### HOW TO BUILD AN INNOVATION ROADMAP FOR EMERGING TECHNOLOGIES -EXPERIENCE FROM THE GRAPHENE ROADMAP Innovation Workshop Exploitation of Neuromorphic Computing Technologies Brussels, February 3<sup>rd</sup>, 201

Thomas Reiss thomas.reiss@isi.fraunhofer.de

Fraunhofer Institute for Systems and Innovation Research ISI Karlsruhe, Germany www.isi.fraunhofer.de/isi-en/





### Point of departure: Existing Science and Technology Roadmap



© Fraunhofer ISI Seite 2





# Technology and Innovation Roadmap – Why?

- The Technology & Innovation Roadmap (TIR) should consider
  - industrial demand meeting technology supply
  - economic aspects and European added value/industrial basis
  - non-technological frame conditions
- Target groups and purpose:
  - Guide flagship research towards market demands
  - Shape the next phases of the flagship
  - Inform industry to allow uptake of flagship research results
  - Support cross-WP collaboration







© Fraunhofer ISI Seite 4

## Technology and Innovation Roadmap – How? 4 steps



# The Monitoring Tool Assessing state of the art and competition



→Annual updates ← APHENE FLAGSHIP



### Workshops: Structured into three sessions:

- 1. SWOT analysis
- 2. Portfolio analysis:
  - market attractiveness
  - technological attractiveness for different graphene applications
- 3. Roadmapping section
  - current technology readiness levels
  - timing and development path of GRM for use in application areas and related markets
  - important challenges and barriers (red brick walls).





# SWOT for use of emerging technologies in specific application

**Internal factors** directly controllable by emerging technology development itself: •existing and potential technological (dis-)advantages (enabling factor,)

- •non-technological (dis-)advantages production/process/implementation (dis-)advantages
- •knowledge base and maturity



© Fraunhofer ISI Seite 8

### SWOT analysis – some aspects to consider





**Fraunhofer** 

ISI

# Assess matching: Portfolio analysis

Portfolio Analyses





### Roadmapping Key questions (1)

#### **1.** Application with technology demonstrators TRL>3 (CRS 2)

- **2.** KPIs:
  - What are key targets?
  - Lead KPIs, lead parameters that are crucial? Numbers?

#### **3.** RL today (range)

- Start with coarse scale, what are we exactly talking about (e.g. in terms of market, product)
- Optional: Narrow down to TRL, MRL for applications/products mentioned by the participants
- In case there is already something on the market: What is the quality, is it real?

#### **4.** Barriers/challenges

- RBW: What are key barriers/challenges? Where shall one invest to solve problems? What is the critical path? How can a road look like?
- Implications for research activites?



### Roadmapping Key questions (2)

#### 5. Time related aspects:

- Window of opportunity? (Market-side time related aspects)
- Hierarchy of activities and actions that are executed to meet those targets
- Time dimension for those activities
  - When can the target be reached?
  - When is next step reached (on coarse scale)
  - Probability?
  - Compare to other elements (what comes first?)
  - Concrete product examples
  - Early adopter? When?
  - What comes later? When are which markets addressable?
  - Are there multiple 'paths' or 'routes' to reaching that target?
  - Is there a product or application area that can be served "along the way" (e.g. Li-S batteries is the main goal, but along the way (or when those work), also standard LiB can be enhanced...





### Roadmap – example from Graphene Flagship: Photonic network components



## Conclusions One possible point of view

- Qualitative assessment as guideline, based on insights
- Two possible measures for prioritization

- actual proven and foreseeable technological performance of emerging technology
- uniqueness and delineation from emerging competing technologies or SotA

- European perspective (EU companies/Industries) enabled by this GRM development, macroeconomic perspective, strong integrators outside Europe, dominating industry)
- overall market potential and market need for solutions offered by GRM
- Negative assessment can point towards global value chains, where most added value will be potentially generated outside of Europe

| Application sub topics | Current technological potential (USP) | Market potential<br>(EU perspective) |
|------------------------|---------------------------------------|--------------------------------------|
|                        | potential (03F)                       | (Lo perspective)                     |
| Sub topic 1            | (rather poor))                        | - (not good)                         |
| Sub topic 2            | 0 (not promising)                     | + (promising)                        |
| Sub topic 3            | ++ (very promising)                   | ? (undecided, not                    |
|                        |                                       | assessable, still                    |
|                        |                                       | open question)                       |





Innovation roadmapping for emerging technologies: success factors (1)

- Backing and commitment of project coordination and funding agencies (scientists might have other priorities than engaging in innovation and roadmapping)
- Use Roadmap as one information source affecting further funding and clearly communicate this role
- Set up interdisciplinary roadmapping team combining science, engineering, economic and societal perspectives AND methodological experience
- Interact intensively with scientific work and researchers, feedback information thereby creating commitment
- Use approach that is as transparent as possible to create broad acceptance in the project (e.g. through feedback loop and offers for involvement)





Innovation roadmapping for emerging technologies: success factors (2)

- Expose researchers to industry expectations, challenge scientific excellence with needs and demand of industry and users: workshops
- Implement application driven way of thinking (market pull)
- Include market research
- Take into account European perspective, i.e. Industrial basis and beneficiaries of developments to enable European added value
- Take ecosystem perspective: there is no standalone, single actor mode of innovation
- Be hard in methodologies
- Develop and include an external perspective via STI monitoring





### Graphene Flagship TIR: leasons learned

- Industry engagement is crucial even at early stage or low TRL
- Don't ask industry for interest in emerging technology, rather ask for needs, functions, cost, performance....
- Design and include roadmap into research planning at earliest possible stage
- Focus on purpose of roadmap:
  - Start with internal management and planning tool
  - Expand for dissemination
  - Don't do this in parallel







# Structure of roadmapping document

#### For each topic

- Introduction 1
  - Delineation of topic
  - Role of graphene/2D materials •
- Market perspective (opportunities and threats) 2.
  - Market overview •
  - Opportunities and threats
- 3. Graphene/2D materials perspective
  - Current strengths and weaknesses
- 4. KPIs
- 5. Roadmap
  - Current maturity
  - Barriers/Challenges
  - Potential actions
  - Roadmap
- Conclusion Current technological potential (USP) and Market potential (EU perspective) 6.







# Graphene Flagship TIR

4 main topics with 18 subtopics and ~84 a sec

Existing roadmaps, market reports, strategic ( databases (market data, patents, publications

#### 2 Workshops with 82 participants



#### STI Roadmap: Revised Annex 2 to deliverable 15.1 Graphene and other 2D materials Technology and Innovation Roadmap Version 3

Michael Meister, Annette Braun, Bärbel Hüsing, Ulrich Schmoch, Thomas Reiss

Contact at Fraunhofer ISI: Dr. Thomas Reiss Competence Center Emerging Technologies Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Straße 48 | 76139 Karlsruhe | Germany Phone +49 721 6809-160 | Fax +49 721 6809-315 thomas.reiss@isi.fraunhofer.de www.isi.fraunhofer.de

nt

ogy

;



January 23rd, 2017

