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Preface 
 

 
This report presents the main results of a study, Highly Cited Patents, Highly Cited Publications, and 
Research Networks, conducted for the European Commission by the Centre for Research on Innovation 
and Internationalization (CESPRI) of Università Commerciale Luigi Bocconi, Milan. The study pur-
ported to appraise the existence and the importance of social network linkages between the authors of 
scientific publications cited in patents (i.e. scientists) and the generators of patented inventions (i.e. 
inventors). The study focused upon five technology fields, characterised by high degrees of science 
intensity as measured by the average number of citations to scientific publications per patent, and by 
high growth rates in the number of patent applications. 

The study developed and applied a quantitative methodological framework for high-quality analysis of social 
networks linking authors of scientific publications and inventors of patents. In particular, the study built a 
large scale dataset relating patent and patent citations data to scientific publications cited in patents.  

The study was conducted between January 2005 and December 2006 under the direction of Vincent 
Duchene, Policy Analyst - S&T Indicators and Economic Analysis, Directorate M: ‘Investment in 
Research and Links with other Policies’, DG Research, European Commission.  

The project team included the following CESPRI affiliates: Stefano Breschi (Principal investigator), 
Gianluca Tarasconi (CESPRI database administrator), Christian Catalini, Lorenzo Novella, Paolo 
Guatta and Hrannar Johnson.  

Methodological issues and preliminary results were discussed at various workshops and seminars, in-
cluding the EIASM Workshop on Management and Complexity (University of Oxford, June 2006), 
and the EPO workshop on the Economics and Management of Patents (University of St. Gallen, Sep-
tember 2006). 

This report reflects the results of research and analysis conducted by CESPRI. The results do not nec-
essarily reflect the view of the European Commission, or any of the experts consulted during the 
course of the project. Comments on this Report can be sent to Stefano Breschi, CESPRI, Università 
Bocconi, via Sarfatti 25, 20136 Milan, Italy; stefano.breschi@unibocconi.it. 
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Executive Summary 
 

This report offers a large-scale empirical appraisal of the social connections linking academic scientists and 
industrial researchers in five science intensive technology fields, namely transmission of digital information 
(telecommunications), speech analysis (ICT), semiconductors, lasers, and biotechnology (measuring, testing, 
diagnostics). It shows that, in spite of different objectives and systems of incentives, the two communities of 
researchers are socially connected to a much larger extent than one would normally presume. A key role in 
connecting the two communities is played by specific individuals, i.e. authors-inventors, that act as gate-
keepers bridging the boundaries across the two domains. A further important result emerging from our 
study is that social networks of collaboration among scientists and inventors work as effective conduits of 
knowledge flows from the realm of science to that of technology. In this respect, our analysis shows that so-
cial proximity to authors of scientific publications is a much more fundamental factor affecting the knowl-
edge transfer from scientific research to technological applications than geographical proximity. 
 
The increasing inter-dependency between science and technology has made the theme of university–
industry knowledge transfer a key research issue both in economics and management studies, as well 
as a top entry in the science and technology policy agenda of many countries. In the context of 
Europe, a general and widespread belief is that the mechanisms leading to the transfer of scientific 
knowledge into technological applications are somehow impaired and less effective than in other areas 
of the world, notably the United States. This conjecture has led to interpreting the European lag in 
some key high tech sectors, such as electronics and biotechnology, as a consequence of its inability to 
convert its scientific strength into economic profitable innovations. This phenomenon has also de-
served the name of “European Paradox” to stress the fact that European strength in the production of 
high quality scientific output is not matched by the ability of European private companies to benefit 
from such output. 

The existence and the extent of a European weakness in the transfer of knowledge from the domain 
of scientific research to technological applications is normally predicated on the basis of bibliometric 
indicators on the quantity and quality of scientific output. To date, however, very few studies have 
attempted to investigate in depth the actual mechanisms through which knowledge produced within 
the boundaries of academic organisations gets transferred and translated into technological develop-
ments. This study contributes to filling this gap by proposing a large scale quantitative analysis of the 
social connections linking academic scientists and industrial researchers in five science intensive tech-
nology fields. 

To this purpose, the study exploits a complex, relational dataset reporting full bibliographical infor-
mation on patent applications and scientific publications cited in those patent documents. The key 
analytical tool used to investigate the linkages connecting academic scientists and industrial research-
ers is represented by social network analysis. Specifically, information on co-authorship and on co-
invention is exploited to assess the extent of connectedness among the two social communities of re-
searchers. Likewise, citations from patent documents to scientific publications are used as proxy for 
the knowledge flows from the realm of science to that of technology. 
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Main findings 

The main findings of the study may be summarised as follows.  

High quality scientific publications find their way into a large number of technological developments. Publi-
cations that are (highly) cited in patents are not only cited in the realm of technology, but they are also heav-
ily cited by other scientific publications. Besides validating the methodological choice of using patent cita-
tions to scientific publications as proxy of knowledge flows from science to technology, this finding suggests 
that there is not necessarily a conflicting logic between scientific and industrial communities. In this respect, 
however, it should be also noted that European scientific publications cited in patents receive a lower average 
number of citations in scientific literature than the corresponding articles published by US authors. This evi-
dence seems to suggest that high quality European publications face more obstacles in translating into tech-
nological applications than comparable scientific output in the US.  

European science is relatively under-represented among publications that provide key contributions to tech-
nological developments. The share of European organisations among scientific publications that are highly 
cited in patents is systematically lower than the its share of all cited publications. This gap is particularly evi-
dent in fields such as lasers, semiconductors and biotechnology. This result suggests that European scientific 
output translates into a lower number of technological developments, thereby providing further support to 
the conjecture about the existence of weaknesses in the process of knowledge transfer from science to tech-
nology. 

Private companies account for a large share of scientific publications highly cited in patents. The role played 
by different types of institutions in the production of scientific publications highly cited in patents varies 
across technology fields, with universities accounting for a large share particularly in biotechnology. However, 
a key result emerging from our analysis is that private companies account for a quite large fraction of highly 
cited publications in all technology fields. In particular, the share of highly cited publications held by private 
companies is remarkably larger than their share of all scientific publications, which according to other studies 
may be estimated around 5-10%. This result suggests that corporate labs contribute to a large extent to the 
scientific research that is incorporated into technological applications. 

The European private companies’ contribution to the production of scientific publications highly cited in pat-
ents is significantly lower than the contribution of private companies located in other areas, notably the 
United States. A major weakness of the European systems of research, as compared to other geographical 
areas, especially the United States, is related to the low degree of involvement of private companies in the 
conduct of research leading to scientific publications cited in patents. Whereas the contribution of the public 
system of scientific research, i.e. universities and public research organisations, is generally comparable to, and 
often larger than the contribution of the corresponding system in the US, the fraction of scientific publica-
tions accounted for by the private system of research is considerably lower. To the extent that the ability of 
private companies to profit from scientific output generated in the sphere of science depends on the posses-
sion of absorptive capabilities and especially on the existence of boundary-spanning individuals, we believe 
this characteristic represents one of the major obstacles to the effective diffusion of knowledge from the realm 
of science to that of technology. 

The propensity of European technology to build upon US scientific publications is generally higher than the 
propensity of US technology to rely upon European science. An analysis of the knowledge flows across geo-
graphical areas by origin of citing patents and origin of cited publications reveals that European patents tend 
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to cite US scientific publications to a larger extent than US patents tend to cite European scientific papers. In 
other terms, the empirical evidence shows the existence of an asymmetry in knowledge flows between 
Europe and the US, with a larger amount of knowledge flowing from the US to Europe than vice 
versa. Likewise, we observed that the propensity of US inventors to rely upon the domestic science 
base is significantly greater than the propensity of European inventors to exploit their domestic sci-
ence base. 

The two communities of academic scientists and industrial researchers are highly connected to each 
other. The social network analysis shows that the network of co-inventors is highly disconnected with 
many components of small size. This means that most collaborators of each inventor come from the 
same organisation and that few connections exist among teams of industrial researchers. However, 
when one looks at co-invention and co-authorship relations simultaneously, the key result is that the 
two communities of researchers are significantly more socially connected that one would probably 
expect. In three crucial technology fields, such as semiconductors, lasers and biotechnology, 35%, 
51% and 53%, respectively, of all authors and inventors are either directly or indirectly connected, 
via co-invention or co-authorship, to each other in a large connected component. In addition to that, 
24%, 40% and 32% of all inventors are either directly or indirectly connected (i.e. reachable) to each 
other. Besides indicating that academic scientists and industrial researchers are highly connected, 
these results suggest that the community of inventors itself is much more connected than data on co-
invention only would lead us to presume. Although not directly connected to each other, inventors 
are indirectly connected through scientific authors and through authors-inventors, i.e. individuals 
that participate in teams of inventors and in teams of scientists. 

Authors-inventors play a key role in connecting the communities of scientists and inventors and act as gate-
keepers across the two realms. A crucial role in ensuring high degrees of connectivity between the two 
communities of researchers is played by a specific type of individuals that we have labelled as authors-
inventors. They are researchers that do publish scientific articles and patent new inventions, thereby 
participating into both communities. Social network analysis reveals that such individuals are char-
acterised by a higher degree centrality, i.e. they tend to collaborate on average with a significantly lar-
ger number of other inventors and authors, than do simple inventors and authors, and by a higher 
betweenness centrality, i.e. they play a crucial function of knowledge brokers in the network that 
makes them more in-between than simple inventors and authors, and ensures a rapid diffusion of 
knowledge and ideas from one domain to the other.  

Europe is characterised by a relatively low number and share of science-technology gatekeepers, i.e. au-
thors-inventors. Given the key role played by authors-inventors in bridging the realms of science and 
technology, we believe that a key finding of our study is that the share of European inventors playing 
this specific function is lower than its share of simple inventors. To the extent that authors-inventors 
act as brokers of knowledge from the domain of science to that of technology, we believe this finding 
has very important implications for our understanding of the gap between Europe and the US in the 
effectiveness to translate the results of scientific research into commercially useful applications. Prox-
imity to such individuals, and more generally proximity among authors of scientific publications and 
inventors of patented inventions is in fact a fundamental factor affecting the effective diffusion of 
scientific knowledge (see below). In addition to this, we do also believe that this result is consistent 
with our finding that a major European weakness is related to the feeble commitment of private com-
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panies in the production of scientific publications relevant for technological developments, given that 
authors-inventors are most likely to come from such organisations. 

The network of academic scientists and industrial researchers has the properties of a “small world”. 
The social network of academic scientists and industrial researchers is characterised by topological 
properties typical of “small world” graphs. On the one hand, it presents high degrees of local cliquish-
ness, i.e. an individual’s collaborators tend to collaborate with each other; on other hand, it also pre-
sents a low average distance among individuals, i.e. any random pair of individuals is separated by a 
low number of steps.  This means that the network of authors and inventors works at least potentially 
as an effective means of knowledge transmission and diffusion. 

Social proximity among (academic) scientists and industrial researchers is the most important 
factor affecting the probability that a patented invention will build upon a scientific publication. 
In this study, we estimated an econometric model for the probability that a patent-paper pair is 
linked by a citation tie. Our findings reveal that such a probability is apparently affected in a negative 
way by the geographical distance that separate patent inventors and paper authors. Yet, the effect of 
spatial distance vanishes once we control for the social distance among them. Inventors that are so-
cially closer to authors of scientific publications are much more likely to build upon such publications 
than are inventors located at a larger social distance. In other terms, knowledge transfer from science 
to technology takes place mostly through social networks of collaboration among scientists and in-
ventors. 

 
Policy recommendations 

Results of this study provide further empirical support to the conjecture that the mechanisms driving 
the transfer of scientific outputs into technological applications in Europe are somehow impaired and 
less effective than in other areas of the world, notably the United States. At the same time, they also 
point out that social networks of (academic) scientists and industrial researchers account for much of 
the observed patterns of knowledge diffusion from science to technology. In particular, the study has 
shown that a crucial role in connecting the two communities of researchers is played by a specific type 
of individuals, i.e. authors-inventors, that act as gatekeepers and channel information and knowledge 
between groups with different objectives and incentives. In this respect, a major European weakness is 
related to the comparatively lower involvement of private companies in the conduct of basic and ap-
plied research leading to scientific publications and to the consequently lack of authors-inventors that 
are able to bridge and connect the realms of science and technology. In other words, it is possible that 
part of the European backwardness in this field is due to a less connected research area. We do believe 
that increasing such a connectivity should feature prominently in a policy agenda aiming to spur the 
rate of knowledge transfer from science to technology. In this respect, the mobility of inventors (i.e. 
industrial researchers) and academic scientists across regions, countries, and organisations represents, 
in our view, a major policy objective in order to achieve higher degrees of social connectivity among 
the two communities of research. 
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1. OUTLINE OF THE REPORT 

1.1.  STUDY OBJECTIVES AND FOCUS 

This document reports the main results of a large-scale quantitative analysis of the research networks linking 

inventors of patents and authors of scientific publications. Conducted between January 2005 and December 

2006, the study focused upon five technology fields, which were selected from International Patent Classifi-

cation (IPC) codes used to classify patent documents. The fields examined in this study are characterised by 

high degrees of science intensity, as measured by the number of citations from patents to scientific publica-

tions, high growth rates in the number of patent applications, and high degrees of turbulence, as measured by 

the weight of new innovative entrants on the total number of patent applications. In brief, the five technol-

ogy fields considered for the analysis are science-based, highly dynamic and fluid domains of research, in 

which the degree of interaction between scientists and inventors is expected to be relevant. 

The five technology fields included in the analysis are: 

• Transmission of digital information 

• Speech analysis 

• Semiconductors 

• Lasers 

• Biotechnology (measuring, testing, diagnostics) 

 

Starting from patent applications in the five technology fields over the period 1990-2003, the study has built 

a complex relational database that includes full bibliographical information on patents and scientific publica-

tions cited by those patents. This dataset has been used to address a set of issues relevant for our understand-

ing of the linkages between science and technology. In particular, the focus of the study has been on assess-

ing:  

o Whether and to what extent scientific publications cited in patents are cited only within the realm 

of technology or, conversely, they are also cited by other scientific publications 

o What organisations (i.e. companies, universities and research organisations) are responsible 

for the production of scientific publications highly cited in patents 
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o The European capability to produce scientific publications that are highly cited in patents and its 

position with respect to other areas, especially the United States and Japan 

o The social network relationships linking scientists and inventors, and the structural properties of the 

network of patent inventors and paper authors 

o The impact of social proximity and spatial proximity in affecting the likelihood that a patent builds 

upon knowledge produced in the domain of scientific research. 

 
To address these issues, the study has developed and applied a quantitative methodological framework in-

volving the use of statistical analysis, regression analysis and social network analysis tools. The study purports 

to demonstrate the applicability of social network concepts and analytical tools in appraising the mechanisms 

that govern the transfer of knowledge from the realm of open science to that of private technology. 

1.2.  STUDY CONTEXT 

University–industry knowledge transfer is nowadays a key research subject both in economics and 

management studies, as well as a top entry in the science and technology policy agenda of a number 

of developed and developing countries. Awareness of the problem has been certainly spurred by the 

increasing interdependency between science and technology, as shown by several studies (Narin, 

Hamilton, Olivastro, 1997; Verbeek et al., 2003). The ability to have timely access to advanced scien-

tific knowledge represents nowadays a fundamental factor that can explain performance differentials 

among firms and regions (Cockburn and Henderson, 1998; Zucker et al., 1998).  

In the context of Europe, a general and widespread belief is that the mechanisms leading to the trans-

fer of scientific knowledge into technological applications are somehow impaired and less effective 

than in other areas of the world, notably the United States. This conjecture has led to interpreting the 

European lag in some key high tech sectors, such as electronics and biotechnology, as a consequence 

of its inability to convert its scientific strength into economic profitable innovations (Dosi, Lllerena, 

Sylos-Labini, 2005). This phenomenon has also deserved the name of “European Paradox” to stress 

the fact that European strength in the production of high quality scientific output is not matched by 

the ability of European private companies to benefit from such output. 
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Although the very existence of a European Paradox has not gone unchallenged, the aim of this study 

was not on testing the extent of knowledge transfer from science to technology, but rather to investi-

gate the mechanisms underlying such a transfer. In this respect, “distance” between the two realms of 

academic and industrial research has been increasingly called in to explain whether the former may, 

or may not, benefit the latter. Two concepts have attracted most of the attention in the recent litera-

ture: geographical and social distance. 

The geographical distance hypothesis suggests that both scientific and technical knowledge are largely 

“tacit” and “non-codifiable”, and require distance-sensitive transmission means such as frequent face-

to-face contacts clarifying discussions and on-site demonstrations (Feldman, 1999). According to this 

hypothesis, therefore, scientific knowledge should benefit mostly those companies located nearby the 

source of its production (Jaffe, 1989). Although a large empirical literature has developed around this 

conjecture, one should also point out that most of the evidence produced to support it is just indirect, 

i.e. it does not measure knowledge flows in a direct way (Breschi and Lissoni, 2001). Moreover, to 

the extent that spatial proximity is the fundamental mechanism explaining the effectiveness of knowl-

edge transfer, this hypothesis is not particularly helpful for our understanding of the European prob-

lems. 

An alternative and competing hypothesis is that the exchange of tacit knowledge between university 

and corporate researchers requires the two social communities to share some acquaintances and/or a 

few codes of behaviour in terms of reciprocity and fairness (both in case of market transactions and in 

case of free sharing). Similarly, academic researchers’ mobility to and from industrial labs (either in 

the position of employees or entrepreneurs) requires a web of personal contacts for exchanging in-

formation on job and financing opportunities, and again some codes of behaviour that do not punish 

such mobility by portraying it as free-riding (Balconi et a., 2004). More generally, this perspective 

emphasises that the creation and the diffusion of knowledge cannot be separated from the social net-

work underpinning it, so that social proximity, rather than just spatial proximity, is the key driver of 

knowledge diffusion from the realm of science to that of technology. In this respect, the literature has 

focused upon the conflicting incentives and norms of behaviour that characterise the worlds of “Pro-

prietary Technology” and “Open Science” (Dasgupta and David, 1994).  
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The former is approximately identified with the results of privately sponsored industrial research. In-

termediate research results, instruments, and methods are normally shared with other researchers, in 

order to get feedbacks and gain credit for future help, but not outside some organizational boundaries 

defined by the research sponsors. Communication with researchers from rival companies is moni-

tored and restricted, and codification efforts (such as those leading to the publication of research pa-

pers) are delayed as long as possible. By contrast, the incentive structure of “Open Science” is mod-

elled upon Merton’s (1957) sociological account of the function of disclosure norms and publications 

in forging the career path of academic scientists. The New Economics of Science depicts the commu-

nity of scientists as composed by many small groups, linked both by career schemes requiring scien-

tists to move across groups, albeit occasionally, and by some degree of across-group legitimization 

mechanism for individuals’ research contributions. Each group of academic scientists (or each set of 

tightly connected groups) belongs to a wide community of researchers of the same science field (an 

“epistemic community”, as defined by Cowan et al. (2000) and Steinmueller (2000) and contributes 

to expanding, codifying and securing the reliability of scientific knowledge by establishing mutually 

recognized research and test procedures, as well as communication codes for both written and oral 

exchanges. Within each community, codified knowledge is a public good. In turn, links among dif-

ferent groups are as many as it is necessary to spread information on the reputation of individual re-

searchers, both in terms of capabilities and adherence to the behavioural codes of “Open Science”.  

Do the “Open Science” and the “Proprietary Technology” realms ever get in touch? How do they 

reconcile their different systems of incentives and social structures? One key mechanism is advanced 

education: doctoral students trade their willingness to provide free or cheap research assistantship for 

learning, and most of them will then pursue a career as industrial researchers. In addition, academic 

scientists can occasionally turn into industrial researchers, and vice versa, depending upon the origin 

(public versus private) of the research funds, and the possibility (for industrial researchers) to spend 

some time working in close contact with a university or a public research centre. Mobility of re-

searchers to and from universities, public labs, and corporate labs can produce similar contamination 

effects. 

The most recent literature has offered various insights on the key mechanisms through which aca-

demic scientists and industrial researchers get in touch and exchange knowledge. On the one hand, a 
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few studies have analysed the incentives for firms to publish research results in scientific journals, by 

acknowledging the central importance of forming ties with the academic community, via boundary-

spanning “gatekeepers”, in order to access socially embedded knowledge (Hicks, 1995). In this vein, 

Stern (1999) has argued that pure scientific research is costly to the firm, but necessary to attract and 

recruit research-oriented scientists, who have a taste for publishing and whose skills are needed for 

transforming research into product development. In such cases, one also expects industrial researchers 

to adjust their behaviour to the incentive structure of the contingent research program (both in terms 

of adherence to the research objectives and publication rules). For example, industrial researchers for 

large corporate labs, more often involved in basic research along with universities and public labs, will 

find it easier to publish; they will also find it more rewarding, since they entertain hopes of further 

co-operation in the future. On the other hand, the academic community has shown an increasing 

interest in the exploitation of scientific research for industrial purposes. The evidence produced by 

Zucker et al., (1998) shows quite convincingly that star scientists from disciplinary fields prone to 

commercial exploitation trade their knowledge assets on a market basis, either through founding new 

companies or other forms of contractual arrangements. 

In brief, one can say that, especially in high tech and science intensive industries, academic and in-

dustrial researchers tend to form communities and social groups that are increasingly interrelated and 

exchange knowledge through market and non-market transactions, with different objectives and in-

centive schemes. However, while case studies on the theme of social distance among scientists and 

inventors abound, large-scale quantitative research on the same subject is more of a rare breed, lim-

ited as it is by highly demanding data requirements. In order to map social groups in Science and 

Technology we need data on information exchanges between researchers, both within individual 

companies and academic research groups, and across them. 

As long as we regard team-working experiences as a key mean for knowledge exchange, co-authorship 

of scientific papers is the ideal quantitative indicator to investigate social networks of academic scien-

tists, and indeed there is a long tradition of exploiting them to that purpose (e.g. Melin and Persson, 

1996). The most recent research efforts within this line of enquiry draw extensively from graph the-

ory, as it may be applied to social network analysis. They describe the social structure created by 

Open Science rules as a “small world”, i.e. a “distinctive combination of high clustering with short 
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characteristic path length” (Watts and Strogatz, 1998). Each researcher has a number of links which 

suffice to involve him deeply in a local network of collaboration (his research group), and a few re-

searchers have as many links with members of other research groups as it is necessary to connect 

most, if not all, of the epistemic community. News spread fast, as well as chances to engage in re-

search partnerships apt to allow for knowledge exchanges. 

What about Proprietary Technology? How to measure social networks there? And which properties 

will those networks exhibit, especially at the boundary with “Open Science”, i.e. when industry–

university cooperation occurs? Recent studies have convincingly shown that an extremely useful em-

pirical tool is represented by another traditional indicator, namely patent applications, albeit in a way 

which mimics closely the use of co-authorship data from scientific publications. More precisely, pat-

ent data can be extremely useful in measuring social distance among inventors, as many inventions 

are the outcome of teamwork, so that the related patent documents list more than one inventor. One 

can therefore reasonable assume that inventors listed on the same patent know each other, and have 

possibly exchanged crucial scientific or technical information (Balconi et al., 2004; Breschi and Lis-

soni, 2006; Singh, 2003).  

To date, however, no one has tried to combine co-authorship data with co-invention data and inves-

tigate the extent to which the two communities of academic scientists and industrial researchers are 

linked to each other through collaboration. This is precisely the objective of this study. The aim is to 

assess whether and to what extent the two communities are connected and whether the “social” con-

nection among them may explain the knowledge flows taking place across the borders of the two 

communities.  

To this purpose, the study has built a large, complex relational database that combines information 

on inventors reported in patent documents and authors of scientific publications cited by those pat-

ents. Social network analysis of co-authorship and co-invention is used to test the degree of connect-

edness between the two communities, whereas patent citations to scientific publications are used as a 

proxy of the knowledge flows from the realm of science to that of technology. 
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1.3.  ORGANISATION OF THE REPORT 

The report is organised as follows. Section 2 provides a detailed discussion of the technical procedures and 

the methodological issues related to the construction of the dataset on citing inventors and cited authors. It 

also provides a discussion of the main data sources used in the study. Section 3 reports the main findings of 

the study and is divided into two main parts. The first part concerns a statistical analysis of the dataset on 

citing patents (inventors) and cited publications (authors), which provides a broad set of statistics on the 

knowledge flows from science to technology. The second part reports the main results emerging from the 

social network analysis of the co-authorship and co-invention relationships linking academic scientists and 

industrial researchers. Section 4 summarizes the results and offers policy recommendations. 
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2. METHODOLOGICAL FRAMEWORK 

This section is devoted to discussing the technical procedures and the methodological issues related to the 

construction of the dataset, which has been used for the analysis of the network linkages between scientists 

and inventors. Before turning to this, we briefly describe the sources of data that have been used in the course 

of the study.  

2.1 Data sources 

All the data sources have been taken in raw format, after which a process of reading, parsing and standardisa-

tion has taken place. All the work of database construction has been carried out at CESPRI. The following 

data sources have been used in this study: 

1) EP-CESPRI dataset 

The EP-CESPRI dataset, owned and maintained by CESPRI, includes all patent applications to the 

European Patent Office (EPO), from June 1st 1978 (starting date of the EPO) to June 1st 2004. The 

data set includes the full set of bibliographic variables concerning each patent application: 

• Priority, application, and publication number 
• Priority, application and grant dates 
• Title and abstract 
• Designated states for protection 
• Status of the application 
• Main and secondary International Patent Classification (IPC) codes 
• Applicant’s name and address 
• Inventors’ names and addresses 
• Reference to other EPO patents 

 

In the construction of this dataset, CESPRI has gone through a thorough process of cleaning and 

standardisation of applicant names in a major effort to correctly identify the company/institution, 

which applied for each specific patent. In fact, a major problem with using patent data at the level of 

individual organizations is that they register their patents under different names. This work has been 

conducted in collaboration with the SAS Institute (Italy), using the SAS/Data Quality Solution® soft-

ware. In its current version, the EP-CESPRI data set contains 118,396 unique organizations, which 
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are constructed by combining 154,366 different original applicant names. Each patent applicant in 

the data set is identified by an internal numerical code (company code) and by its standardised name. 

Address fields have been also cleaned and harmonised to allow geographical analyses of patenting ac-

tivities. 

A similar work has been undertaken for inventors reported in patent documents. These have been 

identified first by assigning a unique code to all inventors with the same name, surname and address; 

and then by running Massacrator©, a programme that assigns scores to any pair of inventors with the 

same name+surname but different address, on the basis of information suggesting the two inventors 

may be the same person (such as the technological class of their patents, the identity of their patent 

applicants, their location in space and the identity of their co-inventors). 

Finally, the EP-CESPRI dataset also reports for each patent document all citations made to all prior 

patents cited by the document itself. To this purpose, the so-called REFI tape citation data set has 

been purchased, processed and linked to the EP-CESPRI data set by publication number of patents.  

The REFI database contains, in addition to the patents cited, also the references to non-patent documents. 

We used this dataset to retrieve and process all citation made by EPO patents to non-patent literature and to 

identify among them the citations corresponding to scientific articles.  

2) United States Patent and Trademark Office (USPTO) database 

Beside EPO data, we purchased and processed patent data from the United States Patent and Trade-

mark Office (USPTO). The dataset contains information on all patents granted by the USPTO from 

January 1st 1975 to December 31st 2003. The dataset includes the following set of bibliographic vari-

ables concerning each patent application: 

• Application number 
• Application and grant dates 
• Main United States Patent Classification (USPC) codes 
• Applicant’s name 
• Inventors’ names and addresses 
• References to other patents 
• References to non-patent documents 
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A few major differences between EPO and USPTO data have to be noted. In the first place, the USPTO 

dataset does not report any information on the address of patent applicants. To carry out analysis of patent-

ing activity at the geographical level, one has to rely therefore on information concerning the location of in-

ventors. Second, the USPTO classifies patent documents according to both the USPC and the IPC nomen-

clature. However, a major problem with the USPTO patent data is that the International Patent Clas-

sification (IPC) system is not fully reliable, given the little familiarity of US patent examiners with the 

IPC system. Finally, USPTO raw data share the same problems of EPO raw data with respect to the 

fact that applicants’ and inventors’ names are not standardised and therefore may be spelled in quite 

different ways. Contrary to the EPO, however, we have not performed any cleaning and standardisa-

tion of such names, as this was beyond the scope of the study.  

3) Science Citation Index ISI-Thomson 

In order to identify patent citations to scientific literature, we have used the Science Citation Index 

(SCI) produced by the Institute for Scientific Information, ISI-Thomson, in Philadelphia, USA. For 

this study, we used the online version of this dataset available through the Web of Science interface. 

Raw data were extracted and further cleaned, processed and standardised for the purposes of this 

study. 

The SCI is a multidisciplinary database that covers the most important journals in the natural and life 

sciences, by providing information from more than 5,700 peer-reviewed international journals across 

178 subject fields. The following data are available for each paper covered by the SCI: 

• Title 
• Names of all authors 
• Institutional affiliations and addresses listed by those authors 
• Number of citations made to other scientific publications 
• Number of citations received by other scientific publications 
• Journal title 
• Publication year 
• Subject field of the journal1 

 

                                                 
1  Each journal is assigned by ISI one or more Journal Subject Categories, i.e. internally coherent journal sets which repre-

sent ‘scientific subfields’. In this respect, it has to be noted that several (important) journals, such as Nature and Science, 
are included in a residual ‘multidisciplinary’ category, as they span across a variety of scientific domains. 
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A few comments are needed to explain the nature of the available data and the methodological prob-

lems they present. 

In the first place, it is important to point out that the SCI only reports the surname and the first let-

ter of the name of each author. This creates major problems for analyses conducted at the level of 

individuals. Two issues are important in this respect. On the one hand, given that the same [sur-

name+first letter of name] may appear in different scientific papers, it may be quite difficult to de-

termine whether the same individual is responsible for all the papers or whether they have been au-

thored by different individuals, who happen to be homonyms. If a careful, manual checking may help 

to sort out cases of homonymous individuals, this is only possible for relatively small scale studies and 

not for the analysis of hundreds or thousands individuals. On the other hand, a similar problem arises 

when trying to link information on inventors’ names and information on authors’ names, in order to 

identify those individuals that have produced both patented inventions and scientific publications. As 

patent dataset report name and surname of each inventor, whereas the SCI dataset reports only the 

first letter of name and the surname of each author, the risk in performing a simple matching by sur-

name and first letter of name is that different individuals are identified as the same person, thereby 

leading to an overestimation of the number of inventors-authors. In what follows, we will discuss 

how we attempted to overcome such problems. 

 A second source of problems is related to the identification of the institutional affiliation of authors. 

The SCI dataset reports for each paper the institutional affiliations and addresses of the authors listed 

in the paper. However, it does not provide any correspondence between each author and her institu-

tional affiliation. In the case of multiple authors and multiple affiliations, it becomes therefore quite 

difficult to assign each author to her correct affiliation and geographical address. Whereas one can 

make the hypothesis that the order of the authors in the paper corresponds to the order of the affilia-

tions, so that the first author is paired to the first affiliation reported in the paper and so on, such a 

hypothesis does not help to solve the problem in those cases where the number of affiliations is 

greater than the number of authors. To the best of our knowledge, no systematic effort has been so 

far devoted to solving this problem. In this study, we have attempted to overcome such limitations in 

a rather ad-hoc way, as we will discuss below. Yet, the lack of cleaning and standardisation algorithms 
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of authors’ names, affiliations and addresses is still a major obstacle for a fuller and more systematic 

use of data on scientific publications. 

Finally, it has to be pointed out that although large in terms of volume and scope, the content of the 

SCI database is not necessarily a good reflection of all worldwide scientific publication activity. The 

databases are biased in favour of English-language journals. Research publications from English 

speaking nations (the US in particular) therefore dominate the databases. There is also a rather strong 

focus on fundamental research, especially in the natural and life sciences. Nonetheless, one may as-

sume that the international journal publications in these databases provide a satisfactorily representa-

tion of internationally accepted high-quality ‘mainstream’ basic research. The lion’s share of the pub-

lications therefore originates from universities and other public research institutions. Companies and 

private R&D-labs account for a relatively low share of the papers in the SCI, which may be estimated 

around 5-10%. 

2.2 Methodological steps 

The objective of this study has been the construction and the analysis of a large scale dataset linking citing 

patents (inventors) and cited scientific publications (authors). Figure 1 illustrates in a highly schematic way 

the main methodological steps that have been followed in the course of the study. The work has gone 

through four basic phases.  The first phase of the project involved the selection, extraction and parsing of 

non-patent literature (NPL) citations contained in patent documents classified in 10 broad technology fields. 

In the second phase, the parsed records have been matched to ISI-SCI covered journal titles in order to iden-

tify those NPL citations that correspond to ‘scientific’ articles. This step allowed to determine the science 

intensity of each technology field and was therefore instrumental in the final selection of the five technology 

subfields chosen for the analysis of scientists-inventors network linkages. 

The third phase involved the retrieval and further processing of the ISI-SCI covered articles cited in patents 

belonging to the five technology subfields chosen for the analysis. In this step, we defined and discussed the 

criteria to identify highly cited publications, i.e. those articles receiving a large number of citations in patents, 

and highly cited patents, i.e. those patents receiving a large number of citations from other patents. In addi-

tion to that, in this phase we also performed a benchmarking analysis to determine to what extent cited and 
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highly cited publications are only cited within the realm of patents, by comparing the number of cita-

tions they receive from other scientific publications with the average citation rate of publications 

within the same subject field and journal that are not cited by patents. 

The fifth and final phase involved three basic tasks. First, we matched the list of authors’ names reported in 

cited publications with the list of inventors’ names reported in all patent documents in each technology field. 

This procedure allowed us to identify all those individuals that have produced both patented inventions and 

(cited) scientific publications. Second, we cleaned, processed and standardised the authors’ affiliations re-

ported in highly cited publications. Finally, we matched the list of standardised affiliations with the list of 

patent applicants, in order to identify those institutions that are responsible both for patented inventions and 

for highly cited publications. 

The final dataset thus created is a quite complex, relational database that contains information on citing sub-

jects (patents/inventors/applicants) and cited subjects (patents/publications/authors/affiliations). In what fol-

lows, we provide a detailed discussion of each phase of the work and of the resulting final dataset. 

a) Phase 1: Selection of technology fields, extraction and parsing of NPL citations 

Phase 1 of the study consisted of two basic steps. The first step was the definition of a starting dataset 

of patents, both for the EPO and the USPTO. The second phase involved the extraction and parsing 

of NPL citations contained in the selected patent documents. In what follows, we describe each step. 

a1) Selection of technology fields and starting dataset on patents 

The starting point of this study has been the preliminary selection of 10 broad technology fields that 

could represent good candidates for the analysis of the network linkages between scientists and inven-

tors. In accordance with the Commission, we selected 10 technology fields on the basis of Interna-

tional Patent Classification (IPC) codes, aggregated according to the 30-fields nomenclature jointly 

developed by the Fraunhofer Gesellschaft-Institute fur Systemtechnik und Innovationsforschung 

(FhG-ISI, Karlsruhe, Germany) and the Observatoire des Sciences and des Techniques (OST, Paris).2 

The 10 selected technology fields are reported in table 1. 

                                                 
2  For the 30 technology fields nomenclature, see http://www.obs-ost.fr/nomenclaturesfinal.pdf.  
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Figure 1. Methodological steps 
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Table 1 – 10 selected technology fields on the basis of IPC codes 

Technology fields IPC codes 

1. Telecommunications H03B, H03C, H03D, H03H, H03K, H03L, H03M, G08C, H01P, 
H01Q, H04B, H04H, H04J, H04K, H04L, H04M, H04N1, H04N7, 
H04N11, H04Q 

2. Information Technology G11C, G10L, G06 
3. Semiconductors H01L 
4. Optics G03B, G03C, G03D, G03F, G03G, G03H, H01S, G02 
5. Control Technology G01B, G01C, G01D, G01F, G01G, G01H, G01J, G01K, G01L, 

G01M, G01N, G01P, G01R, G01S, G01V, G01W, G05B, G05D, 
G04, G07, G08B, G08G, G09B, G09C, G09D, G12 

6. Medical Technology A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, A61M, A61N 
7. Organic Chemistry C07C, C07D, C07F, C07H, C07J, C07K 
8. Drugs A61K 
9. Biotechnology C07G, C12M, C12N, C12P, C12Q, C12R, C12S 
10. Environmental technology A62D, B01D46, B01D47, B01D49, B01D50, B01D51, B01D53, 

B09, C02, F01N, F23G, F23J 
 

For the USPTO patents, the selection criterion has been slightly different. In fact, whereas IPC codes 

are also available for USPTO patents, patent examiners at the USPTO classify patents according to 

the United States Patent Classification (USPC) system and have little familiarity with the IPC sys-

tem. This implies that IPC codes assigned to USPTO patents are not fully reliable indicators of their 

technological domain. For this reason, the selection of the patents in the 10 technology fields re-

ported in Table 1 has been implemented by adopting a classification of the USPC codes suggested by 

a few NBER researchers3, appropriately tested and integrated using the concordance table between 

the USPC and the IPC codes available from http://www.uspto.gov/go/classification. The resulting list 

of USPC codes corresponding to the 10 technology fields is reported in the appendix. 

Having defined the 10 technology fields, we have selected from the EP-CESPRI dataset all patent 

applications from 1990 to 2003 whose primary technology class was in any of these fields. Likewise, we 

have selected from the USPTO dataset all patents granted from 1990 to 2003 whose primary technol-

ogy class was in any of these fields. The total number of patents and the average rate of growth in pat-

                                                 
3  Jaffe, A.B., M. Trajtenberg (2002). Patents, Citations and Innovations: A Window on the Knowledge Economy. 

Cambridge MA: MIT Press. See also, Hall B. H., A. B. Jaffe and M. Trajtenberg (2001). The NBER Patent 
Citation Data File: Lessons, Insights and Methodological Tools. NBER Working Paper 8498. 
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enting over the period 1990-2003 are reported, separately for the EPO and the USPTO, in the ap-

pendix for each technology field. 

A few comments are needed to explain the problem of dating patents. Patent documents may be 

dated according to three basic principles: a) priority date; b) application date; c) grant date. The use 

of any of these dates depends on the objectives of the researcher. Broadly speaking, the priority date is 

the date closest to the time of the invention and it should be therefore used when the objective is to 

evaluate the time pattern of invention of specific countries and organisations. Yet, the use of the pri-

ority date has also a few drawbacks that limit its suitability in certain contexts. In the construction of 

the dataset for this study, we have followed a different criterion for EPO and USPTO patents. As for 

the EPO patents, the principle of application date has been followed, i.e. each patent has been as-

signed to the year of application to the EPO. The main reason for not choosing the priority date (i.e. 

the date closest to the time of the invention) is the substantial time lag that may separate the first ap-

plication (i.e. priority) and the application to the EPO and thereby its publication. This lag is par-

ticularly long for patents that reach the EPO through the PCT route, i.e. for most US and Japanese 

patents. Using the priority date would therefore lead to a substantial underestimation of the patenting 

activity of some key countries, especially for the last years of the time series. In brief, our starting 

dataset comprises all patent applications to the EPO, whose application date was comprised between 

1990 and 2003. 

For USPTO patent documents, on the other hand, we have followed the practice of dating patents 

according to the date of grant. In this case, the reason for not choosing the priority date is that this 

information is available for a small fraction of all patents. Likewise, the reason for not choosing the 

application date is related to the long time lag separating the application and the grant date. Given 

the fact that until March 2001 the USPTO only published patents granted, the use of the application 

date would have led to a drastic reduction in the number of patents available for the analysis, particu-

larly for the last years of the time series. In brief, our starting dataset comprises all patents granted by 

the USPTO, whose grant date was comprised between 1990 and 2003. 

a2) Extraction and parsing of NPL citations 

The second step of Phase 1 was the identification of citations to prior art patents and to non-patent 

literature contained in the selected patent documents. To this purpose, for each patent classified in 
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any of the 10 technology fields, we proceeded to extract all citations made to prior art patents (i.e. 

patent citations) and all citations made to non-patent literature references (i.e. NPL citations). In this 

respect, it must be pointed out that, while the selection of patent citations does not present major 

problems given that cited patents are quite easily identified by their publication number, the selection 

and use of NPL citations involves rather complex tasks given the fact that references to non-patent 

literature are provided in raw format as strings of characters, without any separation among the vari-

ous items. This is illustrated in Figure 2, which reports a few typical examples of NPL citations com-

ing from raw data sources. The first document refers to an EPO patent, publication number 379369. 

This document contains reference to two articles. The former is an article published in SCIENCE, 

which is journal covered in the SCI-ISI database. The latter is an article published in CHEMICAL 

ABSTRACTS, which is not covered in the SCI-ISI dataset. The second document refers to a USPTO 

patent document, publication number 5137812. This documents refers to an article published in 

ANALYTICAL BIOCHEMISTRY, which is a ISI-SCI covered journal title, and to an article pub-

lished in APPLIED AND ENVIRONMENTAL MICROBIOLOGY, which is also a SCI-ISI cov-

ered journal. 

 
Figure 2 – Selected examples of NPL citations 

Citing patent NPL citation 

EP379369 SCIENCE, vol. 239, 29th January 1988, pages 487-491; R.K. SAIKI et al.: "Primer-directed 
enzymatic amplification of DNA with a thermostable DNA polymerase" 

EP379369 CHEMICAL ABSTRACTS, vol. 106, 25th May 1987, page 378, abstract no. 172466e, Co-
lumbus, Ohio, US; & US-A-888 058 (UNITED STATES DEPT. OF HEALTH AND HU-
MAN SERVICES) 05-12-1986 

US5137812 Burnette, Anal. Biochem. 112, 195-203 (1981). 
US5137812 Doyle et al., Applied and Environmental Microbiology, 53(10):2394-2396 (1987). 

 

In order to separate NPL citations to scientific literature from NPL citations to other materials, we 

extracted and parsed the strings of text related to NPL citations for each of the ten technology fields. 

The overall procedure used to extract and parse NPL citations is illustrated in Figure 3. In the first 

place, we extracted all NPL citations from the set of patents classified in any of the 10 technology 

fields in the period 1990-2003. This returned 649,528 NPL records for the EPO and 2,097,532 

NPL records for the USPTO. A parsing algorithm was then developed in-house and tested on this set 

of records. Actually, two algorithms were developed, one for the EPO and one for the USPTO, due 
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to the different layouts of NPL records.4 The objective of the parsing process at this stage was to take 

the strings of text containing NPL citations and breaking them down into relevant items. More spe-

cifically, each record containing NPL citations was parsed into the following fields (some of which 

possibly blank): 

 ID code (internally produced identification code of record) 
 Authors 
 Journal title 
 Article title 
 XP code (Internal EPO article reference code)5  
 ISSN code (for articles-only available for EPO) 
 ISBN code (for books-only available for USPTO) 
 Volume 
 Issue 
 Publication month 
 Publication year 
 Starting page  
 Ending page 
 Editor 

 

After parsing6, NPL records were preliminary grouped (i.e. de-duplicated) by all parsed fields, to take 

into account the fact that a given NPL reference may be cited by more than one patent. This reduced 

the number of ‘unique’ NPL citations to 499,497 unique records for the EPO and 2,063,624 unique 

records for the USPTO7. Parsed references were then further grouped according to the following 

fields: non-blank article title, non-blank journal title, ISSN code and publication year. This returned 

350,735 unique NPL records for the EPO and 718,256 unique NPL records for the USPTO. The 

reduction in the number of NPL records is mostly due to the plenitude of citations that refer to pub-

lications such as Chemical Abstracts of Japan or IBM Technical Bulletin. The resulting dataset of 

parsed NPL citations represented the basic input for the next phase of the study. 

                                                 
4  The parsing algorithms were developed by Gianluca Tarasconi and Hrannar Johnson. 
5  This code is available only for the EPO NPL citations. However, a major problem with this identification 

code is that apparently the same article may get different codes, making it quite unreliable. 
6  A thorough data quality check was implemented on the output of the parsing procedure. 
7  Here ‘unique’ means that NPL records cited in more than one patent have been de-duplicated according to 

one or more common fields. 
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Figure 3. Selection, extraction and parsing of NPL citations 
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b) Phase 2: Identification of scientific citations and selection of technology subfields 

Phase 2 of the study involved three fundamental steps. First, for each technology field, we identified 

among all NPL citations, those citations referring to scientific publications. Second, for each technol-

ogy field a preliminary statistical analysis was carried out to examine the degree of science intensity. 

Finally, on the basis of such analysis we identified 5 technology subfields for the subsequent phases of 

the study. In what follows, we examine each step in turn. 

b1) Identification of citations to scientific publications in NPL citations 

The first step of Phase 2 was devoted to identify within the set of parsed NPL citations, those records 

that correspond to scientific paper references. To this end, for each parsed NPL citation, we took the 

journal title field and matched it with the list of journal titles covered by ISI-SCI. The matching pro-

cedure involved both electronic and manual processing of data. 

In the first place, we generated the Cartesian product of the journal titles contained in NPL citations 

and the journal titles covered by ISI-SCI, i.e. we have joined each row of the table containing NPL 

journal titles to every row containing ISI-SCI journal titles. For each pair of titles thus resulting, we 

then computed various measures of distance between the two strings of text. In particular, we imple-

mented three measures of distance using SAS v.9: the generalised edit distance, the Levensthein dis-

tance and the asymmetric spelling distance. 

Pairs of journal titles for which the distance was lower than a certain threshold (i.e. with a high degree 

of similarity between the journal title in the NPL citation and the journal title in the SCI-ISI dataset) 

have been manually checked. Whenever we found that a NPL citation referred to a journal covered 

by ISI-SCI, the journal title in the NPL citation was standardised and the correct ISSN code has been 

assigned. It is important to point out that this procedure was very time-consuming, but allowed us to 

identify all NPL citations, which have been successfully parsed and are covered by ISI-SCI. In other 

words, we can confidently say that the probability that a parsed NPL citation covered by ISI has not 

been captured is extremely low.  

The procedure described above allowed us to split the NPL citations dataset into two distinct subsets 

of data: on one hand, the NPL citations corresponding to scientific articles, and on the other hand, 

the NPL citations corresponding to other kinds of materials (books, manuals, technical bulletins etc.). 
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Out of 350,735 unique (i.e. de-duplicated) NPL citations contained in EPO patents, we identified 

212,228 unique NPL citations to ISI covered journals. In a similar way, out of 718,256 unique NPL 

citations contained in USPTO patents, we identified 500,547 unique NPL citations covered by ISI 

journals. Considering jointly the EPO and the USPTO, the number of distinct SCI-ISI journals for 

which we found citations in patents amounts to 755 titles. 

 

Box 1- Data quality control 

The identification of ISI-SCI covered publications in NPL citations is a complex and time consum-
ing task. Although there are various possible ways in which one can test the success of the procedures 
implemented, the most obvious one is to calculate the share of all scientific articles cited in patents 
that one is able to correctly identify and retrieve. Yet, this is quite a problematic kind of test, given 
that one should first identify all SCI-covered references (i.e. precisely what is unknown) in order to 
say anything about the success ratio of the matching procedure. A possible alternative approach is to 
take a small sample of all NPL citations, manually identify and retrieve all scientific references con-
tained in them, and compare these with the results obtained by implementing the matching proce-
dure. To assess the quality of the procedures used in this study, however, we have taken a different 
route by comparing our results with those obtained in the study Linking Science to Technology con-
ducted by INCENTIM for the DG Research in 2003. 

Before illustrating the comparison, it must be pointed out that the focus of that study was quite dif-
ferent from the focus of the present study. In addition, the parsing and matching procedures were 
also quite different. The study conducted by INCENTIM started from the identification of potential 
scientific references in NPL citations using a set of keywords, such as ‘journal’ and ‘volume’, and then 
applied a parsing procedure to the set of identified records. We started instead from parsing all NPL 
citations and then proceeded to match journal titles with SCI-covered journal titles in order to iden-
tify scientific references. A further difference that should be noted is that, whereas the procedure im-
plemented by INCENTIM researchers is highly automatised, our methodological approach involves 
several manual checkings. As a consequence, the two procedures are probably suited to different types 
of problems. A highly automatised procedure is likely to be suited to the analysis of large numbers of 
NPL citations, whereas our procedure is more suited when the focus is upon specific technologies 
and, as in our case, on analysis at the level of individual papers and authors. 

The following table illustrates the number of citations to scientific papers contained in EPO patents 
for two technology fields, by comparing our parsing and matching procedure and the procedure fol-
lowed by INCENTIM. As the time coverage of the two studies is different, we conducted the com-
parison only for the years they have in common8. Moreover, we compared two technology fields for 
which the definition in terms of IPC codes is the same. We note that, in general, our approach tends 

                                                 
8 The figures reported in the table are taken, respectively, from volume 8 (Table 55, p. 89) and volume 5 (Table 

62, p. 87) of the Report Linking Science to Technology  - Bibliographic References in Patents, downloadable 
from http://cordis.europa.eu/indicators/kul_report.htm.  
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to produce a larger number of identified scientific citations, although the difference is particularly 
significant in the case of Telecommunications. It is likely that the difference between the two studies 
is due to the different parsing and matching strategies followed. In particular, the strategy of identify-
ing potential scientific citations on the basis of keywords such as ‘journal’ and ‘volume’ has the draw-
back that many journal titles cited in patents do not contain the word ‘journal’. Likewise, many NPL 
citations do not contain the word ‘volume’ (or ‘vol.’). As a consequence, relying upon such pre-
identification strategy involves the risk of underestimating the actual number of scientific citations. 

 __________________________________________________________________ 
    Years  1992 1993 1994 1995 1996 
 Fields   
 Telecommunications 
  CESPRI   1181 1219 1356 1596 1634  
  INCENTIM       76     48     56    161   212 
 Biotechnology 
  CESPRI   3929 4013 4759 5512 6105 
  INCENTIM   2669 1938 1981 2149 2086 
 __________________________________________________________________ 

Given the results reported above, we believe that our work of parsing and matching NPL citations 
respects high standards of quality and that coverage of our dataset is more than satisfactory. 

 

b2) Analysis of science intensity of 10 technology fields 

The dataset thus compiled was used to analyse the science intensity and various other aspects of the 

science-technology linkages for each of the 10 technology fields originally selected9. 

Table 2 and 3 report the total number of scientific paper citations, the fraction of patents citing sci-

entific articles and the degree of science intensity, respectively for the EPO and the USPTO patents, 

for each of the 10 technology fields. The average science intensity is defined as the number of cita-

                                                 
9 It is worth remarking that at this stage of our procedure, for each NPL citation we were able to distinguish 

between citations to articles published in ISI covered journals and citations to other material. Yet, for the set 
of citations to scientific articles, the only information available at this stage, was the standardised title of the 
journal. This means that we were still unable to identify with a unique ID code the same article cited in more 
than one patent. In addition, we did not possess any information on authors’ names, affiliations and publica-
tion year of the cited articles. However, this dataset allowed us to calculate some basic statistics about the sci-
ence intensity of the different technology fields and was therefore instrumental in the identification of the 5 
technology subfields for the final phases of the study. In fact, we could safely assume that a given patent will 
not cite the same article more than once, while it is certainly possible that the same patent cites two different 
articles from the same ISI journal. In other words, for each patent, we could calculate how many citations it 
made to scientific articles by simply summing up the number of NPL references containing a ‘journal title’ 
covered in the ISI dataset. 
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tions to scientific articles per 100 patents, both including and excluding in the calculation patents 

that do not cite scientific articles.  

Table 2 – EPO average science intensity by technology field (1990-2003) 

Technology fields # of citations to 
ISI scientific 
publications 

% of all patents 
citing scientific 

ISI articles 

Average science 
intensity 

(only patents 
citing scientific 

articles) 

Average science 
intensity  

(all patents) 

1. Telecommunications 21213 19.6 142.0 27.8 
2. Information Technology 14112 19.9 145.9 29.0 
3. Semiconductors 8837 21.8 181.3 39.5 
4. Optics 12106 16.2 194.1 31.4 
5. Control Technology 23705 17.8 209.0 37.2 
6. Medical Technology 3755 5.0 162.0 8.1 
7. Organic Chemistry 54429 39.0 260.5 101.7 
8. Drugs 49373 43.3 319.7 138.4 
9. Biotechnology 81296 78.2 382.1 298.9 
10. Environmental technology 669 4.2 135.6 5.7 

 

Table 3 – USPTO average science intensity by technology field (1990-2003) 

Technology fields # of citations to 
ISI scientific 
publications 

% of all patents 
citing scientific 

ISI articles 

Average science 
intensity 

(only patents 
citing scientific 

articles) 

Average science 
intensity  

(all patents) 

1. Telecommunications 37821 9.2 219.8 20.2 
2. Information Technology 41193 12.0 211.2 25.4 
3. Semiconductors 39290 17.9 274.0 49.2 
4. Optics 24135 8.5 272.0 23.1 
5. Control Technology 36948 10.4 324.8 33.8 
6. Medical Technology 46960 11.4 376.5 42.8 
7. Organic Chemistry 107573 26.8 642.5 172.4 
8. Drugs 235199 34.5 773.9 267.5 
9. Biotechnology 252214 57.0 976.4 557.2 
10. Environmental technology 6738 6.9 329.4 22.7 
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The first point to note is that the fraction of patents that cite scientific literature greatly differs across 

technologies. The highest propensity to cite science is found in biotechnology, drugs and organic 

chemistry. On the other hand, a very small fraction of all patents in medical technology and envi-

ronmental technology tends to rely on scientific papers. Similar differences emerge from examining 

the average number of cited articles per patent. 

Looking at EPO data, we observe that patents in biotechnology cites on average almost 3 articles, 

which becomes almost 4 if one excludes from the calculation patents that do not cite scientific arti-

cles. Medical technologies and environmental technologies are the fields with the lowest science in-

tensity. However, it is also interesting to note that if one takes into account only patents that actually 

cite scientific articles, the average number of cited articles increases dramatically and does not differ 

significantly from that of other technological fields. Put differently, very few patents in these domains 

cite scientific literature, but the science intensity of those few patents does not differ from that found 

in other technological domains10.  

A comparison between EPO and USPTO data reveals that the share of USPTO patents that cite ISI-

covered articles is significantly lower than the corresponding share at the EPO. This result may sug-

gest either differences in the quality of patents between the two offices or the existence of a different 

citation style between patent examiners at the EPO and at the USPTO. In addition, if one restricts 

the attention to patents that actually cite scientific articles (second column), the average science inten-

sity at the USPTO is significantly higher than the corresponding value at the EPO for all technology 

fields examined. Combining the two observations, one can say that a relatively lower fraction of 

USPTO patents tends to cite scientific articles, but the average number of cited articles by patents 

that actually do so is much higher than the corresponding value for the EPO patents. 

Beside the science intensity, we also calculated the share of all scientific citations accounted for by the 

most important journals for each technology field. Table 4 and 5 report the number of distinct ISI-

                                                 
10 We also conducted a thorough analysis of the number of cited articles, average science intensity and 

fraction of patents citing scientific articles at the 4-digit IPC level for each technology field. De-
tailed results are available in the website of this study. 
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journals cited by patents in the 10 technology fields as well as the share of citations accounted for by 

the 4 most cited journals, respectively for the EPO and the USPTO.11 

 
Box 2 – Citation rules 

The results reported in the text are consistent with the differences in the citation rules and patent ex-
amination procedures between the EPO and the USPTO. Citations are references either to previous 
patents (issued by the same patent office or by other offices) or other literature (mainly, scientific lit-
erature) to be found on the so called ‘search report’ attached by patent examiners to patent applica-
tions. Search reports by EPO examiners are separate documents one can find attached to patent ap-
plications, once published. As for USPTO, no separate ‘search report’ is published; however, the ex-
aminer’s citations, as opposed to the applicant’s, are listed separately on the front page of the patent 
document (Karki, 1997). More citations can be found in other sections of both the EPO and the 
USPTO patent documents, such as those dedicated to describing the invention or the novelty claims. 
However, these are much less easily available in electronic format, and much more erratic in their 
frequency. 

Citations help both the examiner and the applicant to judge the degree of novelty and the inventive 
step of each application. After receiving the search report the applicant should have enough informa-
tion to decide whether to go on pursuing the patent (which requires paying additional fees) or to give 
up, because the risk of rejection has been proved too high. Citations on the search report also form 
the basis for future search activities, especially by opponents wishing to challenge the patent’s validity 
in court. 

The USPTO requires applicants to disclose all the prior art they are aware of and deem relevant to 
this end (‘duty of candour’ rule), so we presume that many citations, although filtered by the exam-
iner, were first proposed by the designated inventors. Formally, USPTO applications may come only 
from individual inventors who assign their rights to legal persons such companies and other organiza-
tions only after the patent has been granted. So, ideally, all the prior art cited in observance of the 
‘duty of candour’ rule come from the inventors themselves. Of course this is not the case: it is the 
inventors’ employers who actually manage the application procedure, with their legal and patent in-
telligence aids actually choosing the prior art to be cited (even truly independent inventors rely upon 
such aids). 

The EPO does not impose any requirement of that kind, so that all the citations come straight away 
from the patent examiners. The EPO places great emphasis on the thoroughness and parsimony of its 
‘patentability search’ procedure: the examiners report only the prior art that really threatens the pat-
entability of the invention. In contrast, the USPTO provides a broader ‘documentary search’, aimed 
at collecting any reference which the applicant or the examiner suggest to be somehow useful in un-
derstanding the application contents (Akers, 2000). The following statements confirm this difference: 

                                                 
11  The list of the four most important journals and the four most important subject fields in terms of citations 

received in patents is reported in the appendix, separately for the EPO and the USPTO, for each of the 10 
technology fields. 
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According to the EPO philosophy a good search report contains all the technically relevant 
information within a minimum number of citations. [Michel and Bettels, 2001; p.189] 

 
The USPO examiner’s] purpose is to identify any prior disclosures of technology …  
which might be similar to the claimed invention and limit the scope of patent protection …  
or which, generally, reveal the state of the technology to which the invention is directed 
[OTAF (1976), as cited in Hall, Jaffe, and Trajtenberg, 2001; pp.14-15] 
 

When it comes to counting the number of citations per patent, the USPTO stands out as an excep-
tion: the average number of citations reported on its patents is much higher than similar figures for 
the EPO. According to Michel and Bettels (2001), UPSTO patents cite on average about 13 other 
patents, and about 3 non-patent documents, whilst the same figures for EPO patents are 4 and one. 
For USPTO patents applied for in 1990, Agrawal, Cockburn and McHale (2003) calculate 10.2 av-
erage citations; our own calculations for EPO patents reveal about 2.8 citations received over 10 years 
of life (Breschi et al., 2003). However, when one compares the search reports issued by the USPTO 
and the EPO for international patent applications subject to Patent Cooperation Treaty (PCT), all of 
these differences disappear, with the USPTO figures converging towards EPO values. It is the ‘duty 
of candour’ rule and the ‘documentary search strategy’ which make the difference: when examining 
PCT patent applications, in fact, both the USTPO and the EPO have to stick to the same set of rules 
issued by the World Intellectual Property Organization (WIPO), and differences in the citation fig-
ures disappear. In addition, Hall, Jaffe, and Trajtenberg (2000) make clear that some kind of ‘citation 
inflation’ phenomenon may have affected USPTO patents in recent times, due to the booming pat-
enting activity of US companies, which has placed an increasing burden on patent examiners. Clash-
ing against time-constraints and the USPTO rules for the ‘documentary search’ strategy, this burden 
may have forced the examiners to be less and less selective in picking up the right references to place 
on their reports. 
In conclusion, the messages one can obtain from EPO citations are much less ‘noisy’ than those from 
the USPTO ones. With EPO patents we can safely presume that all the citations have been chosen by 
the examiner, no matter whether the inventors knew about them in advance. With USPTO patents 
confusion reigns about who is entirely responsible for the front page citations: it is only since January 
2001 that indications have become available on whether individual citations come from the examiner 
or the inventor. In addition, cited-citing patent couples retrieved from EPO databases may be legiti-
mately supposed to be ‘closer’, both in time and as for technological content, than those coming from 
USPTO data. 
 

Both the total number of cited ISI journals and the share of the four most cited journals widely differ 

across technologies. The number of distinct journals cited by patents is relatively low for environ-

mental technology, semiconductors and optics. In addition, the share of all citations accounted for by 

the four most cited journals is remarkably high especially for semiconductors and optics. At the other 

end of the spectrum, biotechnology, drugs and control technology tend to cite a much larger set of 

journals and the share of the four most cited journals is significantly lower, therefore indicating a 
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wider dispersion of all citations across different journals. Comparing tables 4 and 5 also highlights a 

few differences. In the case of medical technology and environmental technology, the total number of 

distinct ISI journal cited by USPTO patents is much larger than the set of journals cited by EPO pat-

ents. Moreover, for information technology the share of citations accounted for by the top 4 journals 

is significantly higher at the USPTO than at the EPO, while the opposite occurs for optics.  

Table 4 – Share of scientific citations of top 4 cited journals (EPO) 

Technology fields # of ISI journals Share of top 4 cited 
journals 

1. Telecommunications 453 23.1 
2. Information Technology 823 11.1 
3. Semiconductors 328 41.0 
4. Optics 435 43.5 
5. Control Technology 2060 10.5 
6. Medical Technology 857 17.3 
7. Organic Chemistry 1705 23.8 
8. Drugs 2245 10.7 
9. Biotechnology 1876 21.1 
10. Environmental technology 193 24.0 

 

Table 5 – Share of scientific citations of top 4 cited journals (USPTO) 

Technology fields # of ISI journals Share of top 4 cited 
journals  

1. Telecommunications 591 22.1 
2. Information Technology 774 22.5 
3. Semiconductors 406 42.9 
4. Optics 516 31.7 
5. Control Technology 1577 13.6 
6. Medical Technology 1690 11.1 
7. Organic Chemistry 1700 20.3 
8. Drugs 2314 16.4 
9. Biotechnology 2025 25.9 
10. Environmental technology 649 25.8 

 

b3) Selection of 5 technology subfields 

On the basis of the analysis presented above, the final step of Phase 2 of the study involved the selec-

tion of 5 technology fields to use in the next phases of the research. Given the overall objective of the 
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study, i.e. analysing the network linkages among scientists and inventors, the first and most obvious 

criterion that has driven our choice has been the selection of fields in which the propensity of patents 

to cite scientific articles was high. This selection criterion ensures in fact that the fields selected pre-

sent (at least potentially) a high degree of interactions among individuals involved in science and in-

dividuals involved in industrial research. 

Beside this general principle, however, our choice has been also influenced by a few other considera-

tions. In the first place, given the purpose of evaluating the nature and strength of network linkages 

among authors and inventors, we selected technology fields to ensure that a certain degree of techno-

logical and scientific coherence exists between the activities of academic scientists, on one hand, and 

industrial technologists, on the other hand. This selection strategy minimises the risk that the set of 

(highly cited) authors and the set of (highly cited) inventors are engaged in different areas of research 

and are therefore less likely to be connected by any network linkage. In this respect, the 10 technol-

ogy fields identified for the first phase of the study were just too broad, relating to different and rather 

heterogeneous domains of research. Selecting the 5 technology fields from this set would have there-

fore generated the risk that scientists and inventors were not connected by any linkage, not because 

the lack of collaboration or interaction among them, but because they are engaged in different fields 

of research and therefore belong to different research communities.  

Second, our choice was dictated by considerations of feasibility. The total number of articles cited in 

the most science-intensive technology fields is in fact rather large. For example, EPO patents in the 

drugs field, which is one of the sectors presenting the highest degree of science intensity, cited 51,706 

distinct scientific articles over the period 1990-2003. Assuming an average of three authors per paper, 

the number of distinct authors was likely to be so large that it would have been unfeasible to clean 

and process all relevant data. Moreover, the very large number of nodes in the network of scientists-

inventors would have presented computational problems in the calculation of basic network meas-

ures. 

Given the three broad criteria discussed above, i.e. science-intensity, coherence and feasibility, we identi-

fied 5 technology subfields, by considering 4-digit IPC classes comprised within the 10 technology 



 30

fields originally selected.12  The 5 technology subfields and the corresponding IPC codes that identify 

them are reported in Table 6, while Table 7 report the degree of science intensity of the 5 subfields 

chosen in comparison with the science intensity of the broader fields from which they have been se-

lected. 13 

 

Table 6 – 5 technology subfields on the basis of IPC codes 

Technology fields IPC codes 

1. Transmission of digital information H04L 
2. Speech analysis and image data processing  G10L, G06T 
3. Semiconductors H01L 
4. Lasers H01S 
5. Biotechnology (measuring, testing, diagnostics) C12Q, G01N33 (/53,54,55,57,68,74,76,78,88,92) 

Table 7 – EPO average science intensity by technology field and selected subfields (1990-2003) 

Technology fields Average science intensity 

(only patents citing scientific articles) 

Telecommunications 142.0 
1. Transmission of digital information 206.8 

Information Technology 145.9 
2. Speech analysis and image data processing 218.8 
3. Semiconductors 181.3 

Optics 194.1 
4. Lasers 333.9 

Biotechnology 382.1 
5. Biotechnology (measuring, testing, diagnostics) 450.4 

 

                                                 
12 The choice of the 5 technology subfields involved a mixture of quantitative analysis of available data, subjec-

tive assessment based on experience with patent statistics and technological fields, and review of existing 
studies. In particular, for the identification of the Biotech subfield we adopted suggestions contained in the 
OECD Report “A Framework for Biotechnology Statistics” (Paris, 2005). Likewise, for the identification of 
the Telecom and ICT subfields we followed suggestions contained in the Report “Europe’s strengths and 
weaknesses in Information Society Technologies, A patent analysis”, (Fistera Thematic Network, IST-2001-
37627, 2005).  

13 As we did for the selection of the 10 broad technology fields, the identification of the 5 technology subfields 
has taken IPC codes as reference point. This procedure required therefore the identification of the US pat-
ents and the USPC codes corresponding to the selected technological subfields. This has been accomplished 
by using the USPC-IPC concordance table, which is available from http://www.uspto.gov/go/classification/. 
The USPC codes corresponding to the selected IPC classes are available upon request. 
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In general, we note that all the fields selected present a science intensity, which is significantly higher 

than the corresponding science intensity for the broader technology field to which they belong. For 

example, in the case of lasers each patent citing scientific articles cites on average 3.3 articles, as com-

pared to 1.94 articles for patents in the larger field of optics. It should be also noted that the science 

intensity of lasers is comparable to that of biotechnology as a whole, and it is higher than that of or-

ganic chemistry and drugs (cf. Table 2 above). This amounts to say that within each broad technol-

ogy field (e.g. optics) there is a large heterogeneity in terms of science intensity across subfields. Our 

choice has been to pick up subfields whose science intensity is higher than the average science inten-

sity in their respective broader fields. 

Besides satisfying the general principles discussed above, the selected subfields also present a few addi-

tional characteristics. First, they show a highly dynamic trend in patenting. As we expect the interac-

tion between science and technology to be stronger in sectors with high rates of growth in patenting, 

this constitutes a further element supporting the choice made. Second, new innovative firms account 

for a large share of total patenting activity in all the five fields selected. As we expect the scientific 

background of such companies to play an important role in their performance, we believe that this 

represents another aspect which militates in favour of our choice. 

Finally, it should be also noted that the selected subfields account for a fairly large number of all cita-

tions made to scientific articles in their respective broader technology field. This is shown in Table 8, 

which reports, for each technology subfield, and separately for the EPO and the USPTO, the number 

of citations to scientific articles as well as the share of all citations to scientific articles within the 

broader technology field to which they belong. Thus, for example, we observe that EPO patents in 

the subfield of lasers account for about 38% of all scientific citations made by EPO patents in the 

broader field of optics. More generally, we observe that, possibly with the exception of ‘transmission 

of digital information’ and ‘speech analysis and image data processing’, the chosen subfields appear to 

be well representative of the wider technological domains from which they have been selected. 
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Table 8 – Coverage of selected subfields in terms of scientific citations (1990-2003) 

Technology subfields # of citations to 
scientific articles 

Share of citations of the 
broader technology 

field (%) 

 EPO 

Transmission of digital information 6191 29.2 
Speech analysis and image data processing 2841 20.1 
Semiconductors 8837 100.0 
Lasers 4570 37.7 
Biotechnology (measuring, testing, diagnostics) 21631 26.6 

 USPTO 

Transmission of digital information 4939 13.1 
Speech analysis and image data processing 6034 14.6 
Semiconductors 36627 93.2 
Lasers 9524 39.5 
Biotechnology (measuring, testing, diagnostics) 100364 39.8 

 

c) Phase 3: Extraction of ISI-publications and identification of highly cited articles 

Phase 3 of the study focused on the five technology subfields described above. This phase involved 

three basic steps. First, for each technology subfield, we matched the identified paper citations with 

the source data coming from ISI, in order to extract the full set of information regarding each paper 

citation (i.e. authors’ names, affiliations etc.). Second, we defined the criteria to identify highly cited 

publications and highly cited patents. Finally, we carried out a benchmarking analysis to examine to 

what extent cited and highly-cited publications are only cited within the realm of patents or con-

versely they are also cited by other scientific publications. In what follows, we discuss these various 

steps in detail. 

c1) Extraction and matching with ISI-covered publications 

The first step of phase 3 consisted in matching for each technology subfield the identified paper cita-

tions with the source data coming from ISI. To this purpose, we proceeded as follows. For each tech-

nology subfield, we identified the most important journals in terms of number of citations received 

from patents and extracted from the ISI dataset all articles published therein over the period 1969-
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2003. The choice of focusing only on the most important journals in each subfield was dictated by 

considerations of feasibility, given the amount of publications that had to be extracted from the ISI 

dataset, and by the fact that the most cited articles are likely to appear in journals that receive overall 

a large number of citations. The number of distinct journals cited in patents, both at the EPO and at 

the USPTO, is in fact very large (see above Tables 4 and 5), but most journals account for just one or 

few citations from patents. Given the criteria followed to define highly cited publications (see below), 

these journals are likely not to be particularly relevant and have been therefore excluded. Specifically, 

for each technology subfield we only considered journals, which received at least 5 citations from pat-

ents over the period 1990-2003. 

For each journal considered, we compared the list of article titles cited in patents with the list of article 

titles as reported in the ISI dataset. More specifically, for each specific journal (e.g. Journal of Biologi-

cal Chemistry) we created all possible pairs of article titles cited in patents and article titles published, 

by generating the Cartesian product of the two vectors, and compared the two strings of text by cal-

culating various measures of distance among them. In particular, we implemented three measures of 

distance using SAS v.9: the generalised edit distance, the Levensthein distance and the asymmetric 

spelling distance. Pairs of article titles for which the distance was lower than a certain threshold were 

manually checked and the same ID code was assigned to pairs of articles that turn out to be the same 

publication. This was a rather long and time-consuming task, which involved a fairly large amount of 

manual checking. However, it allowed to identify and extract information on all cited publications 

published in the most important journals in each field.  

Table 9 reports summary statistics on the output of this task. More specifically, it reports information 

for each technology subfield and separately for the EPO and the USPTO on the coverage of the data-

set in terms of total number of citations to ISI covered articles and in terms of share of all scientific 

citations of each subfield for which we found a match with ISI publications. As one can see, the cov-

erage of the dataset is more than satisfactory.   
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Table 9 – Coverage of selected subfields after matching with ISI (1990-2003) 

Technology subfields # of citations to 
scientific articles 

Share of citations of the 
subfield (%) 

 EPO 

Transmission of digital information 4245 68.6 
Speech analysis and image data processing 1689 59.4 
Semiconductors 6700 75.8 
Lasers 3756 82.1 
Biotechnology (measuring, testing, diagnostics) 13940 64.4 

 USPTO 

Transmission of digital information 3155 63.8 
Speech analysis and image data processing 2185 36.2 
Semiconductors 24909 68.0 
Lasers 7878 82.7 
Biotechnology (measuring, testing, diagnostics) 74231 73.9 

 

For example, with reference to semiconductors, the overall number of citations to scientific publica-

tions from patent applications in the period 1990-2003 is equal to 8837 for the EPO and 36627 for 

the USPTO. Of these, we were able to match publications data from ISI for 6700 citations (75.8%) 

in the case of EPO and 24909 (68.0%) citations for the USPTO. The data we have collected are also 

likely to contain the most cited publications, which was one of the purposes of the study. 

c2) Definition of highly cited publications 

The second step of Phase 3 involved a thorough statistical analysis of the citation patterns from pat-

ents to scientific publications in order to define the criteria for the identification of highly cited pub-

lications. The identification of the highly cited articles required to make a choice concerning: i) the 

time window within which counting the number of citations received by scientific articles; ii) the 

threshold above which articles qualify as highly cited. To this purpose, we adopted the following pro-

cedure.  

First, we defined a citation window of t years after the publication date of the cited articles. The need 

to define a citation window arises from the fact that articles published far in the past have simply had 

more time to receive citations from patents compared to most recently published articles. Defining a 
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time window solves this problem by allowing all articles the same period of time to receive citations 

independently on the year of publication. More specifically, we selected three windows of time, re-

spectively of 3, 5 and 7 years, within which we counted the number of citations received in patents by 

individual publications. The citation window has been defined as the difference between the applica-

tion date of the citing patent and the publication date of the cited article. Thus, for example, the 3-

years citation window includes only those publications for which the difference between the year of 

the citing patent and the year of the cited publication is less than or equal to three years.  

For each time window, we then calculated the distribution of the number citations of per publication, 

for each technology subfield and separately for the EPO and the USPTO. It is very important to re-

mark that in calculating such distributions, we took into account the fact that for the most recently 

published articles the available time-window may be shorter than the selected time window. For ex-

ample, when considering the 3-years time window, all articles published between 2001 and 2003 had 

to be excluded from the calculations, as the available time window between their publication year and 

the application date of most recent citing patents, i.e. 2003, was shorter than 3-years. 

For each technology subfield, and separately for the EPO and the USPTO, we have tabulated the 

distribution of citations, by calculating the following variables: the number of scientific articles receiv-

ing a given number (i.e. 1, 2, 3, etc.) of citations, the percentage of all cited articles receiving a given 

number of citations, the cumulative distribution, i.e. the percentage of all cited articles receiving less 

than (or equal to) a given number of citations, the inverted cumulative distribution, i.e. the percent-

age of all cited articles receiving more than (or equal to) a given number of citations, and the number 

of articles receiving more than (or equal to) a given number of citations. For reasons of space, these 

tabulations are not presented in this report, but they are available in the website constructed for this 

study. For the sake of summarising, below we have only reported the graphical distribution of the 

number of citations received by publications in a time window of 5 years since their publication date, 

separately for the from EPO and the USPTO (Figure 4). The x-axis reports the number of citations, 

whereas the y-axis reports the log of the frequency of articles receiving a given number of citations. 

For all technology fields examined, the distribution of citations to scientific articles appears highly 

skewed with the vast majority of articles receiving only one or two citations.  
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Figure 4 – Frequency distribution of the number of citations received by scientific articles in a 
5-years time window since their publication date 
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With reference to EPO data, the percentage of all articles receiving only one citation in a time win-

dow of 5 years from the date of publication goes from 83% for biotechnology to 69% for transmis-

sion of digital information. Always with reference to EPO data, the percentage of all articles receiving 

two citations in a time window of 5 years since their publication date ranges from 16,6% for trans-

mission of digital information to 11.0% for biotechnology. Looking instead at the right tail of the 

distribution, very few articles receive a large number of citations. The distributions for the USPTO 

data look rather similar to those for the EPO. Taking again a 5-years time window, the percentage of 

all articles receiving only one citation goes from 78% for speech analysis to 70% for semiconductors. 

Overall, publications receiving less than or equal to two citations account for about 90% of all cited 

articles in our sample. This is, of course, a crucial aspect to take into account for the definition of 

highly cited publications. It implies that receiving at least three citations puts an article in the upper 

10% of the citation distribution. 

In order to choose among the three options for the time window, we calculated for each technology 

subfield the time lag between the publication year of cited articles and the application year of citing 

patents. The distribution of time lags between patents and publications is reported in Figure 5 respec-

tively for the EPO and the USPTO.  

In both cases, we observe that the distributions tend to peak around two years. In other words, the 

modal time lag between scientific publications and citing patents is around two years. However, the 

shape of two distributions looks rather different. In the case of the EPO, we note a sharp decline in 

the frequency of citations with a long time lag: for all the technology fields considered here around 

80% of all citations have a time lag between citing patents and cited publications lower than 5 years. 

In the case of the USPTO, the right tail of the distributions declines more slowly: the percentage of 

citations with a time lag lower than 5 years is comprised between 49% for biotechnology and 61% 

for semiconductors. The difference in the shape of the two distributions is probably due to the fact 

that USPTO patents cite on average a larger number of scientific papers per patent, some of which 

have been published far in the past. As the focus of this study was on the network linkages between 

scientists and inventors, and given that network ties are likely to decay over time, we believed that a 

reasonable compromise in this context was to assume a 5-years time window.  
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Figure 5 – Lag in years between citing patents and cited publications (EPO and USPTO) 
Percentage of all citations from patents to publications, 5 technology subfields 
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As for the definition of a citation threshold, we considered two possible alternatives: i) defining a per-

centage threshold (e.g. 2%) to delimit the percentile of publications that qualify as ‘highly cited’; ii) 

defining an absolute number of citations (e.g. 5) above which publications qualify as ‘highly cited’. 

The major drawback of the first approach is that for some of the fields examined the number of arti-

cles comprised within the top percentile chosen may be rather small. For example, with reference to 

the field of lasers, if highly-cited papers are defined as those articles in the top 1% of the distribution 

one ends up with less than 18 articles out of more than 2200 articles cited by EPO patents. Also the 

alternative approach has some limitations. The major one is that once defined the absolute number of 

citations that qualify highly cited articles, the percentage of all cited articles receiving more than the 

chosen number of citations may differ across fields. For example, if highly-cited papers are defined as 

those receiving at least 5 citations within a 5-years time window, one ends up with 78 papers for 

transmission of digital information, corresponding to 4,65% of all cited papers in this field; on the 

other hand, only 1,51% (121) of all articles cited by biotechnology patents receive at least 5 citations. 

Putting together the results presented above and looking at the distributions of citations for the five 

subfields, we believed that a reasonable compromise in the context of the present study was to define 

highly cited articles as those publications receiving four or more citations within a time window of five 

years. It should be however added that the exact definition and meaning of what constitutes a highly 

cited publication is not crucial, at least with respect to EPO data. As we will explain below, for EPO 

data, we have in fact chosen to analyse network linkages by considering all papers and authors cited 

in patents, independently on the number of citation received from patents. 

Table 10 reports the number and percentage of articles that qualify as highly cited according to this 

criterion (middle panel), respectively for the EPO and the USPTO, comparing the results with pos-

sible alternative definitions of highly cited publications. According to the criterion proposed here, the 

percentage of all cited articles that qualify as highly cited is comprised between 2.09% in the case of 

semiconductors and 7.58% in the case of transmission of digital information for the EPO, and be-

tween 3.05 in the case of speech analysis and 7.19% in the case of semiconductors for the USPTO.  
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Table 10  –  Highly cited publications (Publications with 3, 4, 5 or more citations within 
a 5 years time window) 

Technology field 
 

% of all cited 
articles 

 

 
Number of 

articles 
 

% of all 
cited articles 

 

 
Number of 

articles 
 

 EPO USPTO 
 3 or more citations 

Transmission of digital information 14.33 240 11.09 120 
Speech analysis and image data processing 8.34 69 6.75 42 
Semiconductors 5.68 228 12.96 960 
Laser 7.32 162 11.30 340 
Biotechnology 5.44 420 9.31 2424 

 4 or more citations 
Transmission of digital information 7.58 127 5.36 58 
Speech analysis and image data processing 4.03 33 3.05 19 
Semiconductors 2.09 84 7.19 533 
Laser 2.35 52 5.05 152 
Biotechnology 2.78 215 4.55 1186 

 5 or more citations 
Transmission of digital information 4.65 78 2.49 27 
Speech analysis and image data processing 2.20 18 1.28 8 
Semiconductors 0.82 33 4.22 313 
Laser 0.81 18 2.89 87 
Biotechnology 1.56 121 2.73 713 

 
With the exception of transmission of digital information for the EPO and semiconductors for the 

USPTO, the percentage of all cited articles that qualify as highly cited is below 5% for all fields exam-

ined. In other terms, the proposed selection criterion identifies highly cited articles within the 95th 

percentile of the distribution. In the absence of any a priori definition of what constitutes a highly 

cited article, we believed this was a reasonable criterion for the purposes of the present study. 

c3) Definition of highly cited patents 

The identification of highly cited patents has followed a procedure similar to the one described above 

for publications. First of all, we defined a citation window of t years after the application date of the 

cited patent. The citation window has been defined as the difference between the application date of 

the citing patent and the application date of the cited patents. Using this time window, we then 

counted the number of citations received by each patent and calculated the overall distribution of 
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citations between patents. More specifically, we have chosen three windows of time- respectively of 3, 

5 and 7 years.14  

Figure 6 below reports the distribution of the number of citations received by patents within a time 

window of 5 years since their application date for EPO patents in the 5 technology subfields15. From 

a visual inspection of the graph below, it is immediate to observe that also in the case of patent cita-

tions the distribution of the number of citations look rather skewed, although the degree of skewness 

appears to be lower than in the case of scientific articles. Thus, for example, while the articles receiv-

ing more than three citations from EPO biotech patents within a 5-years window represent around 

5% of all cited articles, patents receiving more than three citations from EPO biotech patents within 

the same time window represent 28% of all cited patents. In other terms, the right tail of the distribu-

tion appears relatively fatter for patent citations than for citations from patents to scientific articles. 

This suggests that the citation threshold for EPO patents should be set at a higher value than the 

threshold chosen for cited publications. 

Looking at the distribution of patent citations for the USPTO (Figure 6) reveals that the shape of the 

distribution differs quite remarkably to the distribution for the EPO. In particular, the absolute 

number and percentage of patents receiving a very large number of citations is much greater at the 

USPTO compared to the EPO. This results in a distribution of citations that appears declining more 

slowly, i.e. the right tail of the distribution contains a larger number of documents. For example, with 

reference to semiconductors, while the percentage of all cited patents receiving more than 4 citations 

is equal to 9.3% at the EPO, this value rises to 51.0% at the USPTO. Likewise, the percentage of all 

semiconductors cited patents receiving more than 5 citations is equal to 5.0% at the EPO as opposed 

to 41.8% at the USPTO. The difference is even more striking if one takes the corresponding absolute 

values. Thus, the number of patents receiving more than 4 citations is equal to 608 for the EPO as 

opposed to 19458 for the USPTO. A similar pattern may be observed for all the subfields considered 

here. 

 
                                                 
14  Detailed tabulations are not reported here, but are available from the website of the study. 
15  We do not report here the full set of distributions for various time windows. They are available in the web-

site of this study. 
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Figure 6 – Distribution of the number of citations received by patents within a 5 years time 
window, 5 technology subfields (EPO and USPTO) 
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The reasons for this difference are twofold. On the one hand, the higher absolute number of patent 

applications at the USPTO as compared to the EPO. On the other hand, the different examination 

practices at the two patent offices, which result in a much higher number of citations reported on 

average on USPTO patent documents compared to EPO patent documents. 

For the purposes of the present project, the major problem arising from these different patterns of 

citations is that the definition of what constitutes a highly cited patent must necessarily differ for the 

two patent offices. Looking again at the data reported in Figure 6, the percentage of semiconductors 

patents receiving 5 citations or more is around 5% for the EPO. Assuming that percentage as the 

threshold to identify highly-cited patents, this would imply selecting USPTO patents receiving 20 

citations or more. There is a further problem that needs to be discussed. Even assuming a different 

(absolute) citation threshold for the two patent offices, the absolute number of resulting patents for 

the USPTO is remarkably larger. With reference to the previous example, the number of semicon-

ductors patents receiving 5 citations or more is equal to 331 for the EPO; on the other hand, the 

number of semiconductors patents receiving 20 citations or more is equal to 1747 for the USPTO. 

Given that the next steps of the project involved cleaning the names, affiliations and addresses of 

highly-cited authors and inventors and linking them, we limited the examination of highly-cited in-

ventors only to the case of EPO patents. 

As for publications, we have also calculated the time lag between citing and cited patents. This is re-

ported in Figure 7 for the EPO16. The graph shows that between 70% (in biotech) and 79% (in tele-

com) of all patent citations have a time lag between citing and cited patents lower than or equal to 

five years17. Moreover, the peak of the distribution is situated around two years for all the fields exam-

ined here18.  

                                                 
16  A comparison between the EPO and the USPTO (not reported here) reveals that the distribution of citation 

lags are also quite different between the two patent offices. In particular, the distribution of citation lags at 
the USPTO appears to decline relatively more slowly than the corresponding distribution for the EPO, 
thereby suggesting that patent citations at the former patent office refer to relatively older documents than 
patent citations at the latter patent office. 

17  The corresponding range for the USPTO is comprised between 56% for biotech and 78% for telecom 
18  The corresponding peak of the distribution for the USPTO is located around three years for all sectors, ex-

cept lasers and transmission of digital information. 
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Figure 7 –   Lag in years between citing and cited patents, Percentage of all citations from pat-
ents to patents, 5 technology subfields (EPO) 
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Table 11 –  Highly cited patents, EPO (Patents with 4, 5, 6 or more cita-
tions within a 5 years time window since application date) 

Technology field 
 

% of all cited pat-
ents 

 

Number of patents 

 4 or more citations 
Transmission of digital information 15.6 463 
Speech analysis and image data processing 11.5 126 
Semiconductors 9.3 608 
Laser 6.1 53 
Biotechnology 16.6 441 

 5 or more citations 
Transmission of digital information 9.9 294 
Speech analysis and image data processing 6.4 70 
Semiconductors 5.1 331 
Laser 3.5 30 
Biotechnology 10.5 279 

 6 or more citations 
Transmission of digital information 6.7 199 
Speech analysis and image data processing 3.3 37 
Semiconductors 2.7 175 
Laser 1.5 13 
Biotechnology 7.0 186 
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On the basis of these data, we assumed a citation window of five years as a reasonable criterion for the 

purpose of counting the number of citations received by each individual patent. 

Putting together the results presented above, we decided to limit the analysis of highly cited inventors 

to EPO patents and to define as highly cited patents those (EPO) patents that have received six citations 

or more within a time window of five years since their date of application. The percentage of all cited 

patents and the number of patent documents in the sample of highly cited patents according to this 

selection criterion are reported in Table 11, which also provides a comparison with respect to alterna-

tive criteria. The share of patents qualifying as highly cited is comprised between 7.0% for transmis-

sion of digital information and 1.5% in the case of lasers. 

c.3) Benchmarking analysis of cited publications 

The final step of Phase 3 concerned a benchmarking analysis that was conducted in order to examine 

whether cited and highly-cited publications are only cited within the realm of patents or whether they 

tend to be also highly cited by other scientific articles. The existing evidence on this issue is rather 

scant. One of the few studies on this topic is the one conducted by Gittelman and Kogut (2003). 

They analyse publications and patents of 116 biotechnology firms during the period 1988-1995 and 

show that important scientific papers (i.e. papers that receive many citations from other papers) are 

negatively associated with high-impact innovations (i.e. patents that receive many citations from 

other patents). According to them, this result points to conflicting logics between scientific and in-

dustrial communities, which are characterized by “different rules that govern the logic by which a 

good paper or a valuable patent is selected and replicated”. 

Our objective in this report was slightly different. We did not aim to test whether high-quality scien-

tific papers are associated with high-impact patents. Rather, our aim was to assess whether and to 

what extent there is a positive correlation between the citations that a paper receives from patents and 

the citations that it receives from other publications.  

Our benchmark analysis was conducted separately for each technological subfield. More specifically, 

our basic methodology consisted of comparing the average number of citations that publications cited 

in patents receive from other publications with the corresponding average for publications that are 

not cited in patents. The latter represent what we may call the control group. A major problem to be 



 46

addressed in this context regards exactly the selection of the control group. Roughly speaking, this 

should include publications that are as more coherent as possible with the publications cited in pat-

ents. By coherence here we mean the fact that the control group should be selected to ensure that 

differences in citation rates do not arise from underlying differences in factors, such as the publication 

date, the specific topic of the publication and the knowledge base. To this purpose, we adopted the 

following methodology. First of all, for each technology subfield, we selected all publications cited in 

patents and grouped them into four cohorts according to their publication year. Each cohort includes 

publications whose year of publication is within a three-year time window. More specifically, the four 

cohorts of publications are 1987-89, 1990-92, 1993-95 and 1996-98. For each cohort of publica-

tions, we computed the average number of citations received from other scientific papers and com-

pared it with the average number of citations received by publications not cited in patents (control 

group). The control group was selected by including all publications in the same cohort, but which 

were not cited in patents and that were published  

1) either in the same journal of the cited publications 

2) or in the same subject field of the cited publications.19 

 

In other words, the citation rates of publications cited in patents were compared with the citation 

rates of publications not cited in patents, but published in the same journal or in the same subject 

field. Of course, this selection procedure does not eliminate altogether all possible differences between 

cited and non-cited publications. Yet, it is likely that the problem becomes more important in the 

case of relatively broad scientific areas and generalist journals. As we will show below, the most im-

portant journals in each field are mostly specialist journals, rather than generalist journals. For this 

reason, we believe that most of the differences in citation rates between cited and non-cited publica-

tions are likely to reflect their underlying relevance for technological developments rather than other 

factors and that the analysis conducted here provides at least some new evidence on this issue. 

Before presenting the results, two further remarks are needed. In the first place, the benchmarking 

analysis was carried out only with reference to scientific publications cited in EPO patents (and re-

                                                 
19  The ISI subject field is a journal-level classification developed by ISI Thompson, which groups journals ac-

cording to the topics covered. 
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lated control groups). Secondly, given that for each technology field, the list of journals (and subject 

fields) in which publications cited in patents have been published includes a great number of different 

titles (and subject fields), we decided to delimit our analysis to the four most important journals and 

subject fields in terms of citations received from patents, for each technology subfield. Table 12 re-

ports the top four journals by total number of citations received from patents for each of the five 

technology fields, whereas Table 13 reports the top four subject fields.  

Table 12 – Top 4 journals by number of citation received from patents, Five techno-
logical subfields – EPO 1990-2003 

Subfields/Journals Citations received 

Transmission of digital information  

COMPUTER NETWORKS AND ISDN SYSTEMS 306 
IEEE COMMUNICATIONS MAGAZINE 304 
IEEE JOURNAL ON SELECTED AREAS IN COMMUNIC 290 
IEEE TRANSACTIONS ON COMMUNICATIONS 239 

Speech analysis  

IEEE COMPUTER GRAPHICS AND APPLICATIONS 451 
SPEECH COMMUNICATION 124 
COMPUTERS & GRAPHICS 73 
IEEE TRANSACTIONS ON MEDICAL IMAGING 49 

Semiconductors  

APPLIED PHYSICS LETTERS 1241 
IEEE TRANSACTIONS ON ELECTRON DEVICES 326 
JOURNAL OF APPLIED PHYSICS 302 
OPTICS LETTERS 275 

Laser  

ELECTRONICS LETTERS 691 
APPLIED PHYSICS LETTERS 579 
IEEE PHOTONICS TECHNOLOGY LETTERS 431 
OPTICS LETTERS 275 

Biotechnology  

NUCLEIC ACIDS RESEARCH 796 
SCIENCE 659 
JOURNAL OF BIOLOGICAL CHEMISTRY 585 
NATURE 451 

 



 48

Table 13 –  Top 4 subject fields by number of citation received from patents, Five 
technological subfields – EPO 1990-2003 

Subfields/Subject fields Citations received 

Transmission of digital information  
ENGINEERING, ELECTRICAL & ELECTRONIC 1645 
COMPUTER SCIENCE, HARDWARE & ARCHITECTURE 471 
COMPUTER SCIENCE, CYBERNETICS 389 
COMPUTER SCIENCE, INFORMATION SYSTEMS 154 

Speech analysis  
ENGINEERING, ELECTRICAL & ELECTRONIC 353 
COMPUTER SCIENCE, SOFTWARE ENGINEERING 241 
ACOUSTICS 174 
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 102 

Semiconductors  
ENGINEERING, ELECTRICAL & ELECTRONIC 1682 
PHYSICS, APPLIED 1657 
MATERIALS SCIENCE, MULTIDISCIPLINARY 328 
PHYSICS, FLUIDS & PLASMAS 289 

Laser  
ENGINEERING, ELECTRICAL & ELECTRONIC 1628 
PHYSICS, APPLIED 670 
OPTICS 437 
PHYSICS, FLUIDS & PLASMAS 57 

Biotechnology  
BIOCHEMISTRY & MOLECULAR BIOLOGY 3318 
CHEMISTRY, ANALYTICAL 797 
BIOTECHNOLOGY & APPLIED MICROBIOLOGY 740 
GENETICS & HEREDITY 736 

 

Looking in particular at journals, it is worth noting that the distribution of patent citations is uneven 

across journals, even in the same technological class: for example, in Semiconductors, articles pub-

lished in Applied Physics Letters receive almost 4 times the number of citations gathered by articles 

published in the second most important journal, i.e. IEEE Transaction on Electronic Devices. The laser 

field exhibits a similar pattern: the first journal receives on average more than twice citations as the 

fourth. With respect to Biotechnology, we note the presence of generalist journals like Science and 

Nature among the top four journals in the field. In this case, we suggest taking our results with cau-
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tion, given that the comparison between cited and non-cited publications is likely to include articles 

that belong to rather different scientific areas.  

In what follows, we shortly discuss the basic findings that emerge from such analysis, by reporting the 

average number of citations for the cohort of articles published in 1996-98 (Tables 14 and 15).20 

Table 14 – Benchmarking analysis, Average number of scientific citations received by 
publications cited and not cited in patents (EPO, cohort 1996-98) 

Subfields/Journals Not cited Cited 

Transmission of digital information   

COMPUTER NETWORKS AND ISDN SYSTEMS 2,5 (475) 3,2 (91) 
IEEE COMMUNICATIONS MAGAZINE 4,7 (564) 22,4 (66) 
IEEE JOURNAL ON SELECTED AREAS IN COMMUNIC 15,2 (434) 37,2 (44) 
IEEE TRANSACTIONS ON COMMUNICATIONS 9,2 (662) 35,8 (33) 

Speech analysis   

SPEECH COMMUNICATION 4,9 (166) 6,0 (31) 
COMPUTERS & GRAPHICS 2,1 (217) 5,4 (16) 
IEEE TRANSACTIONS ON MEDICAL IMAGING 21,6 (281) 57,3 (20) 
IEEE COMPUTER GRAPHICS AND APPLICATIONS 3,3 (318) 9,7 (7) 

Semiconductors   

APPLIED PHYSICS LETTERS 22,4 (7213) 69,7 (176) 
IEEE TRANSACTIONS ON ELECTRON DEVICES 10,1 (1032) 28,6 (42) 
JOURNAL OF APPLIED PHYSICS 12,7 (8213) 35,7 (50) 
IEEE ELECTRON DEVICE LETTERS 12,6 (477) 25,8 (39) 

Laser   

ELECTRONICS LETTERS 5,3 (4611) 14,7 (77) 
APPLIED PHYSICS LETTERS 23,3 (7315) 43,7 (74) 
IEEE PHOTONICS TECHNOLOGY LETTERS 9,0 (1558) 16,3 (95) 
OPTICS LETTERS 18,3 (1853) 35,7 (51) 

Biotechnology   

NUCLEIC ACIDS RESEARCH 32,0 (2379) 155,3 (147) 
SCIENCE 65,1 (8165) 502,9 (107) 
JOURNAL OF BIOLOGICAL CHEMISTRY 49,9 (14550) 89,3 (263) 
NATURE 59,0 (9161) 475,9 (104) 

Note: number of publications in parenthesis. 

                                                 
20 Fuller details about other cohort of publications are reported in the website of the study. Yet, they broadly 

confirm the results discussed in the text. 
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Table 15 – Benchmarking analysis, Average number of scientific citations received by 
publications cited and not cited in patents (EPO, cohort 1996-98) 

Subfields/Journals Not cited Cited 

Transmission of digital information   

ENGINEERING, ELECTRICAL & ELECTRONIC 5.3 16.0 
COMPUTER SCIENCE, HARDWARE ARCHITECTURE 4.6 17.0 
COMPUTER SCIENCE, CYBERNETICS 0.4 2.5 
COMPUTER SCIENCE, INFORMATION SYSTEMS 4.9 47.1 

Speech analysis   

ENGINEERING, ELECTRICAL & ELECTRONIC 4.9 18.1 
COMPUTER SCIENCE, SOFTWARE ENGINEERING 8.9 21.4 
ACOUSTICS 8.4 7.7 
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 14.1 34.3 

Semiconductors   

ENGINEERING, ELECTRICAL & ELECTRONIC 6.1 17.3 
PHYSICS, APPLIED 13.9 58.7 
MATERIALS SCIENCE, MULTIDISCIPLINARY 9.9 26.9 
PHYSICS, FLUIDS & PLASMAS 8.8 82.9 

Laser   

ENGINEERING, ELECTRICAL & ELECTRONIC 6.7 17.3 
PHYSICS, APPLIED 14.0 58.7 
OPTICS 7.9 25.2 
PHYSICS, FLUIDS & PLASMAS 9.1 114.7 

Biotechnology   

BIOCHEMISTRY & MOLECULAR BIOLOGY 28.8 121.8 
CHEMISTRY, ANALYTICAL 17.9 38.1 
BIOTECHNOLOGY & APPLIED MICROBIOLOGY 21.8 76.9 
GENETICS & HEREDITY 26.6 122.7 

 

Broadly speaking, our results provide evidence of a strong positive correlation between citations com-

ing from patents and citations coming from scientific publications. Both analysis at the level of spe-

cific journals and at the level of subject fields show that scientific publications cited in patents belong-

ing to our five technology subfields receive, on average, a far larger number of citations from other 

publications than articles, which are not cited in patents. 
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On the one hand, this result validates in some way the methodology followed in this study. Publica-

tions cited by patents are not only cited in the realm of technology, but they are also heavily cited by 

other scientific publications. This means that we are not analysing a random and unchecked sample 

of publications, but we are probably focusing upon the most important publications in each field. On 

the other hand, we also think that one should not derive too broad conclusions on the correlation 

between scientific and industrial “value” of new ideas. There are in fact some caveats that must be 

taken into account when interpreting these results. First, the number of citations received by articles 

is an imperfect proxy of the quality of a paper. Scientists often cite other colleagues’ work for a variety 

of reasons, which are not necessarily related to the quality of their publications. Second, one must 

also consider that the patent examination process itself has probably an impact on the observed corre-

lation: while searching for existing prior art, patent examiners often rely upon a delimited set of sci-

entific publications to build their lists of non-patent references. Since these publications are likely to 

be the most visible and easy-to-find contributions, the observed correlation could be probably partly 

spurious. 

In particular, results for biotechnology should be treated with caution: among the top 4 journals in 

terms of citations received by patents, two are multidisciplinary ones (Nature and Science). Since these 

journals span across a variety of scientific domains, it is likely that the articles they host do not meet 

our coherence requirements. Different scientific disciplines have different citation patterns, so that we 

are probably comparing biotech-related publications cited in patents with an excessively vast and het-

erogeneous typology of articles. Nonetheless, our results are quite clear-cut: among articles published 

in Nature and Science, being cited by biotech patents increases the number of citations from scientific 

literature by a factor of 10, which is far the largest figure among the whole set of journals examined. 

The remaining two journals, being more focused on biotechnologies, provide a more reliable test of 

the correlation between patent citations and scientific citations: once again, articles published in Nu-

cleic Acid Research and Journal of Biological Chemistry are significantly more cited by other articles if 

they are also cited by at least one patent. Similar results are obtained if one looks at subject fields, 

rather than journals. Actually, the spread between cited and non-cited publications is larger in this 

field than in any other field examined here, which provides further evidence of the blurring bounda-

ries between science and technology in this area. 
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Despite the limitations mentioned above, the analysis still provides an interesting insight: there are 

signs of convergence in the evolutionary logics adopted by scientists and inventors in the selection of 

new knowledge. This effect is stronger in technological areas of intense S&T interaction, where new 

frontier research often provides “ready-made” inputs for technological deployment: biotechnology, 

lasers and semiconductors. 

d) Phase 4: Identification of authors-inventors and cleaning affiliations 

The last phase of the study involved the identification of authors-inventors and the task of cleaning 

and processing authors’ affiliations and addresses. 

As far as the former task is concerned, for each technology subfield we compared the names of inven-

tors with the names of authors of cited scientific publications and matched them in order to identify 

those individuals that have produced both patented inventions and (cited) scientific publications. In 

this respect, a major problem we had to deal with was related to the fact that the patent datasets re-

port name and surname of each inventor, whereas the SCI dataset reports only the first letter of name 

and the surname of each author. As a consequence, the risk in performing a simple matching by sur-

name and first letter of name is that different individuals are identified as the same person, thereby 

leading to an overestimation of the number of authors- inventors. To solve this problem, we carried 

out a desktop research, which involved a large amount of manual checking and the use of several 

sources of information. The primary source was the affiliation of the author as reported in the cited 

publication and the affiliation of the inventor as reported in the patent document. In addition to this, 

we also used further sources of information, including Internet, university and company websites etc. 

In performing this task, we adopted a conservative approach, by matching two individuals (i.e. au-

thors and inventors) only in those cases in which we were reasonably confident that they corre-

sponded to the same person. 

It is important to point out that for the EPO, we matched the names of all inventors in each technol-

ogy subfield with the names of all authors of cited scientific publications, independently on the num-

ber of citations received by these papers. Although, this work exceeded what was contained in our 

original project proposal, we thought that it was nonetheless necessary to have a complete and reliable 

picture of the network linkages among patent inventors and paper authors.  
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For the USPTO, on the other hand, we matched the names of all inventors in each technology sub-

field with the names of authors responsible for highly cited publications. The reason for limiting the 

matching to authors of highly cited papers was mainly due to the fact that the number of papers (and 

authors) cited in USPTO is too large to allow a complete matching. For this reason, in what follows 

we will provide a few basic statistics for the network linkages involving USPTO patents, whereas a 

full and sophisticated network analysis will be restricted to the case of EPO patents. 

In addition to matching the names of authors-inventors, we also cleaned and processed information 

concerning the affiliation and the address of both subjects, by focusing upon the set of highly cited 

patents and highly cited publications for the USPTO and the EPO. Affiliations have been cleaned, 

standardised and classified into five different types: universities (U), companies (C), public research 

organizations (PRO), government agencies (G) and other research organizations (SP). Once again, 

this task involved quite a large amount of desktop research and the use of different sources of infor-

mation. 

Finally, we parsed, cleaned and processed information on the geographical address of patent inventors 

and paper authors. Using the address reported either in the patent document or in the (cited) scien-

tific publication, we parsed the corresponding record and extracted information on the city. We then 

implemented a PHP/Javascript program, which exploited the Google Maps online service to extract 

GPS coordinates for every possible affiliation of authors and inventors. This information was used to 

test the impact of spatial proximity on the probability of a citation tie between patents and publica-

tions (see below, section 3.2). 

e) The final dataset of citing patents/inventors and cited publications/authors 

The output of the four phases described above was a complex relational database that contains infor-

mation on citing patents/inventors and cited publications/authors. More specifically, for each of the 5 

technology subfields considered here, the dataset contains: 

1) all patent applications in the period 1990-2003 
2) all patents cited by the set of patents under 1) 
3) all publications cited by the set of patents under 1) 
 

 



 54

For each patent application included in 1) (and for each patent cited by those patents), the dataset 

contains information on: 

1) the patent applicant (name, type and ID code) 
2) the applicant address (country and city) 
3) the patent inventors (names and ID codes) 
4) the inventors’ address (country, city and GPS coordinates) 
5) main and supplementary IPC codes 
6) priority, publication and grant dates 
 

For each publication cited by patents under 1), the dataset contains information on: 

1) the title of article (and its ID code) 
2) the article authors (names and ID codes) 
3) the authors’ affiliation (name, type and ID code) 
4) the affiliation address (country, city and GPS coordinates) 
5) the journal title 
6) the publication year 
7) the number of citations made and received 

 

In addition to this, a further set of tables connect through ID codes the set of inventors with the set 

of authors, and thus provides information on those individuals that have taken part both in the com-

munity of technologists and in the community of inventors. This information will play a crucial role 

in the analysis of network linkages among scientists and inventors (see below, section 3.2). 

Table 16 provides a few summary statistics on the coverage of the final dataset. 
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Table 16 –  Final dataset – Summary statistics (1990-2003) 

 EPO USPTO 
1) # of patent applications 1990-203  
Transmission of digital information 19580 15174 
Speech analysis and image data processing 6931 8156 
Semiconductors 23965 63016 
Laser 3791 6951 
Biotechnology 10565 13574 

2) # of patents cited by 1)  
Transmission of digital information 5461 44698 
Speech analysis and image data processing 1732 25322 
Semiconductors 10539 115916 
Laser 1373 16923 
Biotechnology 4266 30638 

3) # of patents cited by 1) within a 5 years time window  
Transmission of digital information 2969 21195 
Speech analysis and image data processing 1094 11331 
Semiconductors 6541 110762 
Laser 866 11866 
Biotechnology 2658 9702 

4) # of publications cited by 1)  
Transmission of digital information 2409 1828 
Speech analysis and image data processing 1172 1175 
Semiconductors 5059 12642 
Laser 2698 4548 
Biotechnology 10448 44461 

5) # of inventors of 1)  
Transmission of digital information 10248 35473 
Speech analysis and image data processing 3758 18374 
Semiconductors 18798 155372 
Laser 10119 17051 
Biotechnology 41273 38083 

6) # of authors of 4)  
Transmission of digital information 4687 3031 
Speech analysis and image data processing 2524 1858 
Semiconductors 13224 22827 
Laser 5929 7909 
Biotechnology 40105 99866 
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3. RESULTS 

This section is devoted to discussing the main results derived from the analysis of the citing-cited dataset de-

scribed above21. The section is divided into two main parts. The first part is devoted to a statistical analysis of 

the dataset, with a specific focus upon knowledge flows from science to technology, as measured by citations 

from patents to scientific publications. The second part is devoted to a sophisticated network analysis of the 

ties linking inventors of patented inventions and authors of cited scientific publications 

3.1 Knowledge flows from science to technology 

The analysis starts from the examination of the share of cited and highly cited publications held by different 

areas. This information is reported in Tables 17 and 18, respectively for the EPO and the USPTO. Each 

table is divided into three panels. The top panel reports the share of all citations to publications cited in pat-

ents22 for each technology subfield held by organisations located in four broad areas: European Union23, 

United States, Japan and Rest of the World. In calculating citations, for each publication we considered only 

citations received from patents in a time window of 5 years since their publication date.24 The reason for cal-

culating the share of all citations in this way is to allow a comparison with the share of highly cited publica-

tions, given the fact that this type of articles has been defined according to this criterion (see above). The bot-

tom panel reports the share of citations to publications cited in patents, but restricting the calculation only to 

highly cited publications. Finally, the bottom panel simply reports the ratio between the latter and the former 

shares. A ratio greater than 1 just means that a certain area holds a share of highly cited publications which is 

higher than its share of citations to all publications. 

 

                                                 
21 Christian Catalini and Lorenzo Novella have provided invaluable research assistance in the elaboration of re-

sults reported in this section. 
22 It is quite important to remark that in order to locate publications to the four geographical areas, we have used the 

affiliation country of authors as reported in each publication. Moreover, we have adopted a whole counting method in 
order to count citations.  For example, if publication X, co-authored by a European author and by a US author, has 
been cited by patent Y, we counted one citation from Y to X in Europe and one citation from Y to X in the US. 

23 The European Union includes the 25 Member States. 
24  Since citing patents go from 1990 to 2003, this also means that we excluded from the computation articles 

whose publication date was before to 1985 and articles whose publication date was after 1998. It is also im-
portant to remark that the tables report the share of citations and not of cited articles. The same article may in 
fact be cited more than once, leading to more than one citation. 
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Table 17 – Share of cited and highly cited publications by area (EPO, 1990-2003) 

 Transmission Speech analysis Semiconductors Laser Biotechnology 

 1) All cited publications 

EU25 26.9 32.1 19.6 23.9 29.8 
Japan 12.4 11.1 24.7 21.3 6.3 
Rest of world 14.7 17.1 9.6 9.4 10.6 
United States 45.9 39.7 46.1 45.5 53.4 

 2) Highly cited publications 

EU25 28.3 55.7 10.1 11.4 24.9 
Japan 10.2 7.7 36.6 22.1 2.7 
Rest of world 9.4 10.3 3.8 5.2 8.8 
United States 52.1 26.4 49.6 61.3 63.6 

 Ratio (2/1) 

EU25 1.1 1.7 0.5 0.5 0.8 
Japan 0.8 0.7 1.5 1.0 0.4 
Rest of world 0.6 0.6 0.4 0.5 0.8 
United States 1.1 0.7 1.1 1.3 1.2 

 

Table 18 – Share of cited and highly cited publications by area (USPTO, 1990-2003) 

 Transmission Speech analysis Semiconductors Laser Biotechnology 

 1) All cited publications 

EU25 15.8 19.9 12.7 20.7 22.3 
Japan 8.1 7.2 18.0 18.0 4.8 
Rest of world 16.0 11.7 8.6 7.6 8.8 
United States 60.1 61.2 60.7 53.6 64.2 

 2) Highly cited publications 

EU25 11.0 18.7 9.7 14.7 19.7 
Japan 2.9 3.3 19.2 22.9 3.6 
Rest of world 9.1 9.8 6.6 6.7 7.8 
United States 76.9 68.3 64.5 55.7 68.9 

 Ratio (2/1) 

EU25 0.7 0.9 0.8 0.7 0.9 
Japan 0.4 0.5 1.1 1.3 0.8 
Rest of world 0.6 0.8 0.8 0.9 0.9 
United States 1.3 1.1 1.1 1.0 1.1 
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An inspection of the tables reveals a number of interesting results. 

If we look at EPO data (Table 17), out of 5 technology fields, Europe shows a relative strength only in two 

sectors (transmission of digital information and speech analysis), whereas in semiconductors, lasers and bio-

technology its share of highly cited publications is systematically lower than its overall share of cited publica-

tions. The European shares of cited and highly cited publications at the USPTO are lower than the corre-

sponding shares at the EPO (Table 18). In addition to this, we also observe that its share of highly cited pub-

lications at the USPTO is lower than its share of all cited publications for all technology fields considered 

here.  

As far as the other areas are concerned, the US leadership is quite evident, especially in the fields of biotech-

nology, lasers and TDI. With reference to EPO data, the share of citations to highly cited publications is, re-

spectively, 64%, 50% and 52%, compared to a share of citations to all cited publications of, respectively, 

53%, 45% and 46%. Not surprisingly, the US share of citations is higher, both for all cited and for highly 

cited publications, if one looks at USPTO data. However, the sectoral patterns of relative strength seem to be 

quite consistent across the two patent offices. 

With few exceptions, the share of citations accounted for by Japanese authors is lower than the share of US 

and European authors. Of course, language barriers and the under-representation of Japanese authors 

in the ISI-SCI dataset may partly account for this result. Yet, Japan shows a consistent pattern of relative 

strength across the two patent offices in the fields of lasers and semiconductors. 

Broadly speaking, the empirical evidence seems to show that European science is relatively under-represented 

in publications that provide key contributions to technological developments. A key issue in this respect is to 

what extent the fact that Europe does not feature prominently among highly cited publications is due to the 

underlying quality of its scientific production or, conversely, it has to be ascribed to weak transfer mecha-

nisms from science to technology. Even though sharp conclusions cannot be derived on the basis of 

our data, we believe they help to shed some light on this crucial question. To this purpose, we have 

divided the sample of all cited publications in four subgroups according to the total number of cita-

tions received in patents. The first three subgroups contain publications that have received, respec-

tively, one, two and three citations. 
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Table 19 – Average number of citations in scientific literature by number of citations in 
patents (EPO, 1990-2003) 

Subfield 
# of citations in 

patents 
Average number of citations in scientific 

literature 

  EU25 United States 

Transmission of digital information 1 10.8 20.0 
 2 25.1 26.4 
 3 18.7 27.8 
 >3 23.2 53.3 

Speech analysis 1 18.1 32.3 
 2 15.9 47.3 
 3 22.6 13.1 
 >3 48.2 17.0 

Semiconductors 1 38.6 45.9 
 2 82.7 88.9 
 3 121.0 58.9 
 >3 488.3 108.5 

Laser 1 24.0 30.6 
 2 25.6 45.1 
 3 47.4 46.9 
 >3 28.8 86.1 

Biotechnology 1 108.0 149.1 
 2 191.4 219.9 
 3 234.4 385.3 
 >3 389.9 574.7 

 

The fourth subgroup contains publications that have received four or more citations. These are publications 

that we have defined as highly cited. Each group of publications has been further divided according to the 

nationality of authors’ affiliations. In particular, we have focused the attention on publications authored by 

European and US scientists. Finally, for each subgroup of publications we have calculated the average num-

ber of citations received in the scientific literature. The results of this tabulation are reported in Tables 19 and 

20, respectively, for the EPO and the USPTO. Two main things are worth noting. In the first place, we ob-

serve the existence of a rather strong correlation between the number of citations received in patents and the 

number of citations received in the scientific literature.  
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Table 20 – Average number of citations in scientific literature by number of citations in 
patents (USPTO, 1990-2003) 

Subfield 
# of citations in 

patents 
Average number of citations in scientific 

literature 

  EU25 United States 

Transmission of digital information 1 17.2 25.5 
 2 31.7 59.7 
 3 29.1 57.7 
 >3 21.4 57.8 

Speech analysis 1 20.7 33.6 
 2 12.4 38.2 
 3 22.0 176.3 
 >3 51.0 47.0 

Semiconductors 1 33.4 45.1 
 2 40.0 65.0 
 3 38.4 79.0 
 >3 154.1 109.1 

Laser 1 25.6 39.5 
 2 27.7 40.8 
 3 59.5 64.6 
 >3 65.1 78.3 

Biotechnology 1 116.4 141.0 
 2 171.4 187.2 
 3 235.8 322.2 
 >3 272.6 496.2 

 

This is especially true for highly cited publications, and in the fields of semiconductors and biotechnology. 

This result is quite consistent with the findings emerged in our benchmarking analysis and seems to indicate 

that ‘high quality’ scientific output finds its way in a large number of technological developments. 

The second main point worth noting is that, for each subgroup of publications, articles produced by Euro-

pean authors receive a lower average number of scientific citations than articles produced by US authors, with 

the only exception of semiconductors and speech analysis. The differences in the average citation rates are 

particularly striking for highly cited publications and in the fields of lasers and biotechnology.  
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Figure 8 –   Average number of citations from scientific literature of publications cited 
in patents by year of publication, Biotechnology 
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Given the key strategic importance of this latter field, we have repeated the same tabulation for this specific 

subfield and we have computed the average number of scientific citations for each cohort of publications 

cited in patents, according to their publication year. The rationale for doing this is that the quality of cited 

publications, as measured by the number of scientific citations received, might change over time and across 

the two geographical areas25. The tabulation has been carried out considering all cited publications and the 

results are reported in Figure 8, separately for the EPO and the USPTO.  

Looking first at EPO data, we observe a remarkable negative gap in the scientific citation rate of European 

publications as compared to US ones until the beginning of the 1990s. The gap starts narrowing after 1990 

and over the last decade. Yet, we observe that European articles cited in patents and published in 1996 still 

receive on average 100 citations in the scientific literature as compared to about 150 for US articles.  

The evidence emerging from USPTO data is less clear cut, although the line relative to European publica-

tions remains below the line relative to the US for most years, with the exception of 1985 and 1996.  

As argued above, we believe that it would be quite difficult to draw strong conclusions on the basis of this 

empirical evidence. On the one hand, although the fields considered here are quite representative of broader 

technological domains, a larger and more systematic effort of data collection should be undertaken before 

generalising our findings. On the other hand, a key issue that should be examined more in depth is for what 

reasons European publications that receive a large number of scientific citations do not reach a level of appli-

cation and diffusion into technological developments comparable to those of US publications. 

A further and related set of issues that we have considered concerns the contribution of different types of or-

ganisations to the production of highly cited publications. As discussed in the methodological section, we 

have cleaned and processed information on authors’ affiliation as reported in publications and we have classi-

fied them into five categories: universities (U), companies (C), public research organizations (PRO), 

government agencies (G) and other research organizations (SP). 

 

 

                                                 
25 Of course, the problem of comparing the average citation rate across different cohorts of publications is that 

older cohorts will exhibit higher citation rates than younger cohorts simply because they had more time to be 
cited. Our focus here is not on comparing citation rates across cohorts, but in comparing citation rates across 
geographical areas by cohort. 
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Table 21 – Percentage contribution of different types of organisations to the production 
of highly cited publications by geographical area (EPO, 1990-2003) 

 C G PRO SP U 

 Transmission of digital information 

EU25 38.6 2.2 8.8 11.8 38.6 
Japan 86.1   5.0 8.9 
United States 65.9 2.4  3.5 28.2 

 Speech analysis 

EU25 39.4  6.3 4.9 49.3 
Japan 76.2    23.8 
United States 48.8  4.7  46.5 

 Semiconductors 

EU25 44.9 16.3 10.2 8.2 20.4 
Japan 71.8  8.6 2.3 17.2 
United States 58.3   1.7 40.0 

 Laser 

EU25 22.9  11.4  65.7 
Japan 93.3 6.7    
United States 64.7 6.0 2.4 2.4 24.6 

 Biotechnology 

EU25 16.2 5.7 22.4 7.8 47.9 
Japan 20.8    79.2 
United States 28.0 3.3 11.1 4.3 53.2 

Legend: companies (C), government agencies (G), public research organizations (PRO), 
other research organizations (SP), and universities (U). 

 

Tables 21 and 22 report, respectively for the USPTO and the EPO, the share of citations to highly-cited 

publications within each geographical area (excluding the residual area represented by all other countries than 

EU, US and Japan) accounted for by different types of organisations. Looking at data across subfields reveals 

the existence of some differences in the relative importance of different types of institutions. In particular, the 

role played by universities is generally greater in biotechnology than in any other of the five subfields consid-

ered here.  
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Table 22 – Percentage contribution of different types of organisations to the production 
of highly cited publications by geographical area (USPTO, 1990-2003) 

 C G PRO SP U 

 Transmission of digital information 

EU25 64.2   9.4 26.4 
Japan 100.0     
United States 75.3  1.3 2.6 20.8 

 Speech analysis 

EU25 26.1  17.4  56.5 
Japan 100.0     
United States 52.4 4.8 4.8  38.1 

 Semiconductors 

EU25 28.5 16.7 12.8 8.9 33.1 
Japan 85.3  2.2 3.1 9.5 
United States 51.6 1.5 3.8 0.3 42.9 

 Laser 

EU25 27.2 2.5 9.9  60.5 
Japan 85.3   8.3 6.3 
United States 59.1 2.1 3.4 3.5 31.9 

 Biotechnology 

EU25 8.0 6.7 34.3 5.8 45.2 
Japan 8.2 4.7 27.6 10.9 48.6 
United States 20.5 2.0 13.8 7.7 55.9 

Legend: companies (C), government agencies (G), public research organizations (PRO), 
other research organizations (SP), and universities (U). 

 

However, the most interesting aspect emerging from such tables relates to the differences across areas in the 

relative role of different organisations. In this respect, the most striking result is perhaps that European com-

panies contribute to a significantly lower extent than their US counterparts in the production of publications 

highly cited in patents. Thus, for example, US companies account for 28% and 21% of all highly cited pub-

lications produced by US organisations in the field of biotechnology, respectively at the EPO and at the 

USPTO. The corresponding figures for European companies are, respectively, 16% and 8%. Quite interest-

ingly, the share of European universities is also lower than the corresponding share of US universities; yet, 

this is in some way balanced by a larger share of European public research organisations as compared to US 
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PROs. These results therefore indicate the existence of major structural differences in the organisation of the 

system of scientific research across the two areas, which would probably deserve further investigation. 

The lower contribution of European companies to the production of highly cited publications is not limited 

to the field of biotechnology. The evidence reported in Tables 21 and 22 shows quite clearly that the share of 

highly cited publications accounted for by private companies is systematically lower in Europe than in the 

US and Japan for all the technology fields examined here. On the other hand, the contribution of the public 

system of scientific research, i.e. universities and public research organisations, is generally comparable to, and 

often larger than the contribution of the corresponding system in the US. We believe that this result is rather 

consistent with the findings that emerge from the analysis of the network linkages among scientists and in-

ventors (see below). There, we show that the key mechanism that channel the transmission of scientific re-

search into industrial innovation is represented by the network of collaborative (i.e. co-authorship) relations 

among scientific researchers and industrial technologists. In that respect, a crucial role in bridging the two 

communities is played by a specific category of individuals, i.e. authors-inventors. To the extent that this spe-

cific type of individuals is relatively absent in Europe, this represents, in our view, a major obstacle to the suc-

cessful diffusion of knowledge from the realm of science to that of technology.  

To corroborate our findings, we have also calculated for each technology subfield the share of all highly cited 

publications accounted for by different types of organisations and geographical areas. Results are reported in 

Tables 23 and 24, respectively for the EPO and the USPTO. The first point to note relates to the US pre-

dominance in all the technology fields. If we look at EPO data, the combined share of all highly cited publi-

cations accounted for by US companies and universities is about 55% in lasers, 52% in biotechnology, 50% 

in TDI, and 49% in semiconductors. With reference to the USPTO, the same shares are, respectively, 51%, 

53%, 77% and 61%.  

As far as Europe is concerned, we note that the public system of scientific research (i.e. universities and public 

research organisations) accounts for about 16% of all highly cited publications in biotechnology, both at the 

EPO and at the USPTO. This is the third largest share, after US companies and the US public system of 

research.  On the other hand, European companies account for only 4% of all highly cited publications at 

the EPO as compared to 18% of US companies. 
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Table 23 – Percentage contribution of different types of organisations by geographical loca-
tion to the production of highly cited publications (EPO, 1990-2003) 

 Transmission Speech analysis Semiconductors Laser Biotechnology

U (United States) 15.1 14.7 19.7 15.1 34.5 
C (United States) 35.3 15.4 28.8 39.9 17.8 
U (EU25) 10.2 25.6 2.1 8.5 11.3 
PRO (United States)  1.5  1.5 7.3 
PRO (EU25) 2.3 3.3 1.1 1.5 5.3 
U (Rest of world) 6.4 7.3 2.9  3.9 
C (EU25) 10.2 20.5 4.6 3.0 3.8 
SP (United States) 1.9  0.8 1.5 2.8 
PRO (Rest of world) 0.6 1.5 0.8 3.3 2.5 
G (United States) 1.3   3.7 2.2 
U (Japan) 1.0 1.8 6.3  2.1 
SP (EU25) 3.1 2.6 0.8  1.9 
G (EU25) 0.6  1.7  1.4 
C (Rest of world) 0.6    1.3 
SP (Rest of world) 0.6    1.2 
C (Japan ) 10.1 5.9 26.3 20.7 0.6 
G (Rest of world)     0.1 
G (Japan)    1.5  
PRO (Japan)   3.2   
SP (Japan) 0.6  0.8   

Total 100.0 100.0 100.0 100.0 100.0 

Legend: companies (C), government agencies (G), public research organizations (PRO), other 
research organizations (SP), and universities (U). The geographical origin of each organizational 
type is reported among brackets. 

 
The performance of European companies looks more satisfactory only in two fields: TDI and speech analy-

sis. Particularly, in the former subfield, if we combine the share of cited publications of universities, compa-

nies, government agencies and other research organisations, Europe accounts for about one fourth of all cited 

publications. 

Finally, it is worth pointing out the role of Japanese companies in two specific subfields: semiconductors and 

lasers. The share of all highly cited publications held by this type of organisations is 26% and 17% in semi-

conductors, respectively at the EPO and at the USPTO, and 21% and 20% in lasers. 
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Table 24 – Percentage contribution of different types of organisations by geographical loca-
tion to the production of highly cited publications (USPTO, 1990-2003) 

 Transmission Speech analysis Semiconductors Laser Biotechnology

U (United States) 16.6 26.0 27.5 18.0 38.5 
C (United States) 60.1 35.8 33.0 33.3 14.1 
PRO (United States) 1.0 3.3 2.4 1.9 9.5 
U (EU25) 2.9 10.6 3.4 8.9 9.1 
PRO (EU25)  3.3 1.3 1.5 6.9 
SP (United States) 2.1  0.2 2.0 5.3 
U (Rest of world) 2.1 6.5 3.2 0.9 3.6 
PRO (Rest of world) 3.3 3.3 2.5 2.5 2.3 
U (Japan)   1.8 1.5 1.8 
C (EU25) 7.1 4.9 2.9 4.0 1.6 
G (United States)  3.3 1.0 1.2 1.4 
G (EU25)   1.7 0.4 1.4 
SP (EU25) 1.0  0.9  1.2 
PRO (Japan)   0.4  1.0 
SP (Rest of world)    1.0 0.7 
C (Rest of world) 0.8  0.4 1.5 0.4 
SP (Japan)   0.6 1.9 0.4 
C (Japan) 2.9 3.3 16.5 19.5 0.3 
G (Rest of world)   0.3  0.2 
G (Japan)     0.2 

Total 100.0 100.0 100.0 100.0 100.0 

Legend: companies (C), government agencies (G), public research organizations (PRO), other 
research organizations (SP), and universities (U). The geographical origin of each organizational 
type is reported among brackets. 
 

A further important issue that our data allow to examine regards to what extent patents originating in 

a certain area (e.g. Europe) cite scientific publications generated in other areas (e.g. US). In order to 

investigate this issue, we have tabulated, for each of the five technology fields and for the each of the 

four geographical areas, what fraction of all citations made by patents of organisations located in a 

certain area are directed to publications produced by organisations located either in the same area or 

in other areas. This is illustrated in Table 25, which provides a breakdown of knowledge flows, as 

captured by citations from patents to scientific publications, by geographical origin of citing patents 

and geographical origin of cited publications. In the calculation, we have included patent citations to 

all scientific publications by field, i.e. both cited and highly cited publications. 
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Table 25 – Flows of knowledge by origin of citing patents and origin of cited publica-
tions, EPO (1990-2003, percentage values) 

 Transmission of digital information 
  Cited publications 
  EU JP Other US Total 
 EU 31.9 11.5 14.8 41.8 100 
 Citing JP 21.3 17.3 16.1 45.3 100 
 patents Other 23.6 10.9 15.9 49.6 100 
  US 20.2 8.6 15.3 55.9 100 
  Speech analysis 
  Cited publications 
  EU JP Other US Total 
 EU 36.0 8.7 15.2 40.1 100 
 Citing JP 28.0 14.5 16.5 41.0 100 
 patents Other 30.4 7.6 20.7 41.3 100 
  US 27.4 10.9 17.9 43.9 100 
  Semiconductors 
  Cited publications 
  EU JP Other US Total 
 EU 34.5 16.7 9.3 39.5 100 
 Citing JP 15.3 34.9 8.9 40.9 100 
 patents Other 22.6 15.7 24.7 37.0 100 
  US 14.2 18.6 10.3 56.9 100 
 Laser 
  Cited publications 
  EU JP Other US Total 
 EU 35.1 15.0 8.5 41.4 100 
 Citing JP 17.4 39.7 8.3 34.6 100 
 patents Other 28.1 11.3 26.0 34.6 100 
  US 16.9 15.4 9.4 58.4 100 

 Biotechnology 
  Cited publications 
  EU JP Other US Total 
 EU 43.7 5.5 9.8 41.0 100 
 Citing JP 21.9 29.3 9.9 38.9 100 
 patents Other 24.6 4.0 27.2 44.2 100 
  US 24.0 5.1 8.8 62.0 100 

 

The most important point to note in this table is that the propensity of European patents to cite US 

scientific publications is relatively larger than the propensity of US patents to cite European publica-

tions. In other words, we observe an asymmetry in knowledge flows between EU and the US, with a 

larger amount of knowledge flowing from the US to Europe than vice versa. Thus, for example, of all 

citations made by European patents in biotechnology 41% are directed to US publications, and 44% 
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to European publications. Likewise, of all citations made by US patents in biotechnology 24% are 

directed to European, and 60% to US publications. The propensity of US inventors to rely upon the 

domestic science base seems therefore to be significantly greater than the propensity of European in-

ventors to exploit their domestic science base26. Similar patterns may be found also for the other four 

technology fields examined here. In particular, it is worth noting that, beside the US, Japan repre-

sents also an important source of scientific knowledge for European patents in the fields of lasers and 

semiconductors. 

Broadly speaking, to the extent that patent citations to scientific literature may be used as a measure 

of the industrial importance of scientific knowledge, one may be tempted to conclude that the Euro-

pean research system has a major weakness in the ability to translate its knowledge inputs into tech-

nologically relevant outputs. 

The previous analysis has been based upon citations from patents to scientific literature. It is interest-

ing to compare the findings reported above with the analysis of patent citations to prior art patents. 

 

Table 26 – Share of cited and highly cited patents by area (EPO, 1990-2003) 

 Transmission Speech analysis Semiconductors Laser Biotechnology 

 All cited patents 

EU25 40.3 30.8 23.8 31.9 40.6 
Japan 21.2 35.6 40.5 35.3 7.4 
Rest of world 7.6 3.9 3.1 2.8 8.1 
United States 30.9 29.7 32.6 30.0 43.9 

 Highly cited patents 

EU25 40.5 32.0 22.5 32.5 35.6 
Japan 18.6 35.1 42.0 31.8 7.6 
Rest of world 8.3 3.3 3.3 2.9 8.6 
United States 32.5 29.7 32.2 32.8 48.1 

 

                                                 
26 It is worth noting that our results differ quite significantly from those reported in Verbeek et al. (2003). Us-

ing EPO data, they find that in the broader field of biotechnology, the share of European publications in the 
citations made by European patents is about 59%, whereas the share of European publications in the cita-
tions made by US patents is around 39%. Although the difference with our results may be due to a different 
definition of biotechnology in terms of IPC codes included, the gap seems to be too large to be imputed only 
to that fact. 
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Table 26 reports the share of cited and highly cited patents held by different areas27. The top panel reports 

the share of all citations to patents28 for each technology subfield held by organisations located in four broad 

areas: European Union, United States, Japan and Rest of the World. In calculating citations, for each patent 

we considered only citations received in a time window of 5 years since their application date.29 The reason 

for calculating the share of all citations in this way is to allow a comparison with the share of highly cited pat-

ents, given the fact that this type of patents has been defined according to this criterion (see above). The bot-

tom panel reports the share of citations to highly cited patents (i.e. patents that have received six citations or 

more in a time window of 5 years since the application date).  

Compared to our findings on cited and highly cited publications, the data do not show any significant differ-

ence between the shares of cited and highly cited patents for any of the four areas geographical areas. The 

only exception is represented by biotechnology, in which Europe holds about 41% of citations to all cited 

patents and 36% of citations to highly cited patents, whereas the US account for 44% of citations to all cited 

patents and 48% of citations to highly cited ones.  

More interesting results emerge if we compare the share of cited (and highly cited) publications and the share 

of cited (and highly cited) patents (see above Table 17). In this respect, it is worth noting that the position of 

Europe looks more favourable if one looks at cited patents than at cited publications. Thus, for example, in 

the field of biotechnology, Europe accounts for 30% and 25% of, respectively, cited and highly cited publi-

cations, as compared to 41% and 36% of cited and highly cited patents. Likewise, in the field of TDI, the 

share of all cited and highly cited publications for Europe is of, respectively, 27% and 28%, as compared to 

40%, both for cited and highly cited patents. A similar pattern may be found in the case of semiconductors, 

albeit the difference is less striking, and in the field of lasers. An exception is represented instead by the sub-

field of speech analysis. This is the only domain in which the share of cited and highly cited publications for 

Europe is higher than its share of cited and highly cited patents. 

                                                 
27 For the analysis of patent citations, we have reported only data from the EPO. 
28 In order to locate patents to the four geographical areas, we have used the address of the applicant as reported in the 

patent document.  
29  Since citing patents go from 1990 to 2003, this also means that we excluded from the computation patents 

whose application date was before to 1985 and patents whose publication date was after 1998. It is also im-
portant to remark that the table reports the share of citations and not of cited patents. The same patent may 
in fact be cited more than once, leading to more than one citation. 
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Table 27 – Flows of knowledge by origin of citing patents and origin of cited patents, 
EPO (1990-2003, percentage values) 

 Transmission of digital information 
  Cited patents 
  EU JP Other US Total 
 EU 41.3 18.4 4.7 35.6 100 
 Citing JP 29.5 39.5 3.0 28.0 100 
 patents Other 26.7 14.4 8.7 50.2 100 
  US 19.8 15.1 4.4 60.6 100 
  Speech analysis 
  Cited patents 
  EU JP Other US Total 
 EU 36.6 23.1 3.6 36.7 100 
 Citing JP 16.2 48.9 3.8 31.1 100 
 patents Other 15.3 40.0 16.5 28.2 100 
  US 18.8 23.2 4.3 53.7 100 
  Semiconductors 
  Cited patents 
  EU JP Other US Total 
 EU 40.0 27.8 3.4 28.8 100 
 Citing JP 11.6 63.3 1.7 23.4 100 
 patents Other 20.1 32.4 16.1 31.4 100 
  US 16.6 30.2 1.8 51.4 100 
 Laser 
  Cited patents 
  EU JP Other US Total 
 EU 44.5 23.8 4.0 27.8 100 
 Citing JP 13.6 66.0 1.7 18.7 100 
 patents Other 22.2 31.1 11.1 35.6 100 
  US 18.4 28.2 5.9 47.5 100 

 Biotechnology 
  Cited patents 
  EU JP Other US Total 
 EU 41.3 6.0 7.9 44.9 100 
 Citing JP 17.8 38.8 7.7 35.8 100 
 patents Other 20.2 4.3 29.8 45.7 100 
  US 17.6 4.9 8.4 69.1 100 

 

As done for publications, we have also tabulated the flows knowledge by geographical origin of citing patents 

and geographical origin of cited patents. Results are reported in Table 27. Also in this case, we note that in 

general the propensity of European patents to rely upon technological developments in the US is higher than 

the corresponding propensity of US patents to rely upon European patents, for all the five technology fields 

considered.  
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Some interesting results emerge if we compare the propensity to cite domestically produced patents to the 

propensity to cite domestically produced scientific publications (see above Table 25). As far as Europe is con-

cerned, we note that inventors tend to rely more upon domestically produced technology than domestically 

produced science. The only exception is represented by biotechnology, where European inventors cite rela-

tively less European patents than they do cite European scientific publications; in particular, they tend to cite 

US scientific publications more than they cite US patents. Concerning the US, it is interesting to note that in 

two important fields, such as lasers and semiconductors, the share of citations to domestically produced pat-

ents is lower than the share of citations to domestically produced scientific publications, meaning that US 

inventors in these fields tend to rely more upon internationally produced scientific knowledge than they do 

with respect to technology.  

Figure 9 – Flows of knowledge between EU and the US by year of citing patents, Bio-
technology 
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Finally, we have compared the time trend in the patterns of knowledge flows between EU and the US for the 

field of biotechnology, given the strategic importance of this field and its peculiar characteristics. In particular, 

we have calculated the fraction of all citations of European patents to other European (US) patents, and 

compared it to the fraction of all citations of European patents to European (US) scientific publications, by 
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application year of the citing patent. This is reported in Figure 9. The most evident trend emerging from the 

figure is the declining tendency of European patents to rely upon domestic science (solid, thick line). The 

share of all citations to European publications declines quite sharply from a peak of around 64% for patents 

applied in 1994 to less than 30% for patents applied in 2002. 

3.2 Analysis of the network linkages among scientists and inventors 

The rest of this report is devoted to a sophisticated network analysis of the linkages among scientists 

and inventors in the five technology fields considered. We start by providing a detailed discussion of 

the methodology that has been adopted to examine network linkages. In particular, we show how co-

invention and co-authorship data can be exploited to map the complex web of social ties among in-

ventors and authors, and measure a number of ‘structural properties’ of such a web, typical of social 

network analysis. Then, we proceed to characterise the main structural properties of the network that 

links inventors and authors. Finally, we propose an econometric model that estimates the role of so-

cial linkages on the probability of a citation tie between patents and publications. 

a) Methodology 

In order to analyse the network linkages among scientists and inventors, we have exploited the infor-

mation on co-authorship and co-invention contained in our dataset. In particular, we assume that  

two inventors (authors) who have been collaborating in the production of a patented invention (sci-

entific publication) are connected by a network tie, which means that they are linked by some kind of 

knowledge exchange and share a common knowledge base. 

Figure 10 reports a hypothetical example, which illustrates the main idea. Let us suppose we have five 

patent documents (1 to 5), coming from four different applicants (α,β,γ,δ). Applicant α is responsi-

ble of two applications (1,2), while applicants β, γ and δ of one each. Patents have been produced by 

13 distinct inventors (A to M). In the language of graph theory, the top part of the figure reports the 

affiliation network of patents, applicants and inventors. An affiliation network is a network in which 

actors (inventors) are joined together by common membership to groups of some kind (patents). Af-

filiation networks can be represented as a graph consisting of two (or more) distinct kinds of vertices, 

one representing the actors (e.g. inventors) and the other the groups (e.g. patents). 
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Figure 10 – Tripartite graph of applicants, patents and inventors 

 
 

Let us focus on patent 1. This patent document has been produced by five inventors, i.e. A, B, C, D, 

and E. This fact is represented in the top part of the figure by the lines that connect each node corre-

sponding to the five inventors to the node that correspond to patent 1. We can then reasonably as-

sume that, due to the collaboration in a common research project, the five inventors are ‘linked’ to 

each other by some kind of knowledge relation. The existence of such a linkage can be graphically 

represented by drawing an undirected arrow between each pair of inventors, as in the bottom part of 

figure 10. Repeating the same exercise for each patent and each team of inventors, we end up with a 

map representing the network of linkages among all inventors. In the language of graph theory the 

bottom part of figure 10 represents the unipartite (or one-mode) graph of actors joined by undirected 

edges, i.e. two inventors who participated in the same patent, in our case, being connected by an 

edge.30  

                                                 
30 Of course, the same pair of inventors might be linked by more than one edge, to the extent that they collabo-

rated in the production of more than one patent. In this case, one could represent the graph as a valued net-
work, i.e. attaching to the edges a value corresponding to the number of times a pair of inventors has been 
collaborating. In what follows, however, we will adopt the assumption that a line between two inventors is ei-
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Using the graph just described, we can derive various measures of “connectedness” and “social dis-

tance” among inventors. Let us introduce a few basic concepts. 

• CONNECTEDNESS. Inventors may belong to the same component or they may be located 

in disconnected components. A component of a graph is defined as a subset of the entire 

graph, such that all nodes included in the subset are connected through some path. More 

precisely, a component of a graph is a subset of nodes, for which one can find a path between 

all pairs of nodes within the subset, but no paths towards the nodes outside. In our specific 

context, a node must be interpreted as an individual inventor. In Figure 10, for example, in-

ventors A to K belong to the same component, whereas inventors L and M belong to a dif-

ferent component.  

• GEODESIC DISTANCE The geodesic distance is defined as the minimum number of steps 

(or, more formally, ‘edges’) that separate two distinct inventors in the network. In Figure 10, 

for example, inventors A and C have geodesic distance equal to 1, whereas inventors A and H 

have distance 3. This means that the linkage between them is mediated by two other actors 

(i.e. B and F). In other terms, even though inventor A does not know directly inventor H, 

she knows who (inventor B) knows who (inventor F) knows directly inventor H.  The geo-

desic distance between a pair of inventors belonging to two distinct components is equal to 

infinity (there is no path connecting the two inventors). 

• DEGREE CENTRALITY. Some inventors stand out for the number of links they exhibit: 

they have not just signed a high number of patents, but have also worked along with a large 

number of co-inventors (that is in large teams, on with many different teams). We expect 

these inventors to be chief researchers in large R&D departments, or senior academic re-

searchers with a long tradition of consultancy to or joint research with industrial firms. For 

example, in Figure 10, inventor B has worked with no less than six co-inventors, signing two 

patents (1 and 2) both of them produced by relatively large teams (six and four people, re-

spectively). In her absence, the overall connectedness of the component she belongs to would 

                                                                                                                                                  
ther present or absent. In other words, we will work with binary (i.e. not valued) networks. Please also note 
that the position of nodes, and the length of lines in the graph do not have any specific meaning. 
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be much lower, that is distances between inventors would be higher. Social network analysis 

refers to this property as high “degree centrality”. 

• BETWEENNESS CENTRALITY. Some inventors may have a particularly important role 

in connecting different components. They can be either by “mobile” inventors, that is indus-

trial researchers moving across firms, or, once again, academic researchers whose ties with in-

dustry are not limited to just one company. For example, in Figure 10, inventor F worked 

for both company α and β, thus connecting the sub-component listing inventors from A to 

G with the sub-component listing inventors H–K. In her absence the component “A–K” 

would be split in two. Social network analysis refers to this property as high “betweenness 

centrality”.  

What we have said so far refers to inventors of patent documents. However, the same methodology 

can be applied to the network of scientists. With reference to Figure 10, one should replace “patents” 

with “articles” and “inventors” with “scientists”. The resulting one-mode network will represent the 

co-authorship network of authors of scientific papers.  

The methodology described above has been adopted by several authors in recent years to analyse the 

properties of the networks of inventors (Balconi et al, 2004; Breschi and Lissoni, 2006; Singh, 2005) 

as well as the properties of the networks of scientific authors (Newman, 2000, 2001). To date, how-

ever, there has not been any attempt to combine the two networks and analyse them jointly. To the 

best of our knowledge, this is the first large-scale attempt to carry out this type of analysis.  

How the two networks (i.e. scientists and inventors) can be connected? A crucial role in this respect is 

played by a specific type of individuals that we label here as authors-inventors. These are individuals 

that participate in both communities, by producing patents and by publishing scientific papers. Fig-

ure 11 illustrates the idea with a hypothetical example. Let us take patent 3 in Figure 10. This patent 

has been produced by three inventors, F, H and I. Let us suppose that inventor I has also published a 

scientific paper, coded as paper 10, with authors a and k. The bottom part of Figure 11 shows that 

inventors F and H are indirectly connected to authors a and k, through I. In other words, inventor I 

plays the crucial role of bridging the community of inventors and the community of scientists. 
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Figure 11 – The network of scientists and inventors 

 

 

Having defined the basic methodology, we now turn to describing how our dataset has been used to 

build and analyse the network of scientists and inventors. Before doing that, however, it is important 

to point out that the analysis has been limited to EPO data. The reason is that, as discussed above, we 

have cleaned and processed data for all inventors and all authors of cited publications only for EPO 

data31. 

For each technology subfield, we have proceeded as follows. 

In the first place, we have selected all patent applications and the related inventors, and we have built 

the corresponding network of inventors. The network has been built for each year t in a cumulative 

way starting from 1978 (i.e. first year for which we have EPO data) by adding each year new nodes 

(i.e. inventors) and new linkages (i.e. patents). To the extent that the importance of linkages among 

inventors (and scientists) decays over time, one could alternatively think to remove old patent appli-

cations (and publications) in order to construct the network of social linkages among inventors (and 

                                                 
31 The analysis of the network of scientists and inventors has to include all actors involved in the network. Al-

though the original project proposal was limiting the scope of the analysis to the authors of highly cited pa-
pers, we decided to pursue a larger scale work of cleaning data on all authors of cited papers. However, given 
the amount of work involved, we could do this only for EPO data. 
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scientists). Yet, in the absence of rules to establish the decay of social links, we simply assumed that 

once formed, social linkages last forever (at least for the time period considered here). Thus, for ex-

ample, the network of inventors in year t=1995 includes all inventors and their co-invention linkages 

from 1978 to 1994. 

A similar approach has been applied to the network of scientists. In building such a network, how-

ever, we have included only authors of publications cited in patents of the five technology subfields. 

Thus, for each year t (i.e. 1995), the network of scientists includes only authors of publications that 

have been cited by patents of a certain technology field and that have been published before time t.  

Finally, we have merged the two networks into a single network, which includes both co-invention 

and co-authorship relationships. In other words, for each technology subfield, the network of scien-

tists and inventors include both authors of cited papers and inventors of patents. 

The time period we considered for analysing network is from 1991 to 2000. Table 28 reports the 

total number of inventors and authors in the network for each technology subfield. We note that in 

all technology subfields, with the exception of biotechnology the number of authors of publications 

cited in patents is always lower than the number of inventors.32 

Table 28 – Total number of authors and inventors in the network (1991-2000) 

Technology fields Inventors Authors 

1. Transmission of digital information 15435 3489 
2. Speech analysis and image data processing  5967 2045 
3. Semiconductors 34996 11450 
4. Lasers 5259 4913 
5. Biotechnology (measuring, testing, diagnostics) 16283 34510 

 

b) Connectedness 

We started our analysis by examining the overall degree of connectedness among inventors, and 

among authors and inventors. To this purpose, we have calculated the number of distinct compo-

nents in each network and we have identified the largest one in terms of number connected nodes. 

                                                 
32 For social network analysis, we used two major software programs. PROC IML SAS 9.1, and in particular 

the IML modules and libraries built by James Moody, and Pajek, a freeware software tool for network analy-
sis and visualisation, built by Vladimir Batagelj and Andrej Blado. 
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Table 29 reports the total number of inventors as well as the fraction of all inventors included in the 

largest component, taking the network at year 2000 (i.e. the last year of our time series). Table 30 

reports the same information but for the network of inventors and authors. 

Table 29 – Network of inventors, Largest component (2000) 

Technology fields Size of largest component All inventors % of all inventors in the 
largest component 

1. Transmission 422 15435 2.73 
2. Speech analysis  50 5967 0.84 
3. Semiconductors 3226 34996 9.22 
4. Lasers 153 5259 2.91 
5. Biotechnology  456 16283 2.80 

 
Table 30 – Network of inventors and authors, Largest component (2000) 

Technology fields Size of largest component All inventors and 
authors 

% of all inventors & au-
thors in the largest com-

ponent 

1. Transmission 1999 18924 10.56 
2. Speech analysis  104 8012 1.30 
3. Semiconductors 16152 46446 34.78 
4. Lasers 5228 10172 51.40 
5. Biotechnology  27148 50793 53.45 

 

Looking first at Table 29, we observe that in all technology fields, the degree of connectedness among 

inventors is extremely limited. The only (partial) exception is represented by semiconductors, where 

9.22% of all inventors are either directly or indirectly connected to each other. In all other fields, the 

network of inventors appears highly disconnected with many components of small size. This is not 

surprising, given the (relatively) low mobility rates of inventors across (patenting) organisations. 

More surprising and interesting appears the result reported in Table 30. In three, important technol-

ogy fields, such as semiconductors, lasers and biotechnology, the degree of connectedness is extremely 

high: 35%, 51% and 53%, respectively, of all authors and inventors are either directly or indirectly 

connected, via co-invention or co-authorship, to each other in a large connected component. We be-

lieve this is an extremely important result as it suggests that the two communities of researchers are 

much more socially connected that one would normally presume. Moreover, it also suggests that the 
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community of inventors itself is much more connected than the data from Table 29 would indicate. 

Although not directly connected to each other, inventors are indirectly connected through scientific 

authors and through authors-inventors, i.e. individuals that participate in teams of inventors and in 

teams of scientists. 

This hypothesis is supported by data reported in Table 31. The table reports the share of all inventors 

that are included in the largest component of the network of authors and inventors.  

 
Table 31 – Network of inventors and authors, Fraction of all inventors in the largest component  

Technology fields Inventors in the largest com-
ponent 

All inventors  % of all inventors & au-
thors in the largest com-

ponent 

1. Transmission 1564 15435 10.1 
2. Speech analysis  59 5967 1.0 
3. Semiconductors 8392 34996 24.0 
4. Lasers 2124 5259 40.4 
5. Biotechnology  5255 16283 32.3 

 

For example, with reference to biotechnology we note that 5255 inventors, which represent 32% of 

all inventors in this field, are connected to each other in the largest connected component of the net-

work of inventors and authors. If we take only co-invention relationships (i.e. the network of inven-

tors only, as reported in Table 29), the largest connected component includes just 456 inventors, 

which represent 2.8% of all inventors in this field. This means that looking only at co-invention rela-

tionships grossly underestimates the extent of connectivity among inventors and may lead to wrong 

conclusions.  

The analysis above refers to the last year available in our time series. The following figures illustrate 

the evolution over time of the largest connected component for each technology subfield. In particu-

lar, they show the evolution of the largest component as a fraction of all inventors (i.e. network of 

inventors) and of all inventors and authors (i.e. network of inventors and authors). From an inspec-

tion of the figures, we note that in all the five subfields the share of inventors in the largest connected 

component of the network of inventors is always extremely limited. 
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Figure 12 – Evolution of the largest connected component for network of inventors, and for the 
network of inventors and authors 
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Figure 12 – cont. 
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Figure 12 – cont. 
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On the other hand, if we look at the network of inventors and authors, the share of all nodes ac-

counted for by the largest connected component is quite high in three out five technology subfields. 

Actually, in semiconductors and lasers, the size of the largest component tends to grow over time, but 

starting from relatively high levels. In 1991, the largest components account for about 22% and 35% 

of all authors and inventors, respectively in semiconductors and lasers. On the other hand, the size of 

the largest component rises steeply in biotechnology, but starting from relatively low levels. In 1991, 

the largest component accounts for only 3% of all authors and inventors, while this fraction goes up 

to almost 54% in 2000. 

 

c) Is the network of scientists and inventors a “small world”? 

The high degree of connectedness of the network of scientists and inventors in semiconductors, lasers 

and biotechnology is typical of graphs that have the property of being “small worlds”. Broadly speak-

ing, a small world network is a graph in which nodes are grouped around tightly linked local cliques 

(i.e. most nodes in each clique are neighbours of one another), but every node can be reached from 

every other in the network by a small number of steps. This type of structure is thought particularly 
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important both for the generation and the diffusion of knowledge. On one hand, the high degree of 

density and redundancy of linkages within local cliques ensures the formation of a common language 

and communication codes that enhances reciprocal trust and supports the sharing of complex and 

tacit knowledge among actors, thereby increasing the rate of diffusion of knowledge. On the other 

hand, the shortcuts linking local cliques to different and weakly connected parts of the network en-

sures a rapid diffusion and recombination of new ideas throughout the network and allow to keep a 

window open on new sources of knowledge, thereby mitigating the risk of lock-in that could arise in 

the context of densely connected cliques (Cowan and Jonard, 2003). 

Formally, a small world graph is characterised by two main properties. First, it presents a high degree 

of clustering. Second, it shows a short average distance among pairs of nodes. 

As far as the first property is concerned, this implies that a small-world network will have many sub-

graphs that are characterized by the presence of connections between almost any two nodes within 

them. An index that captures this idea is the so-called clustering coefficient, C , which can be formally 

defined as follows: for any node i one picks the ki other nodes with which the node in question is 

linked. If these nodes are all connected to one another (i.e. they form a fully connected clique), there 

will be ki(ki -1)/2 links between them, but in reality there will be much fewer. If one denotes with Ki 

the actual number of links that connect the selected ki nodes to each other, the clustering coefficient 

for node i is then Ci = 2Ki/ki(ki -1). The clustering coefficient for the whole network is obtained by 

averaging Ci over all nodes in the system. The clustering coefficient C thus tells how much of a node’s 

collaborators are, on average, willing to collaborate with each other. 

As far as the second property is concerned, the average distance among nodes in the network is de-

fined as follows. For any pair of nodes, i and j, in the network, the ability to communicate with each 

other depends on the length of the shortest path lij (i.e. the minimum number of edges), which links 

them. The average of over all pairs of nodes, denoted as d=<lij>, is called the average separation (dis-

tance) of the network, characterising the network interconnectedness. In other words, the average 

distance measures the number of steps that have to be taken in order to connect two randomly se-
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lected nodes. A low average distance therefore implies a (potentially) high speed of diffusion of in-

formation and knowledge throughout the network.33 

For each technology subfield, we have calculated the clustering coefficient only for the largest con-

nected component and for the year 2000. Results are reported in Table 32. They show that the coef-

ficient C takes extremely high values, both for the network of inventors and for the network of inven-

tors and authors. Thus, for example, with reference to biotechnology, results indicate that on average 

70% of an inventor’s co-inventors also collaborate each other (second column). Likewise, 77% of the 

co-inventors or co-authors of a given individual also collaborate with each other. Overall, the degree 

of clustering (or cliquishness) is very high in all fields, and much larger than the value one would ob-

serve in classical random graph.34 

 
Table 32 – Clustering coefficient, Largest component (2000) 

Technology fields Network of inventors Network of inventors and authors 

1. Transmission 0.746 (0.348) 0.759 (0.315) 
2. Speech analysis  0.752 (0.332) 0.858 (0.257) 
3. Semiconductors 0.799 (0.296) 0.721 (0.365) 
4. Lasers 0.718 (0.334) 0.598 (0.411) 
5. Biotechnology  0.700 (0.368) 0.770 (0.327) 

Note: standard errors among brackets 

As far as the average distance among inventors is concerned, we calculated the distribution of geodesic 

distances among any pair of inventors, and any pair of inventors and authors, only for the largest 

component and for the year 2000. The distribution of geodesic distances is reported in Figure 13, 

separately for the network of inventors only, and for the network of inventors and authors. The aver-

age distance for the two networks is instead reported in Table 33. 

 

                                                 
33 An alternative measure that is sometimes used to evaluate the degree of connectedness of a network is its di-

ameter, which is defined as the maximum separation of pairs of nodes in the network, namely the greatest dis-
tance one will ever to have to go to connect two nodes together. 

34 In a classical random graph, the clustering coefficient is C = z/N, where z is the average degree of nodes and 
N is the total number of nodes. For brevity, we do not report here the values of the clustering coefficient in 
random graphs with the same parameters of our networks. Yet, they are an order of magnitude lower than the 
corresponding values in our networks for all technology fields. 
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Figure 13 – Distribution of geodesic distances among pairs of nodes, Largest component (2000) 
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Figure 13 – cont. 
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Figure 13 – cont. 
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Table 33 – Average geodesic distance, Largest component (2000) 

Technology fields Network of inventors Network of inventors and authors 

1. Transmission 6.09 15.13 
2. Speech analysis  2.51 4.86 
3. Semiconductors 10.71 9.94 
4. Lasers 4.96 7.35 
5. Biotechnology  5.34 7.99 
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With the exception of semiconductors, the distribution of the geodesic distances of networks that 

include authors is moved to the right compared to the distribution of the network that include only 

inventors. Correspondingly, the average distance is slightly larger. On average, however, we observe 

that the average distance among inventors, and among inventors and authors, is relatively short and 

compatible with a small world structure, perhaps with the exception of transmission of digital infor-

mation where the average distance in the network of authors-inventors is larger.  Thus, for example, if 

we examine biotechnology, it takes 8 steps on average to reach a randomly chosen inventor (author) 

from any other inventor (author). This means that the network of authors and inventors work at least 

potentially as an effective means of knowledge transmission and diffusion. 

 

d) The position of nodes in the network of authors and inventors 

The results reported above suggest that inventors of patents and authors of (cited) scientific publica-

tions are highly inter-connected to each other, at least in three important technology fields, such as 

semiconductors, lasers and biotechnology. We argued above that a crucial role in ensuring a high de-

gree of connectivity between the two communities is played by a specific type of individuals that we 

have labelled as authors-inventors. Researchers that do publish scientific articles and patent new in-

ventions bridge academic and industrial worlds, by pouring new scientific knowledge into the inven-

tors’ domain. By connecting with authors-inventors, industrial researchers (i.e. inventors) can keep 

track of scientific advances relevant for their activities. As a consequence, we also expect that, by em-

bodying stocks of tacit and valuable knowledge, authors-inventors are more likely to attract other 

inventors’ collaborations. To state it in terms of social network analysis, we expect that authors-inven-

tors are more central and in-between than ‘simple’ inventors. 

To test this idea, we have computed two measures of node centrality, which are widely used to assess 

the extent to which nodes occupies a central position in the information flows that take place within 

a network. The first measure we computed is the degree centrality. This is simply defined as the num-

ber of edges that connect a given node to other nodes in the network. A node with a high degree cen-

trality maintains contacts with many other nodes in the network. A central actor, according to this 

measure, occupies a structural position that acts as a source or conduit for larger volumes of informa-
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tion exchange. In contrast, peripheral actors maintain few or no relations and are thus located at the 

margins of the network. 

The second statistic used to investigate the position of authors-inventors is the so-called betweenness 

centrality. It measures how many times a node lies “between” two others, so that it must be activated 

to enable a knowledge exchange among them. Formally, for a graph G:=(V,E), with V vertices and E 

edges, the betweenness centrality for node n is defined as: 

 ( )
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=
Vnts st

st
B

n
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where σst is the number of shortest paths from s to t, σst(n) the number of shortest paths from s to t 

that pass through node n. Nodes with high betweenness centrality are thus nodes that occur on many 

shortest paths between other vertices. According to our previous discussion, we expect that authors-

inventors will lie more between individuals than simple inventors, because they attract a high number 

of collaborators, acting as “hubs” for large portions of the network. 

Table 34 reports the average value of the degree centrality index, respectively, for inventors, authors 

and authors-inventors. The values are calculated for largest component of the network of inventors 

and authors in the year 2000. 

 

Table 34 – Degree centrality, Network of inventors and authors, Largest component (2000) 

Technology fields Inventors Authors Authors-Inventors 

1. Transmission 3.82 (2.92) 3.87 (3.03) 7.95 (5.61) 
2. Speech analysis  3.60 (2.82) 3.52 (2.06) 6.58 (3.99) 
3. Semiconductors 4.32 (3.26) 6.87 (4.91) 13.24 (10.23) 
4. Lasers 3.95 (2.86) 6.96 (5.13) 14.86 (10.97) 
5. Biotechnology  4.21 (2.78) 12.40 (24.77) 16.07 (21.88) 

Note: standard deviation among brackets  

 

Looking at the three fields where the size of the largest component as a fraction of all nodes is signifi-

cant, i.e. semiconductors, lasers and biotechnology, we note that the average degree centrality of sim-

ple inventors is always lower than the average degree centrality of authors of cited scientific publica-
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tions, which in turn is lower than the average degree centrality of authors-inventors. A simple t-

statistics (not reported here for brevity) reveals that difference in the means across the three groups is 

statistically significant at the 99% level. We may therefore conclude that authors-inventors tend to 

collaborate on average with a significantly larger number of other inventors and authors, than do 

simple inventors and authors35.   

Comparing the values across fields reveals, quite interestingly, that the degree centrality of simple in-

ventors and of authors-inventors is quite comparable, at least as far as semiconductors, lasers and bio-

technology are concerned. On the contrary, the degree centrality of authors in biotechnology is sig-

nificantly higher than degree centrality of authors in semiconductors and lasers. This result is likely to 

depend on the larger average number of authors per paper in the field of biotechnology, as compared 

to the fields of semiconductors and lasers. 

Table 35 reports the average value of the betweenness centrality index for the network of inventors 

and authors calculated on the largest component in the year 2000. Table 36 reports instead a t-test 

statistic for the difference in the average betweenness centrality among inventors, authors and inven-

tors-authors. Results show that in all fields examined, with the exception of speech analysis, the aver-

age betweenness centrality of authors-inventors is significantly higher than the betweenness centrality 

of simple inventors and authors. In turn, the betweenness centrality of authors is higher than the be-

tweenness centrality of simple inventors. As reported in Table 35, the differences in the mean values 

of betweenness centrality across groups are statistically significant at the 99% level.  

Overall, the results reported above suggest that authors-inventors play a crucial role in bridging the 

two communities of scientists and inventors. Their peculiar function of knowledge brokers in the 

network makes them more in-between than simple inventors and ensures a rapid diffusion of knowl-

edge and ideas from one domain to the other. 

 

 

                                                 
35 As far as authors are concerned, it must be pointed out again that the networks examined here only includes 

publications cited in patents, and not other publications that cited authors might have published with other 
co-authors. Therefore, the degree centrality of authors must be understood and interpreted with reference to 
the way in which the network has been built. 
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Table 35 – Average betweenness centrality (x100), Network of inventors and authors, Larg-
est component (2000) 

Technology fields Inventors Authors Authors-Inventors 

1. Transmission 0.22 (0.98) 0.85 (4.66) 2.8 (6.15) 
2. Speech analysis  1.12 (4.03) 2.68 (7.59) 12.03 (16.57) 
3. Semiconductors 0.03 (0.14) 0.05 (0.24) 0.26 (0.58) 
4. Lasers 0.02 (0.09) 0.08 (0.33) 0.41 (0.84) 
5. Biotechnology  0.01 (0.05) 0.02 (0.12) 0.11 (0.13) 

Note: standard deviation among brackets 

Table 36 – T-test on the difference in the average value of betweenness centrality  

Technology fields Inventors vs. Authors Inventors vs. Au-
thors-Inventors 

Authors vs. Authors-
Inventors 

1. Transmission -3.07* -6.55* -4.43* 
2. Speech analysis  -1.20 -2.83 -2.36 
3. Semiconductors -6.45* -13.34* -12.05* 
4. Lasers -9.79* -13.66* -11.25* 
5. Biotechnology  -10.85* -14.54* -12.82* 

Note: * difference statistically significant at the 99% level. 

 

Given the strategic importance played by authors-inventors, we computed the distribution of these 

individuals in the largest component by geographical area and compared it with the corresponding 

share of simple inventors in the largest component. Results are reported, respectively, in Tables 37 

and 38, for three technology subfields, i.e. semiconductors, lasers and biotechnology. The first point 

to note is that the European and US individuals account for the largest share of authors-inventors and 

simple inventors, in semiconductors and biotechnology. Thus, for example, in biotechnology Europe 

and the US together account for about 94% of simple inventors and 93% of authors-inventors in-

cluded in the largest connected component. On the contrary, other areas, especially Japan, accounts 

for almost half of all inventors and authors-inventors in lasers.  

Second, we also note that the share of US authors-inventors is significantly larger than the US share 

of simple inventors in all three technology fields. To the extent that authors-inventors play as brokers 

of knowledge from the domain of science to that of technology, we believe this finding has very im-
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portant implications for our understanding of the gap between Europe and the US in the effective-

ness to translate the results of scientific research into commercially useful applications. 

 

Table 37 – Share of authors-inventors in the largest component by geographical area (2000) 

Technology fields EU25 US Others 

Semiconductors 26.9 (311) 60.5 (698) 12.6 (145) 
Lasers 20.5 (148) 35.5 (314) 44.0 (389) 
Biotechnology  27.6 (515) 65.0 (1214)  7.4 (138) 

Note: absolute values among brackets. 

 

Table 38 – Share of simple inventors in the largest component by geographical area (2000) 

Technology fields EU25 US Others 

Semiconductors 22.5 (1625) 53.4 (3868) 24.1 (1745) 
Lasers 25.0 (307) 29.5 (366) 45.7 (567) 
Biotechnology  33.1 (1123) 60.5 (2049)  6.4 (216) 

Note: absolute values among brackets. 

 

Likewise, we observe that both in biotechnology and lasers, the share of Europe of all authors-inven-

tors in the largest component is remarkably lower than its share of simple inventors. Once again, we 

believe this is an important result for our understanding of the mechanisms through which scientific 

output translates into technological developments. To the extent that authors-inventors play a crucial 

role in brokering knowledge across the two domains, proximity to such individuals, and more gener-

ally proximity among authors of scientific publications and inventors of patented inventions may be a 

fundamental factor affecting the effective diffusion of scientific knowledge. 

Next section addresses this issue explicitly, by analysing the role of social proximity among inventors 

and authors in determining the probability of a citation tie between patents and scientific articles. 
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e) The role of social and geographical proximity on citation ties 

The aim of this section is to analyse what factors may affect the probability of observing a citation tie 

between a patent and a scientific publication. More specifically, we aim to test two contrasting hy-

potheses. 

On the one hand, a large body of recent empirical literature has argued that spatial proximity between 

senders and receivers of knowledge flows greatly enhances the effectiveness through which knowledge 

is transmitted. According to this spatial proximity argument, the tacit and contextual nature of (sci-

entific) knowledge makes publication a rather inadequate vehicle to transfer it; scientific publications 

diffuse only the codified part of the knowledge they embody, while the tacit component can be trans-

ferred only through personal interactions with the authors that possess it. As the probability of meet-

ing the owners of such tacit knowledge as well as the effectiveness of any inter-personal contact with 

them decrease with spatial distance, geographical proximity becomes crucial in the transfer of scien-

tific knowledge from the domain of science to that of technology. Following this argument, we would 

expect that the probability that a patent cites a specific publication decreases with the geographical 

distance among inventors of the citing patent and authors of the scientific publication. 

On the other hand, a few other authors have recently advanced a different view, according to which 

the crucial kind of proximity that matters in facilitating the transmission of knowledge is not the spa-

tial one, but the social one. According to the social proximity argument, tacit knowledge can be, and 

very often is codified, by developing appropriate vocabularies and codebooks. What is tacit then is 

not the knowledge itself, but the messages that transport that knowledge, in the sense that only a 

small portion of the relevant codebook is usually referred to explicitly when transmitting knowledge. 

This implies two things. First, that the language (i.e. the vocabulary) used for exchanging knowledge 

is the language of a rather restricted and close community of experts (i.e. an epistemic community) 

and that the common codebook may be used as a powerful exclusionary device, even for local actors 

who live and work side by side with the community members. Second, it also implies that tacit mes-

sages may be sent over long distances by means of a variety of communications media (both written 

and orally), to the extent that the receiver possesses the necessary codebook to interpret the tacit 

knowledge contained in them. Even when dispersed in space, epistemic communities will share more 

jargon and trust among each other than with any other outsider within their present local communi-
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ties. According to this view, therefore, (scientific) knowledge flows through social networks that link 

researchers and we would expect that the probability that a patent cites a specific publication de-

creases with the social distance among inventors of citing patents and authors of the scientific publica-

tion, irrespective of their geographical location. In other words, what matters in the effective trans-

mission of knowledge is the epistemic (i.e. social) proximity among scientists and inventors and not 

their spatial proximity. 

In order to test the hypotheses briefly discussed above, we have adopted a regression approach to es-

timate the probability of observing a citation tie between patent-paper pairs. In what follows, we dis-

cuss the methodological approach and the results of our estimates. 

Sampling design 

Indicating with P(K,m) the probability that patent K cites publication m, we aim to test whether such 

a probability depends on the degree of social and spatial proximity among authors and inventors be-

hind the citing patent and the cited scientific publication, after controlling for other possible factors 

that may affect the probability of a citation. 

In principle, one could approach the problem by estimating the factors that affect the probability of a 

citation tie, by looking at all possible pairs of potentially citeable publications and potentially citing 

patents, using a logistic regression to estimate the effects of covariates. Yet, this approach is practically 

not feasible, given that this would require to deal with very large data matrices36. For this reason, we 

adopted an endogenous stratification sampling strategy (or choice-based sampling procedure) (Bre-

schi and Lissoni, 2004; Stolpe, 2002). 

In particular, for each technology field j, we followed a 4-steps procedure:  

1) We selected a cohort of cited publications, e.g. 1990, by publication year. Let mtj be the mth 

cited publication in cohort t in technology class j; 

2) For each subsequent cohort of patents, i.e. patents with application year equal to T=t+s, e.g. 

1995, we generated all potential pairs between them and the cited publications at year t. Let 

                                                 
36 A simple random sampling of all potential pairs of patents and publications would not work either, given that 

actual citations are an extremely low fraction of all potential pairs. 
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KTj be Kth patent in cohort T>t in technology j; the pair (mtj,KTj) identifies a potential cita-

tion from patent K to publication m;37 

3) From the set of potential citations generated in this way, we selected all actual citations or 

“cases” (i.e. pairs of patents-publications that correspond to actual citations); 

4) For each “case”, i.e. actual citation, we selected two “control’ pairs”, i.e. two patent-paper 

pairs that do not correspond to any actual citation. The control pairs are therefore similar in 

all respects to the cases (i.e. patents belong the same technology field and have the same ap-

plication year, and publications have been cited by patents in same technology field and have 

the same publication year), except for the fact that a citation tie exists for the cases, whereas it 

does not for the controls. 

 

The four steps have been, of course, repeated several times, one for each cohort of cited publications 

and for each cohort of patents. The dependent variable in our model is therefore a binary variable, 

which takes value 1 for all cases of actual citations, and value 0 for the controls. 

Given the choice-based sampling procedure followed, we did not use a simple logistic regression to 

estimate our model, but adopted a “weighted exogenous sampling maximum likelihood” (WESML) 

procedure. The idea behind this method is to weight each observation in the sample by the number 

of population elements it represents (i.e. the inverse of its sampling probability). In our case, we as-

signed a weight of 1 to all observations corresponding to actual citations, as all of them have been 

sampled. Observations corresponding to controls have been weighted by the inverse of the fraction of 

all patent-paper pairs, with that specific combination of application-publication year. 

Explanatory variables 

Given that our interest is in estimating the effect of social and spatial distance on the probability of a 

citation tie, we first discuss in which way we measure such variables. 

                                                 
37 Let ntj the number of publications in cohort t cited by patents in technology field j and NTj the number of 

patents in cohort T in technology field j. The number of possible pairs of patents-publications (i.e. potential 
citations) is therefore given by ntj*NTj. 
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As far as the social proximity is concerned, this has been constructed as follows. Given a patent-paper 

pair (mtj,KTj) the “social distance” between them at time (T-1), i.e. the period just before the poten-

tial citation, is defined as the shortest among the geodesic paths connecting the inventors of the pat-

ent and the authors of the publication in the network of inventors and authors38. The social distance 

variable defined in this way has therefore the characteristics of a categorical variable and for estima-

tion purposes it is convenient to transform it into a set of dummies. In particular, we defined seven of 

them, mutually exclusive and exhaustive of the social distance possibilities: 

a) d0: this variable takes value 1 whenever at least one individual in the team of patent inventors 

also appears in the team of paper authors (and 0 else). In the case of actual citations, this cor-

responds to what may labelled as a personal self-citation, i.e. an inventor citing her own scien-

tific work. In social network terminology, we can say that in this case the geodesic distance 

between the patent and the publication is 0; 

b) d1: this variable takes value 1 whenever one or more inventors of patent have previously col-

laborated with at least one paper author (and 0 else). In other words, this dummy variable 

captures prior direct collaborations among inventors and authors in the production of either 

patents or publications. In the terminology of social network analysis, the geodesic distance 

between the patent and the publication is 1;  

c) d2: this variable takes value 1 whenever one (or more) inventors of a patent share a common 

collaborator with at least one (or more) paper authors (and 0 else). In other words, this 

dummy variable captures prior indirect collaborations among inventors and authors through 

common acquaintances, i.e. common collaborators. In terms of social network analysis, the 

geodesic distance between the patent and the publication is 2; 

d) d3: this variable takes value 1 whenever the shortest path connecting the team of inventors 

and the team of authors is equal to 3 (and 0 else); 

                                                 
38 It should be pointed out that in the calculation of the geodesic distances among all possible pairs of inventors 

and authors we had to solve complex computational problems arising from the size of the involved matrices. 
For example, the largest component of the network of inventors and authors in the year 2000 involves 27148 
nodes. Even restricting the attention to the largest component, computing the distance among all possible 
pairs of nodes implies building a matrix with more than 700 millions of cells. 
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e) d4-6: this variable takes value 1 whenever the shortest path connecting the team of inventors 

and the team of authors is comprised between 4 and 6 (and 0 else); 

f) d>6: this variable take value 1 if the shortest path connecting the team of inventors and the 

team of authors is greater than 6, but finite, i.e. patent inventors and paper authors belong to 

the same connected component in the network of inventors and authors (and 0 else); 

g) disconnected: this variable takes value 1 if patent inventors and paper authors are not reach-

able as they belong to disconnected components, i.e. the social distance between them is in-

finity (and 0 else). 

In the estimations reported below, the reference group is ‘disconnected’, i.e. patent-paper pairs whose 

respective inventors and authors are not reachable. 

 As far as the spatial proximity is concerned, we implemented a small PHP/Javascript program, which 

exploits the Google Maps service to extract the geographical coordinates (i.e. latitude and longitude) 

from the inventors’ addresses reported in patent documents, and from affiliations’ addresses as re-

ported in publications for paper authors. Since a patent-publication pair typically features multiple 

authors and inventors, we decided to compute the spatial distance between all possible pairs of au-

thors and inventors reported in the patent-publication pair; among them, we took the lowest value as 

the spatial distance between the patent and the publication.39 

In addition to proximity variables, we included in the regression fixed effects for the year of citing 

patents, and a variable (time lag) that measures the time lag in years between the citing patent and the 

cited publication. Given that the time lag between citing patents and cited publications follow a non 

linear pattern (see above), we expect that this variable will have a non linear effect on the probability 

of a citation. 

 

 

                                                 
39 The haversine formula has been used to calculate the geographical distance. It can be computed as follows: 
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Regression results 

As a first step, we have estimated a model in which the only explanatory variables included are the 

(log of) geographical distance and the time lag between the patent and the publication. Results are 

reported in Table 39. As the coefficients of logit estimates do not have a direct economic interpreta-

tion, in the following tables we have reported odds-ratios. They are easily obtained by exponentiating 

logit coefficients. As expected, the geographical distance has a statistically significant negative effect 

on the probability of a citation tie between patents and publications, as shown by the fact that the 

odds ratio takes a value significantly lower than 1. The probability that a patent builds upon a scien-

tific publication decreases with the spatial distance among inventors and authors. On the contrary, 

the coefficient of the time lag variable is not statistically different from zero (i.e. the odds-ratio is 1). 

Table 39 – The impact of geographical distance on citation ties 

 Semiconductors Lasers Biotechnology 

Spatial distance 
 

0.848a 

(0.008) 
0.799 a 

(0.012) 
0.735 a 

(0.006) 

Time lag 
0.993ns 

(0.009) 
0.985ns 
(0.013) 

1.002ns 
(0.007) 

Number of observations 15881 9345 30506 
Log-likelihood -88.7 -250.2 -304.1 
Pseudo-R2 0.013 0.031 0.043 

Notes: Robust standard errors in parenthesis. a significant at the 1% level; b significant at the 5% level; 
ns not significant. Coefficients for year fixed effects nor reported. 
 

To test the robustness of this result, we have included in our model the set of dummies capturing the 

extent of social distance among authors and inventors. Results are reported in Table 40. We note that 

the negative impact of spatial distance, although still statistically significant, drops quite remarkably, 

as shown by the fact that the odds ratio is now closer to 1. This means that, once we control for the 

social distance, the spatial location of authors and inventors matters relatively less in explaining 

knowledge flows from science to technology.  
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Table 40 – The impact of social distance on citation ties 

 Semiconductors Lasers Biotechnology 

Spatial distance 
 

0.920a 

(0.008) 
0.888 a 

(0.017) 
0.815 a 

(0.007) 
Time lag 
 

1.003ns 

(0.009) 
1.003b 

(0.012) 
1.026 a 

(0.007) 
Social distance d=0 
 

786.123 a 
(616.93) 

315.24 a 
(210.30) 

542.76 a 
(365.27) 

Social distance d=1 
 

19.419 a 

(9.706) 
6.719 a 

(2.016) 
33.738 a 
(33.299) 

Social distance d=2 
 

10.713 a 

(4.570) 
1.870 a 

(0.447) 
17.068 a 
(17.581) 

Social distance d=3 
 

5.566 a 

(1.793) 
1.292 ns 
(0.234) 

0.800 ns 
(0.707) 

Social distance 4≤d≤6 
 

2.039 a 

(0.245) 
1.538 a 

(0.150) 
0.555 ns  
(0.233) 

Social distance >6 (finite) 
 

1.531 a 

(0.118) 
1.171 b 
(0.107) 

0.364 a 
(0.133) 

Number of observations 15881 9345 30506 
Log-likelihood -84.409 -232.50 -280.51 
Pseudo-R2 0.060 0.100 0.117 

Notes: Robust standard errors in parenthesis. a significant at the 1% level; b significant at the 5% level; 
ns not significant. Coefficients for year fixed effects nor reported. The baseline category left out is rep-
resented by patent-.publications pairs not socially connected (disconnected). 
 

On the other hand, we do observe that the dummy variables capturing the social distance among au-

thors and inventors have a positive and statistically significant impact on the probability of a citation 

tie between patents and publications. Thus for example, with reference to semiconductors, patents 

and publications, which have been produced by individuals that have previously collaborated, i.e. that 

are at a social distance 1, are 19 times more likely to be also connected by a citation tie. 

We also note that the citation probability falls quite sharply with social distance, starting from very 

high levels at low social distances. Thus, always with reference to semiconductors, we observe that the 

citation probability of a patent-publication pair at social distance 1 is 19 times more likely to result in 

a citation, as compared to non-connected pairs, whereas the citation premium decreases to 10 times 

for pairs at social distance 2. In this respect, it is also interesting to note some differences across the 



 101

three technology fields examined. In particular, we note that the citation premium decreases relatively 

faster in lasers and biotechnology, as compared to semiconductors. 

Table 41 – The impact of geographical distance on citation ties 

 Semiconductors Lasers Biotechnology 

Time lag 
 

0.993ns 

(0.008) 
0.990ns 

(0.012) 
1.000 ns 
(0.006) 

Citing patent – cited publication    
Europe-Europe 
 

1.683 a 

(0.145) 
1.695 a 

(0.180) 
1.575 a 

(0.078) 
Europe-United States 
 

1.011 ns 

(0.074) 
1.006 ns 
(0.100) 

0.819 a 
(0.038) 

Europe-Japan 
 

0.941ns 

(0.087) 
0.877 ns 
(0.108) 

0.802 b 
(0.078) 

United States-Europe 
 

0.829 b 

(0.078) 
0.810 ns 
(0.096) 

0.953 ns  
(0.043) 

United-States-United States 
 

1.506 a 

(0.100) 
1.701 a 

(0.162) 
1.650 a 

(0.067) 
United States-Japan 
 

0.853 ns 

(0.070) 
0.779 ns 
(0.095) 

0.944 ns 
(0.076) 

Japan-Europe 
 

0.900 ns 

(0.079) 
0.742 b 
(0.095) 

0.662 a 
(0.068) 

Japan-United States 
 

0.890 ns 

(0.059) 
0.718 a 

(0.075) 
0.583 a 

(0.050) 
Japan-Japan 
 

1.551a 

(0.112) 
1.989 a 

(0.211) 
3.784 a 

(0.508) 

Number of observations 15881 9345 30506 
Log-likelihood -89.254 -254.50 -313.65 
Pseudo-R2 0.006 0.014 0.016 

Notes: Robust standard errors in parenthesis. a significant at the 1% level; b significant at the 5% level; 
ns not significant. Coefficients for year fixed effects nor reported. 
 

In these two fields, the citation premium even disappears for social distances greater than 2. While 

extremely important for transmitting knowledge, the effectiveness of social connections seems to de-

cay very rapidly with social distance. Alternatively, we can presume that long-distance links decay 

rapidly over time, and do not convey anymore any knowledge flow.  

In order to test further the effect of geographical vs. social distance on the probability of citations, we 

have re-estimated our model by replacing the variable measuring the spatial distance among authors 

and inventors with a set of dummy variables, capturing whether the inventors of citing patents and 
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the authors of scientific publications are located in the same geographical area. Thus, for example, the 

variable Europe-Europe takes value 1 whenever at least one inventor of the patent and one author of 

the scientific publications are located in Europe (and 0 else). 

Table 41 reports the estimates of a model, which includes only this set of dummy variables and the 

time lag between the patent and the publication. As expected, the probability of a citation tie de-

creases for patent-publication pairs whose authors and inventors are located in different geographical 

areas. This is shown by odds ratios significantly larger than 1 for those variables indicating co-

location.  Thus, for example, with reference to biotechnology, the probability that a European patent 

builds upon a European publication is 57% higher than expected, thereby suggesting that knowledge 

flows tend to be spatially bounded at the continental level. On the contrary, cross-continental cita-

tions are less likely to occur, although the odds ratios for most of such variables are not statistically 

different from one. 

Finally, Table 42 reports estimates of a model which includes social distance effects, in addition to 

dummies for co-location. Again, we note that, once we control for social proximity, the explanatory 

power and the statistical significance of the geographical variables tend to become less strong or even 

to vanish, as shown by the fact that the odds ratios of variables capturing co-location effects take val-

ues closer to 1. On the other hand, the odds ratios of dummy variables for social distance are statisti-

cally significant (at least up to distance 2) and remarkably larger than 1.  

Our interpretation of these results is that being spatially close to the source of scientific knowledge is 

not a sufficient condition to benefit from any kind of knowledge flow. Social networks of collabora-

tion among scientists and inventors explain a great deal of the knowledge transfer that takes place 

from the realm of science to that of technology. In this respect, scientific knowledge may easily flow 

over long distances as long as the sender and the receiver of such knowledge are connected through a 

short chain of collaborators.  
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Table 42 – The impact of social distance on citation ties 

 Semiconductors Lasers Biotechnology 
Time lag 
 

   1.004 ns 
(0.009) 

  1.030b 
(0.012) 

   1.021a 
(0.007) 

Social distance d=0 
 

1336.739 a 
(1007.6) 

506.554a 
(331.45) 

1329.934 a 
(880.10) 

Social distance d=1 
 

  25.293 a 
(13.051) 

  9.360a 
(2.608) 

  30.585 a 
(32.230) 

Social distance d=2 
 

  17.255 a 
(7.344) 

  2.474a 
(0.556) 

  16.594 a 
(17.502) 

Social distance d=3 
 

   6.857 a 
(2.225) 

  1.398ns 
(0.253) 

    0.675 ns 
(0.632) 

Social distance 4≤d≤6 
 

   2.315 a 
(0.285) 

  1.602a 
(0.165) 

    0.565 ns 
(0.233) 

Social distance >6 (finite) 
 

   1.611 a 
(0.129) 

  1.189b 
(0.107) 

    0.411a 
(0.131) 

Citing patent – cited publication    
Europe-Europe 
 

1.431ns 
(0.142) 

1.179ns 
(0.208) 

1.372a 
(0.087) 

Europe-United States 
 

 0.992 ns 
(0.074) 

1.035 ns 
(0.100) 

 0.854 a 
(0.042) 

Europe-Japan 
 

 0.894 ns 
(0.082) 

 0.922 ns 
(0.112) 

0.816 b 
(0.079) 

United States-Europe 
 

 0.835 ns 
(0.078) 

 0.848 ns 
(0.099) 

1.006 ns 
(0.050) 

United-States-United States 
 

 0.919 ns 
(0.072) 

1.122 ns 
(0.136) 

1.276 a 
(0.056) 

United States-Japan 
 

 0.799 b 
(0.067) 

 0.770b 
(0.093) 

 0.981 ns 
(0.080) 

Japan-Europe 
 

 0.936 ns 
(0.082) 

 0.789 ns 
(0.098) 

 0.679 a 
(0.068) 

Japan-United States 
 

 0.903 ns 
(0.061) 

 0.752 a 
(0.078) 

 0.592 a 
(0.051) 

Japan-Japan 
 

1.491a 
(0.111) 

  1.655a 
(0.187) 

3.727 a 
(0.498) 

Number of observations 15881 9345 30506 
Log-likelihood -84.382 -232.87 -283.77 
Pseudo-R2 0.060 0.098 0.109 

Notes: Robust standard errors in parenthesis. a significant at the 1% level; b significant at the 5% level; 
ns not significant. Coefficients for year fixed effects nor reported. The baseline category left out is rep-
resented by patent-.publications pairs not socially connected (disconnected). 
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4. CONCLUSIONS 

This report has offered a large-scale empirical appraisal of the social connections linking academic 

scientists and industrial researchers in five science intensive technology fields, namely transmission of 

digital information (telecommunications), speech analysis (ICT), semiconductors, lasers, and bio-

technology (measuring, testing, diagnostics). In spite of different objectives and systems of incentives, 

our results show that the two communities of researchers are socially connected to a much larger ex-

tent than one would normally presume. A key role in connecting the two communities is played by 

specific individuals, i.e. authors-inventors, that act as gatekeepers bridging the boundaries across the 

two domains. A further important result emerging from our study is that social networks of collabo-

ration among scientists and inventors work as effective conduits of knowledge flows from the realm 

of science to that of technology. In this respect, our analysis shows that social proximity to authors of 

scientific publications is a much more fundamental factor affecting the knowledge transfer from sci-

entific research to technological applications than just geographical proximity. 

The increasing inter-dependency between science and technology has made the theme of university–

industry knowledge transfer a key research issue both in economics and management studies, as well 

as a top entry in the science and technology policy agenda of many countries. In the context of 

Europe, a general and widespread belief is that the mechanisms leading to the transfer of scientific 

knowledge into technological applications are somehow impaired and less effective than in other areas 

of the world, notably the United States. This conjecture has led to interpreting the European lag in 

some key high tech sectors, such as electronics and biotechnology, as a consequence of its inability to 

convert its scientific strength into economic profitable innovations. This phenomenon has also de-

served the name of “European Paradox” to stress the fact that European strength in the production of 

high quality scientific output is not matched by the ability of European private companies to benefit 

from such output. 

The existence and the extent of a European weakness in the transfer of knowledge from the domain 

of scientific research to technological applications is normally predicated on the basis of bibliometric 

indicators on the quantity and quality of scientific output. To date, however, very few studies have 

attempted to investigate in depth the actual mechanisms through which knowledge produced within 
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the boundaries of academic organisations get transferred and translated into technological develop-

ments. This study has contributed to filling this gap by proposing a large scale quantitative analysis of 

the social connections linking academic scientists and industrial researchers in five science intensive 

technology fields. 

To this purpose, the study has exploited a complex, relational dataset reporting full bibliographical 

information on patent applications and on scientific publications cited in those patent documents. 

The key analytical tool used to investigate the linkages connecting academic scientists and industrial 

researchers has been represented by social network analysis. Specifically, information on co-author-

ship and on co-invention has been exploited to assess the extent of connectedness among the two so-

cial communities of researchers. Likewise, citations from patent documents to scientific publications 

have been used as proxy for the knowledge flows from the realm of science to that of technology. 

The main findings of the study may be summarised as follows.  

High quality scientific publications find their way into a large number of technological developments. Publications 

that are (highly) cited in patents are not only cited in the realm of technology, but they are also heavily cited 

by other scientific publications. Besides validating the methodological choice of using patent citations to sci-

entific publications as proxy of knowledge flows from science to technology, this finding suggests that there is 

not necessarily a conflicting logic between scientific and industrial communities. In this respect, however, it 

should be also noted that European scientific publications cited in patents receive a lower average number of 

citations in scientific literature than the corresponding articles published by US authors. This evidence seems 

to suggest that high quality European publications face more obstacles in translating into technological appli-

cations than comparable scientific output in the US.  

European science is relatively under-represented among publications that provide key contributions to technological 

developments. The share of European organisations among scientific publications that are highly cited in pat-

ents is systematically lower than the its share of all cited publications. This gap is particularly evident in fields 

such as lasers, semiconductors and biotechnology. This result suggests that European scientific output trans-

lates into a lower number of technological developments, thereby providing further support to the conjecture 

about the existence of weaknesses in the process of knowledge transfer from science to technology. 
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Private companies account for a large share of scientific publications highly cited in patents. The role played by 

different types of institutions in the production of scientific publications highly cited in patents varies across 

technology fields, with universities accounting for a large share particularly in biotechnology. However, a key 

result emerging from our analysis is that private companies account for a quite large fraction of highly cited 

publications in all technology fields. In particular, the share of highly cited publications held by private com-

panies is remarkably larger than their share of all scientific publications, which according to other studies may 

be estimated around 5-10%. This result suggests that corporate labs contribute to a large extent to the scien-

tific research that is incorporated into technological applications. 

The European private companies’ contribution to the production of scientific publications highly cited in patents is 

significantly lower than the contribution of private companies located in other areas, notably the United States. A 

major weakness of the European systems of research, as compared to other geographical areas, especially the 

United States, is related to the low degree of involvement of private companies in the conduct of research 

leading to scientific publications cited in patents. Whereas the contribution of the public system of scientific 

research, i.e. universities and public research organisations, is generally comparable to, and often larger than 

the contribution of the corresponding system in the US, the fraction of scientific publications accounted for 

by the private system of research is considerably lower. To the extent that the ability of private companies to 

profit from scientific output generated in the sphere of science depends on the possession of absorptive capa-

bilities and especially on the existence of boundary-spanning individuals, we believe this characteristic repre-

sents one of the major obstacles to the effective diffusion of knowledge from the realm of science to that of 

technology. 

The propensity of European technology to build upon US scientific publications is generally higher than the propen-

sity of US technology to rely upon European science. An analysis of the knowledge flows across geographical areas 

by origin of citing patents and origin of cited publications reveals that European patents tend to cite US sci-

entific publications to a larger extent than US patents tend to cite European scientific papers. In other terms, 

the empirical evidence shows the existence of an asymmetry in knowledge flows between Europe and 

the US, with a larger amount of knowledge flowing from the US to Europe than vice versa. Likewise, 

we observed that the propensity of US inventors to rely upon the domestic science base is signifi-

cantly greater than the propensity of European inventors to exploit their domestic science base. 



 107

The two communities of academic scientists and industrial researchers are highly connected to each other. 

The social network analysis shows that the network of co-inventors is highly disconnected with many 

components of small size. This means that most collaborators of each inventor come from the same 

organisation and that few connections exist among teams of industrial researchers. However, when 

one looks at co-invention and co-authorship relations simultaneously, the key result is that the two 

communities of researchers are significantly more socially connected that one would probably expect. 

In three crucial technology fields, such as semiconductors, lasers and biotechnology, 35%, 51% and 

53%, respectively, of all authors and inventors are either directly or indirectly connected, via co-

invention or co-authorship, to each other in a large connected component. In addition to that, 24%, 

40% and 32% of all inventors are either directly or indirectly connected (i.e. reachable) to each other. 

Besides indicating that academic scientists and industrial researchers are highly connected, these re-

sults suggest that the community of inventors itself is much more connected than data on co-

invention only would lead us to presume. Although not directly connected to each other, inventors 

are indirectly connected through scientific authors and through authors-inventors, i.e. individuals 

that participate in teams of inventors and in teams of scientists. 

Authors-inventors play a key role in connecting the communities of scientists and inventors and act as gatekeepers 

across the two realms. A crucial role in ensuring high degrees of connectivity between the two communi-

ties of researchers is played by a specific type of individuals that we have labelled as authors-inventors. 

They are researchers that do publish scientific articles and patent new inventions, thereby participat-

ing into both communities. Social network analysis reveals that such individuals are characterised by a 

higher degree centrality, i.e. they tend to collaborate on average with a significantly larger number of 

other inventors and authors, than do simple inventors and authors, and by a higher betweenness cen-

trality, i.e. they play a crucial function of knowledge brokers in the network that makes them more 

in-between than simple inventors and authors, and ensures a rapid diffusion of knowledge and ideas 

from one domain to the other.  

Europe is characterised by a relatively low number and share of science-technology gatekeepers, i.e. authors-

inventors. Given the key role played by authors-inventors in bridging the realms of science and tech-

nology, we believe that a key finding of our study is that the share of European inventors playing this 

specific function is lower than its share of simple inventors. To the extent that authors-inventors play 
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as brokers of knowledge from the domain of science to that of technology, we believe this finding has 

very important implications for understanding of the gap between Europe and the US in the effec-

tiveness to translate the results of scientific research into commercially useful applications. Proximity 

to such individuals, and more generally proximity among authors of scientific publications and inven-

tors of patented inventions is in fact a fundamental factor affecting the effective diffusion of scientific 

knowledge (see below). In addition to this, we do also believe that this result is consistent with our 

finding that a major European weakness is related to the feeble commitment of private companies in 

the production of scientific publications relevant for technological developments, given that authors-

inventors are most likely to come from such organisations. 

The network of academic scientists and industrial researchers has the properties of a “small world”. The so-

cial network of academic scientists and industrial researchers is characterised by topological properties 

typical of “small world” graphs. On the one hand, it presents high degrees of local cliquishness, i.e. an 

individual’s collaborators tend to collaborate each other; on other hand, it also presents a low average 

distance among individuals, i.e. any random pair of individuals is separated by a low number of steps.  

This means that the network of authors and inventors work at least potentially as an effective means 

of knowledge transmission and diffusion. 

Social proximity among (academic) scientists and industrial researchers is the most important factor affect-

ing the probability that a patented invention will build upon a scientific publication. In this study, we 

estimated an econometric model for the probability that a patent-paper pair is linked by a citation tie. 

Our findings reveal that such a probability is apparently affected in a negative way by the geographi-

cal distance that separate patent inventors and paper authors. Yet, the effect of spatial distance van-

ishes once we control for the social distance among them. Inventors that are socially closer to authors 

of scientific publications are much more likely to build upon such publications than are inventors 

located at a larger social distance. In other terms, knowledge transfer from science to technology takes 

place mostly through social networks of collaboration among scientists and inventors. 

Results of this study provide further empirical support to the conjecture that the mechanisms driving 

the transfer of scientific outputs into technological applications in Europe are somehow impaired and 

less effective than in other areas of the world, notably the United States. At the same time, they also 

point out that social networks of (academic) scientists and industrial researchers account for much of 
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the observed patterns of knowledge diffusion from science to technology. In particular, the study has 

shown that a crucial role in connecting the two communities of researchers is played by a specific type 

of individuals, i.e. authors-inventors, that act as gatekeepers and channel information and knowledge 

between groups with different objectives and incentives. In this respect, a major European weakness is 

related to the comparatively lower involvement of private companies in the conduct of basic and ap-

plied research leading to scientific publications and to the consequently lack of authors-inventors that 

are able to bridge and connect the realms of science and technology. In other words, it is possible that 

part of the European backwardness in this field is due to a less connected research area. We do believe 

that increasing such a connectivity should feature prominently in a policy agenda aiming to spur the 

rate of knowledge transfer from science to technology. In this respect, the mobility of inventors (i.e. 

industrial researchers) and academic scientists across regions, countries, and organisations represents, 

in our view, a major policy objective in order to achieve higher degrees of social connectivity among 

the two communities of research. 
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Table A1 - 10 selected technology fields on the basis of USPC codes 

Technology fields USPC codes 

1. Telecommunications 178, 329, 331, 332, 333, 340, 341, 342, 343, 347, 348, 358, 360, 367, 
370, 375, 377, 379, 381, 385, 386, 455 

2. Information Technology 235, 327, 345, 365, 382, 400, 463, 473, 708, 709, 710, 711, 712, 713, 
714, 704 

3. Semiconductors 257, 326, 438, 505 
4. Optics 349, 351, 352, 353, 355, 359, 396, 430 
5. Control Technology 033, 073, 109, 116, 177, 194, 236, 307, 323, 324, 356, 368, 374, 380, 

434, 436, 701, 702, 453 
6. Medical Technology 128, 422, 433, 600, 601, 602, 604, 606, 607, 623, 119 
7. Organic Chemistry 127, 530, 534, 536, 540, 544, 546, 548, 549, 552, 554, 556, 558, 560, 

562, 564, 568, 570, 585 
8. Drugs 424, 514 
9. Biotechnology 435, 800 
10. Environmental technology 055, 095, 110, 126, 210, 261, 588 

 

Table A2 – 10 technology fields, average annual growth rate of patenting activity 

Technology fields EPO (1990-2001) USPTO (1990-2003) 

1. Telecommunications 12.2 8.7 
2. Information Technology 10.6 12.7 
3. Semiconductors 4.3 14.0 
4. Optics 3.1 5.1 
5. Control Technology 4.8 6.4 
6. Medical Technology 7.7 7.3 
7. Organic Chemistry 1.6 0.8 
8. Drugs 8.7 6.4 
9. Biotechnology 9.1 12.6 
10. Environmental technology 3.2 0.5 

All fields  6.8 7.7 

Note: for the EPO, average growth rate was calculated over the period 1990-2001, given the drop in 
the number of patent applications published after 2001. 
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Figure A1 – 10 technology fields, total number of patent applications 1990-2003 (EPO) 
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Figure A2 – 10 technology fields, total number of patents granted 1990-2003 (USPTO) 
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Table A3 – EPO four most cited ISI-journals by technology field (% share of citations) 

Telecommunications   
IEEE TRANSACTIONS ON COMMUNICATIONS 6.3 
ELECTRONICS LETTERS 6.3 
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 5.4 
IEEE COMMUNICATIONS MAGAZINE 5.2 

Information technology  
COMPUTER NETWORKS AND ISDN SYSTEMS 3.3 
COMPUTER 2.7 
COMMUNICATIONS OF THE ACM 2.6 
IEEE TRANSACTIONS ON COMPUTERS 2.5 

Semiconductors  
APPLIED PHYSICS LETTERS 19.4 
JAPANESE JOURNAL OF APPLIED PHYSICS 9.0 
IEEE TRANSACTIONS ON ELECTRON DEVICES 6.9 
JOURNAL OF THE ELECTROCHEMICAL SOCIETY 5.7 

Optics  
ELECTRONICS LETTERS 14.5 
APPLIED PHYSICS LETTERS 12.6 
IEEE PHOTONICS TECHNOLOGY LETTERS 9.1 
OPTICS LETTERS 7.4 

Control technology  
ANALYTICAL CHEMISTRY 3.6 
MAGNETIC RESONANCE IN MEDICINE 2.3 
PROCEEDINGS OF THE US NATIONAL ACADEMY OF SCIENCES 2.3 
REVIEW OF SCIENTIFIC INSTRUMENTS 2.3 

Medical technology  
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 5.8 
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 5.0 
BIOMATERIALS 3.9 
PROCEEDINGS OF THE IEEE 2.6 

Organic chemistry  
JOURNAL OF MEDICINAL CHEMISTRY 8.8 
JOURNAL OF ORGANIC CHEMISTRY 5.5 
TETRAHEDRON LETTERS 4.9 
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 4.5 

Drugs  
PROCEEDINGS OF THE US NATIONAL ACADEMY OF SCIENCES 3.6 
JOURNAL OF BIOLOGICAL CHEMISTRY 2.7 
JOURNAL OF MEDICINAL CHEMISTRY 2.5 
JOURNAL OF IMMUNOLOGY 1.9 

Biotechnology  
PROCEEDINGS OF THE US NATIONAL ACADEMY OF SCIENCES 7.5 
JOURNAL OF BIOLOGICAL CHEMISTRY 6.8 
SCIENCE 3.5 
NUCLEIC ACIDS RESEARCH 3.4 

Environmental technology  
WATER RESEARCH 9.0 
DESALINATION 5.3 
JOURNAL WATER POLLUTION CONTROL FEDERATION 5.0 
CHEMIE INGENIEUR TECHNIK 4.8 
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Table A4 – EPO four most cited subject fields by technology field (% share of citations) 

Telecommunications   
ENGINEERING, ELECTRICAL & ELECTRONIC 42.6 
TELECOMMUNICATIONS 24.4 
COMPUTER SCIENCE, INFORMATION SYSTEMS 7.8 
COMPUTER SCIENCE, HARDWARE & ARCHITECTURE 6.5 

Information technology  
ENGINEERING, ELECTRICAL & ELECTRONIC 22.3 
COMPUTER SCIENCE, SOFTWARE ENGINEERING 14.8 
COMPUTER SCIENCE, HARDWARE & ARCHITECTURE 13.8 
COMPUTER SCIENCE, INFORMATION SYSTEMS 8.1 

Semiconductors  
PHYSICS, APPLIED 42.6 
ENGINEERING, ELECTRICAL & ELECTRONIC 21.1 
PHYSICS, CONDENSED MATTER 7.6 
MATERIALS SCIENCE, MULTIDISCIPLINARY 6.4 

Optics  
ENGINEERING, ELECTRICAL & ELECTRONIC 30.5 
OPTICS 27.2 
PHYSICS, APPLIED 27.2 
INSTRUMENTS & INSTRUMENTATION 1.6 

Control technology  
ENGINEERING, ELECTRICAL & ELECTRONIC 8.0 
BIOCHEMISTRY & MOLECULAR BIOLOGY 7.5 
CHEMISTRY, ANALYTICAL 7.4 
INSTRUMENTS & INSTRUMENTATION 6.7 

Medical technology  
ENGINEERING, BIOMEDICAL 16.3 
MEDICAL INFORMATICS 6.0 
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 5.9 
SURGERY 4.3 

Organic chemistry  
CHEMISTRY, ORGANIC 15.1 
BIOCHEMISTRY & MOLECULAR BIOLOGY 14.3 
CHEMISTRY, MULTIDISCIPLINARY 12.9 
CHEMISTRY, MEDICINAL 11.1 

Drugs  
PHARMACOLOGY & PHARMACY 11.8 
BIOCHEMISTRY & MOLECULAR BIOLOGY 10.6 
IMMUNOLOGY 6.9 
MULTIDISCIPLINARY SCIENCES 5.2 

Biotechnology  
BIOCHEMISTRY & MOLECULAR BIOLOGY 24.5 
MULTIDISCIPLINARY SCIENCES 10.1 
CELL BIOLOGY 8.0 
BIOTECHNOLOGY & APPLIED MICROBIOLOGY 7.1 

Environmental technology  
ENVIRONMENTAL SCIENCES 13.9 
ENGINEERING, CHEMICAL 13.5 
ENGINEERING, ENVIRONMENTAL 12.9 
WATER RESOURCES 11.4 
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Table A5 – USPTO four most cited ISI-journals by technology field (% share of citations) 

Telecommunications   
ELECTRONICS LETTERS 7.7 
IEEE TRANSACTIONS ON COMMUNICATIONS 7.2 
SIGNAL PROCESSING 3.7 
JOURNAL OF LIGHTWAVE TECHNOLOGY 3.6 

Information technology  
IEEE JOURNAL OF SOLID-STATE CIRCUITS 6.9 
SIGNAL PROCESSING 6.1 
COMPUTERS & GRAPHICS 5.1 
IEEE TRANSACTIONS ON COMPUTERS 4.4 

Semiconductors  
APPLIED PHYSICS LETTERS 19.6 
IEEE TRANSACTIONS ON ELECTRON DEVICES 8.3 
JAPANESE JOURNAL OF APPLIED PHYSICS 7.8 
JOURNAL OF APPLIED PHYSICS 7.1 

Optics  
APPLIED OPTICS 11.0 
APPLIED PHYSICS LETTERS 8.4 
ELECTRONICS LETTERS 6.7 
OPTICS LETTERS 5.6 

Control technology  
APPLIED OPTICS 4.5 
ANALYTICAL CHEMISTRY 4.4 
APPLIED PHYSICS LETTERS 2.4 
REVIEW OF SCIENTIFIC INSTRUMENTS 2.4 

Medical technology  
CIRCULATION 3.8 
RADIOLOGY 3.7 
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2.0 
SCIENCE 1.6 

Organic chemistry  
PROCEEDINGS OF THE US NATIONAL ACADEMY OF SCIENCES 6.1 
JOURNAL OF BIOLOGICAL CHEMISTRY 5.7 
TETRAHEDRON LETTERS 4.4 
SCIENCE 4.0 

Drugs  
PROCEEDINGS OF THE US NATIONAL ACADEMY OF SCIENCES 5.0 
JOURNAL OF BIOLOGICAL CHEMISTRY 4.4 
JOURNAL OF MEDICINAL CHEMISTRY 3.7 
SCIENCE 3.3 

Biotechnology  
PROCEEDINGS OF THE US NATIONAL ACADEMY OF SCIENCES 8.9 
JOURNAL OF BIOLOGICAL CHEMISTRY 6.8 
SCIENCE 5.2 
NATURE BIOTECHNOLOGY 5.1 

Environmental technology  
JOURNAL OF CHROMATOGRAPHY 10.5 
ANALYTICAL CHEMISTRY 7.8 
JOURNAL OF MEMBRANE SCIENCE 4.0 
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 3.5 
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Table A6 – USPTO four most cited subject fields by technology field (% share of citations) 

Telecommunications   
ENGINEERING, ELECTRICAL & ELECTRONIC 42.0 
TELECOMMUNICATIONS 16.7 
OPTICS 9.0 
PHYSICS, APPLIED 8.8 

Information technology  
ENGINEERING, ELECTRICAL & ELECTRONIC 33.5 
COMPUTER SCIENCE, HARDWARE & ARCHITECTURE 14.1 
COMPUTER SCIENCE, SOFTWARE ENGINEERING 14.1 
TELECOMMUNICATIONS 5.6 

Semiconductors  
PHYSICS, APPLIED 42.6 
ENGINEERING, ELECTRICAL & ELECTRONIC 23.9 
ELECTROCHEMISTRY 5.1 
MATERIALS SCIENCE, COATINGS & FILMS 4.6 

Optics  
OPTICS 25.4 
PHYSICS, APPLIED 23.8 
ENGINEERING, ELECTRICAL & ELECTRONIC 20.6 
PHYSICS, MULTIDISCIPLINARY 3.7 

Control technology  
ENGINEERING, ELECTRICAL & ELECTRONIC 9.8 
PHYSICS, APPLIED 8.5 
CHEMISTRY, ANALYTICAL 7.9 
OPTICS 7.1 

Medical technology  
CARDIAC & CARDIOVASCULAR SYSTEM 8.6 
SURGERY 8.3 
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 6.8 
ENGINEERING, BIOMEDICAL 5.6 

Organic chemistry  
BIOCHEMISTRY & MOLECULAR BIOLOGY 21.4 
CHEMISTRY, ORGANIC 10.1 
CHEMISTRY, MULTIDISCIPLINARY 8.4 
CELL BIOLOGY 5.9 

Drugs  
BIOCHEMISTRY & MOLECULAR BIOLOGY 13.9 
PHARMACOLOGY & PHARMACY 7.3 
IMMUNOLOGY 7.0 
CHEMISTRY, MEDICINAL 4.8 

Biotechnology  
BIOCHEMISTRY & MOLECULAR BIOLOGY 26.1 
BIOTECHNOLOGY & APPLIED MICROBIOLOGY 8.1 
CELL BIOLOGY 8.0 
MULTIDISCIPLINARY SCIENCES 7.8 

Environmental technology  
CHEMISTRY, ANALYTICAL 21.0 
ENGINEERING, CHEMICAL 10.7 
BIOTECHNOLOGY & APPLIED MICROBIOLOGY 6.7 
POLYMER SCIENCE 6.2 

 


