Brain Based Architectures for Advanced Robotics

Paul Verschure

Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems
Center of Autonomous Systems and Neurorobotics
Universitat Pompeu Fabra,
Catalan Institute of Advanced Studies (ICREA),
Barcelona, Spain
Self:
Interactive human assisted body map acquisition

Do you speak Robotese?

Self-Other / communication:
Object recognition, Pro-active labelling

Self-Other / communication:
Invariant object/action naming (nouns, verbs)
Distributed Adaptive Control

- autonoetic memory, **consciousness**
- **goal-oriented policies** from sequence learning on state-affect-action triads (model based RL)
- **state space** acquisition of agent-environment interaction from dynamics of the reactive level and action shaping (deep learning & model free RL)
- **reactive** interaction with the environment through drive regulation, homeostasis, allostasis
- the **physical agent** with sensors, effectors, intrinsic dynamics and needs

Robotese-DAC

6 machines @4 cores/32GB RAM.
~20MB/s communication; 50 yarp modules

Verschure (2012) BICA/IEEE
Verschure (2016) Phil Tr. Roy Soc B
Moulin-Frier et al (Submitted)
Motivation
Personality
Emotion
Learning
Perception
Cognition
Consciousness
(Shared) attention
Mind reading
Autobiographical memory
Navigation
Proxemics
Reaching
Grasping
Face/gesture recognition
Natural language interaction
Compliance
Touch
Multiple frames of reference
Motor control
Planning ……
Robotics = Synthetic Psychology

Motivation
Personality
Emotion
Learning
Perception
Cognition
Consciousness

(Shared) attention
Mind reading
Autobiographical memory
Navigation
Proxemics
Reaching
Grasping

Face/gesture recognition
Natural language interaction
Compliance
Touch
Multiple frames of reference
Motor control
Planning ……

Verschure (2012) BICA/IEEE
Verschure (2016) Phil Tr. Roy Soc B
Moulin-Frier et al (Submitted)
Robotics = Synthetic Psychology

Motivation
Personality
Emotion
Learning
Perception
Cognition
Consciousness

(Shared) attention
Mind reading
Autobiographical memory
Navigation
Proxemics
Reaching
Grasping

Face/gesture recognition
Natural language interaction
Compliance
Touch
Multiple frames of reference
Motor control
Planning ……

Verschure (2012) BICA/IEEE
Verschure (2016) Phil Tr. Roy Soc B
Moulin-Frier et al (Submitted)
Observation 1:
Advanced robots require advanced real-time integrated control architectures underlying synthetic psychology.
psyche
psyche flesh
Towards an infrastructure of whole brain modeling: BRAINX3.com

The challenge of WHOLE BRAIN analysis & synthesis
Distributed Adaptive Control: Mapped to the brain
Models of the brain should capture: Anatomy, physiology and behavior, i.e. they must be embodied.
Adequate brain models require advanced robots:

The brain is embodied and the body constraints what the brain does
2002: The silicon cerebellum

Hofstotter et al. (2005) NIPS

Real time control architectures require neuromorphic computational hardware
Distributed Adaptive Control

Neuromorphic computational hardware requires compatible operating systems and principles.
Linking whole brain models with humanoid robots
Conclusions/Questions

• Robots need brains: We need cognitive architectures for robots (and beyond)
 • Real time control architectures require *neuromorphic* computational hardware
• Brain (models) need robots: We need system level theories of brains
 • *Neuromorphic* computational hardware requires compatible operating systems and principles
• Candidate Brain Based Cognitive Architecture:
 • DAC and brainx3.com
Requirements/SPECS for NMC

• Real-time control
• Advanced multi-modal sensing
• Heterogeneous parallel computation
• Large-scale modifiable connectivity
• High bandwidth communication
• RT/Online Accessibility, configurability and control
• Low power
• Environments and tools for interaction
Challenges, Opportunities

• The **AI revolution** is upon us, the non-EU companies are winning, WTA risk, EU cannot miss the boat

• Platforms/Technology should **serve questions** and solutions not vice versa, e.g. FIWARE outcomes

• HBP platforms should be guided by clear and functional **objectives**

• Funding should facilitate **diversity** of science grounded approaches

• We must be **realistic** in defining relation with evolving state of the art in technology and societal needs

• EC must **capitalize** on expertise and effort of research community (CSN I & II experience)

• FET: **excellent** science needs excellent reviewing
The Rehabilitation Gaming System