responsibilities between the involved ministries and to increase the links among the different actors.

This priority applies also to Lithuania’s Private Sector which should develop organisations that gather information, analyse policy issues, and foster communication on these issues among its members. It should also develop forums where representatives from all parts of the Private Sector can meet and formulate positions on policy issues. Doing so would improve the effectiveness and quality of Private Sector contributions to the formulation of visions, strategies, and policies by policy makers.

Another barrier stems from the fact that nearly all university research is financed by the state budget, with resources allocated to universities in lump sums (based on the number of students and past allocations). This setup makes university research unresponsive to industry demand. Industry has no influence on university funding decisions and there is only a very limited incentive for the universities to respond to Private Sector needs and to develop partnerships. New funding mechanisms should be introduced that are incentive based, transparent, and flexible, with growing reliance on non-budget financing. The mechanisms should clearly distinguish funds for education from funds for research. They should also allow for flexible use of external financing, including contract research and training.

3. Other important examples of policy decisions with Private Sector involvement

Regional research and innovation systems

Regional policy development in Lithuania is currently in its initial stages. Innovation components could be found in regional development strategies, as well as in strategies of the municipalities (such as the National Regional development strategy, Regional development strategies of Counties, and Strategies of development of Municipalities).

Regions and localities within Lithuania have become increasingly important platforms for innovation policy. The main idea, applied for example in the Vilnius and Kaunas regions, is that appropriate measures should be adapted to the structures and potential of individual regions. The concepts of clustering, science parks, technology centres, and incubators are good examples of regional development approaches. They are strongly driven by the Private Sector which instigates science parks and technology centres and, in that manner, initiates clustering.

Research policies of public research organisations

Although public research organisations have a high degree of independence in defining and implementing their research policies, most of the non-university research institutes involve Private Sector representatives as members of scientific advisory and other boards. Research policies of such organisations are often controlled by the Private Sector also due to its important research financing position.

4. Overview: Types and extent of Private Sector involvement

As described, the development of the Lithuanian Science and Innovation System, its governance structures and Private Sector involvement therein is still in development. The current status can be summarised as follows:
Several forms of networking, general dialogue and informal involvement are used to maintain a general exchange of views with the Private Sector. The best example is the increasing number of conferences organised in recent years. Conferences focused especially on clustering for the development of R&D, benchmarking and the knowledge economy.10

Another increasingly important form of Private Sector involvement is its advisory role, for example in advisory boards for research and innovation policy formulation and in advisory boards of research institutions.

Formal involvement is only in its initial stage. Although the ‘Programme on innovation in business I, II’ calls for more intensive co-operation of science institutions, industry and business, there is no direct mention on the obligatory membership of Private Sector representatives in supervisory boards of public research institutions or in the advisory boards for research policy formulation.

Following the example of Sunrise Valley, Lithuanian policy has initiated other activities to foster joint activities between the Public and the Private Sector, which are becoming real partners in the new-established research institutions or clusters.

Proactive involvement is mostly driven by industry associations. These activities, not so frequent in Lithuania, aim in particular at instigation and design of research policy measures.

Research funding starts to be used increasingly by individual companies. But for the moment, there are no important Private Sector foundations which stimulate research in the Public Sector.

5. Selected useful examples of transferable approaches and experiences

Lithuania’s national research policy and governance system is still under construction and undergoes a transformation. However, several approaches have already emerged which may be of interest especially for countries with comparable challenges.

5.1 Programme on innovation in business11

In 2000, the Government of Lithuania adopted a key document in the area of Research and innovation, the \textit{Programme on Innovation in Business (2000-2002)}, which was followed by an analogous document \textit{Programme on Innovation in Business II} in 2003 for the forthcoming period until 2006. This programme addresses the fragmentation of innovation-related information and the unsystematic and unlinked spread of the information sources; the insufficient co-operation between science and industry; the inexperience of science institutions in working with business entities and insufficient financing of innovation activities.

One of the main concerns during the discussions prior to the adoption of this programme was finding the appropriate policy to intensify the co-operation between the Public Sector science institutions and the Private Sector. Enhanced exchange of the relevant information was recognised as one of the necessary measures in this sphere. The implementation of this programme is financed from Government funds, e.g. the ‘Industry development until year 2005’ programme, from special funds for innovation programmes and from funds of relevant ministries, responsible for implementation of various actions, including the Ministries of Economy and of Education and Science and other governmental institutions.

The Long Term Development Strategy of the State, adopted in 2002, focuses on the integration of Lithuanian science institutions and enterprises into strong industrial formations. The

10 For example the international two-day conference \textit{Knowledge economy: luxury or necessity of national strategy?}, held October 2004 in Vilnius with over 150 key decision makers and experts from leading Lithuanian enterprises, government, scientific institutions and EC representatives.

11 Following the \textit{White Paper on R&D and Technology}
non-existence of co-operation systems between science and industry that work according to the modern models of innovation implementation are addressed as main weaknesses.

5.2 Fostering sectoral and regional innovation clusters (Example Sunrise Valley)

The Ministry of Economy launched a Sunrise Programme for developing favourable business conditions. Under this programme, the Sunrise Commission (with full participation of the business community) and a special working group on innovation problems in business were established with the ambition to increase the efficiency of the government's work and to round up the business community and specialists who would identify the sorest problems that inhibit business activities, including research- and innovation-related issues. Initially, the government and the parliament welcomed the proposals of the “first Sunrise”\(^\text{12}\); a number of them were immediately debated and adopted. But later, the balance of decisions started taking an opposite direction. Proposals of the Sunrise Commission were modified, delayed or ignored, the working groups ceased to receive information and drafts of legal acts. Simultaneously, the government was taking decisions that apparently countered the declared course of improving business climate. The Sunrise Commission became formal and ineffective. As a result, members of the working groups lost motivation to work and to devote their time, and the business community, seeing no positive decisions, gave up on this initiative.

The Sunrise Valley cluster was created thanks to the financial support from high-tech business, academia and Vilnius municipality. And in May 2003, a public entity Sauletekio slenis, responsible for Sunrise Valley cluster development was established by Vilnius University, Vilnius Gediminas Technical University, laser technologies company Ekspla, telecommunication operator Bite and IT company Alna. One of its overall aims is to promote cooperation among business, research and education and to promote investment in research and development.

Business associations, such as Infobalt (association of IT companies), industrial confederations and other Private Sector organisations are very active in promoting cluster-related concepts. However, there is no explicit policy measure in Lithuania which addresses cluster development directly. On the other hand, the contribution of clusters to the development of a knowledge-based economy and the importance of stimulating its creation is explicitly recognised by Lithuanian general policy documents. Lithuania has a number of policy documents that clearly establish the priority of creating favourable conditions for stimulating cluster formation.

5.3 Joint Public and Private Sector funding of R&D

Among a broad range of measures to foster development of high-tech research and production, the High Technologies Development Programme (approved by the Lithuanian Government in 2003) promotes joint funds, established by business enterprises, state and international partners, which should form the financial basis for business oriented applied research and development in promising areas (e.g. in laser technologies with the implementation period 2003-2004). The Programme receives a support of EUR 1.1 to 1.5 million every year.

Another example was a 300,000 EUR budget from state funds which was dedicated to joint research and innovation projects of R&D and business organisations. Here, the state co-financed 50% of project costs, and the participating Private Sector enterprise covered the other part. In the recent policy papers, the establishment of funds to promote innovation and cooperation is foreseen as a key innovation policy measure.

\(^\text{12}\) During the Andrius Kubilius Administration.
5.4 Development of Innovation Centres, Science and Technology Parks and Business Incubators

The government-funded Lithuanian Innovation Centre (LIC) is a non-profit organisation and one of the main actors in the promotion of horizontal innovation relationships between scientific and Private Sector agents at the operational and policy level. It is a key organisation for implementing various innovation-related projects funded by the EC and Government and is involved in Government’s innovation policy development. The Programme of Innovation in Business was developed by LIC as well. Innovation centres act as catalysts in the creation of innovative business networks as well, by collecting and providing information on innovative companies, organising training and seminars according to innovative companies’ needs, etc.

Science and Technology parks and Business Incubators involve co-operation between the industry and R&D sphere and are aimed at the development of new technologies, prototype production and creation of innovative high-tech products. The Concept of the Development of Science and Technology Parks, adopted in 2002, is recognised as one of the means to intensify co-operation between science and business in the area of R&D. For example, the Science and Technology Park was developed by the Semiconductor Physics Institute. Its primary role is to provide an interface between academia, research, and the commercial development of products and processes.

The establishment of special units or centres within universities, which focus primarily on cooperation with the Private Sector, has become a common practice. The State promotes such activities by charging no VAT on research activities and services provided by research institutions. Through such centres, professors and researchers offer consultancy and research services in their area of expertise to interested companies. Some of those centres (such as the Nanotechnology centre at KUT) are very successful in providing important scientific knowledge for business and are operating with an international scope.

5.5 Cooperation agreements

Kaunas University of Technology and the Lithuanian Confederation of Industrialists have signed a cooperation agreement which manifests the willingness and need of closer cooperation. Under this agreement, a member from the Private Sector is invited to participate in the study programme committees, in order to reflect industry needs in qualified specialist development. Kaunas University of Technology has established a department of external relationships in order to create more effective links with industry, which is creating the links between business and university through arranging meetings of community members, arranging discussions and visits to business enterprises, etc. Other universities are taking similar measures as well.
Appendix 1: Overview of identified instruments for Private Sector involvement and their use in Lithuania

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Intensity of use</th>
<th>Initiated by</th>
<th>Used for</th>
<th>Used in</th>
<th>Examples and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insight studies, roadmapping, foresight</td>
<td>Occasional</td>
<td>Both sides</td>
<td>Awareness & identification of emerging technologies & trends</td>
<td>Instigation, Design</td>
<td>Conference Knowledge Economy, etc.</td>
</tr>
<tr>
<td>Conferences</td>
<td>Occasional</td>
<td>Public Sector</td>
<td>Discussion platform</td>
<td>Design, Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Brainstorming / task forces</td>
<td>Occasional</td>
<td>Public Sector</td>
<td>Identification of priorities & possible policy actions</td>
<td>Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Evaluation studies</td>
<td>Not common</td>
<td>Public Sector</td>
<td>Programme review, identification, policy need</td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Advisory groups</td>
<td>Frequent</td>
<td>Public Sector</td>
<td>Participation in design, evaluation, etc.</td>
<td>Implementation, Review, Design</td>
<td>Programme on Innovation in Business</td>
</tr>
<tr>
<td>Informal consultations</td>
<td>Frequent</td>
<td>Public Sector</td>
<td>Exchange of viewpoints between stakeholders</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>Formal consultations</td>
<td>Frequent</td>
<td>Public Sector</td>
<td>“Official” opinion</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>Task force</td>
<td>Beginning to use</td>
<td>Public Sector</td>
<td>Joint policy development</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>Participation in decision making bodies (observer status)</td>
<td>Not common</td>
<td>Public Sector</td>
<td>Decision involvement</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>Participation in decision making bodies with (co-) decision right</td>
<td>Not common</td>
<td>Public Sector</td>
<td>Decision involvement, shared responsibility</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>Administrative / supervisory boards</td>
<td>Occasional</td>
<td>Public Sector</td>
<td>Private Sector representatives involved in important institutional decisions</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>Initiation of networks</td>
<td>Frequent</td>
<td>Public Sector</td>
<td>Stimulation of joint Public-Private Sector initiatives</td>
<td>Implementation, Review</td>
<td>Sunrise Programme</td>
</tr>
<tr>
<td>Co-financing of projects / programmes</td>
<td>Occasional</td>
<td>Both sides</td>
<td>Sharing of cost / risks</td>
<td>Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Public Private Partnership</td>
<td>Not common</td>
<td>Both sides</td>
<td>Pooling of resources</td>
<td>Implementation, Review, Design</td>
<td></td>
</tr>
<tr>
<td>(Temporary) Staff exchange</td>
<td>Beginning to use</td>
<td>Both sides</td>
<td>Enhance mutual understanding and mobility</td>
<td>Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Staff mobility</td>
<td>Not common</td>
<td>Public Sector</td>
<td>Public Sector expertise in research leadership positions</td>
<td>Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Statements, studies, white papers, etc.</td>
<td>Not common</td>
<td>Private Sector</td>
<td>Express views, recommend changes, influence decisions</td>
<td>Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Dialogue platforms</td>
<td>Beginning to use</td>
<td>Private Sector</td>
<td>Initiate / facilitate dialogue with public sector</td>
<td>Implementation, Review</td>
<td></td>
</tr>
<tr>
<td>Research funding</td>
<td>Occasional</td>
<td>Private Sector</td>
<td>Initiate / support research in desired areas</td>
<td>Implementation, Review</td>
<td>Achemos grupe</td>
</tr>
</tbody>
</table>

Table 1: Overview of instruments used for Private Sector involvement
Appendix 2: Selected relevant sources and literature

1. General and country information
Government of Lithuania, *Conception for Science and Technology Parks Development*, 2003

2. Important actors
http://www.lrs.lt; http://www.seimas.lt National Parliament (Seimas)
http://www.lrv.lt Government of Lithuania
http://www.smm.lt Ministry of Education and Science
http://www.ukmin.lt/lt Ministry of Economy
http://www.lmt.lt Science Council of Lithuania
http://www.neris.mii.lt/LMA Lithuanian Academy of Sciences
http://www.vyriausybe.lt Commission of Science, Technology and Innovation to the Government of Lithuania
http://www.infobalt.lt Lithuanian association of ICT industry "Infobalt"
http://www.lpk.lt Confederation of Lithuanian Industrialists
http://www.scanbalt.org/sw99.asp ScanBalt
http://www.innovation.lt Innovation Portal
http://www.llic.lt Lithuanian Innovation Centre
http://www.innovation.lv/BASTIC.htm Baltic Association of S&T Parks and Innovation Centres
http://www.sunrisevalley.lt Sunrise Valley cluster
http://www.ktu.lt Kaunas University of Technology
http://www.lda.lt Lithuanian development agency
http://www.smeda.lt Small and medium size business development agency

3. Further information and feedback
This country profile has been prepared by Dr. Michael Siman. For further information and feedback, please contact the responsible author under siman@flaw.uniba.sk