HOW TO BUILD AN INNOVATION ROADMAP FOR EMERGING TECHNOLOGIES - EXPERIENCE FROM THE GRAPHENE ROADMAP

Innovation Workshop
Exploitation of Neuromorphic Computing Technologies
Brussels, February 3rd, 201

Thomas Reiss
thomas.reiss@isi.fraunhofer.de

Fraunhofer Institute for Systems and Innovation Research ISI Karlsruhe, Germany
www.isi.fraunhofer.de/isi-en/
Point of departure: Existing Science and Technology Roadmap

- Science based, technology push perspective
- Takes into account scientific developments and feasibility
- Does not take into account demand and economical feasibility

© Fraunhofer ISI
Seite 2

GRAPHENE FLAGSHIP

Fraunhofer

151
Technology and Innovation Roadmap – Why?

- The Technology & Innovation Roadmap (TIR) should consider
  - industrial demand meeting technology supply
  - economic aspects and European added value/industrial basis
  - non-technological frame conditions

- Target groups and purpose:
  - Guide flagship research towards market demands
  - Shape the next phases of the flagship
  - Inform industry to allow uptake of flagship research results
  - Support cross-WP collaboration
The approach in summary

Graphene/2D Materials
Science & Technology

- Material
- Process
- Functionalisation
- Formulation

Roadmap

Application Areas

Supply

Demand

Starting point

Science Material

Destination

Component

Innovation System/Product

Markets/Sectors

- Automotive
- Aerospace
- Computing
- Telecommunications
- Energy

© Fraunhofer ISI
Seite 4

GRAPHENE FLAGSHIP
Fraunhofer
Technology and Innovation Roadmap – How?

4 steps

1. Identify application areas and potential
   - Existing STR, Literature, News, Interviews with WP leaders, Monitoring

2. Identify market and need
   - Company interviews, market studies

3. Assess matching
   - Company interviews, Workshops

4. Roadmap
   - Workshops, desk research, flagship documents, ex. STR
The Monitoring Tool
Assessing state of the art and competition

Comparative benchmark analysis:
- Science (bibliometry, publications)
- Technology and innovation (patents)

State of the art:
- Relative sizes and performances
- Technology field dynamics
- Co-publications and cooperation analyses
- Co-analyses with market activities
- Semantic/content-wise analyses
- Scientific focus of publications, involved disciplines, etc.
Workshops: Structured into three sessions:

1. SWOT analysis
2. Portfolio analysis:
   - market attractiveness
   - technological attractiveness for different graphene applications
3. Roadmapping section
   - current technology readiness levels
   - timing and development path of GRM for use in application areas and related markets
   - important challenges and barriers (red brick walls).
## SWOT for use of emerging technologies in specific application

### Internal factors
directly controllable by emerging technology development itself:
- existing and potential technological (dis-)advantages (enabling factor,)
- non-technological (dis-)advantages production/process/implementation (dis-)advantages
- knowledge base and maturity

<table>
<thead>
<tr>
<th>Advantages over others.</th>
<th>Strengths</th>
<th>Weaknesses</th>
<th>Disadvantage relative to others.</th>
</tr>
</thead>
</table>

### External supportive aspects

<table>
<thead>
<tr>
<th>External supportive aspects</th>
<th>Opportunities</th>
<th>Threats</th>
<th>External hindrances/issues that could cause trouble for using graphene/2D</th>
</tr>
</thead>
</table>

### External factors
not directly controllable by emerging technology development itself:
- markets/trends
- requirements/demands of and for applications,
- strengths/weaknesses of state of the art and competing technologies
- (EU) supply/value chains
- (EU) innovation ecosystem
- frame conditions
SWOT analysis – some aspects to consider

**Technology:**
- Performance Today
- Performance potential
- Uniqueness: “USP”
- Complexity: Ease of use

**Production:**
- Scalability Today
- Scalability Potential
- Integratability Today
- Integratability Potential
- Cost for production

**Applications:**
- Cost reduction today
- Cost reduction potential
- Diversity
- Product value

**Market:**
- Justified cost/function gain
- Market volume
- Market competitiveness

**Timing:**
- Time to market assessment
Assess matching: Portfolio analysis

- Portfolio Analyses

  „technology attractiveness“

  „Niche breakthrough“
  1 4

  „Niche incremental“
  2 7

  „Killer application“
  3

  „Drop-in“
  5 6 8

  „market attractiveness/EU perspective“

Application areas
Roadmapping
Key questions (1)

1. **Application with technology demonstrators TRL>3 (CRS 2)**

2. **KPIs:**
   - What are key targets?
   - Lead KPIs, lead parameters that are crucial? Numbers?

3. **RL today (range)**
   - Start with coarse scale, what are we exactly talking about (e.g. in terms of market, product)
   - Optional: Narrow down to TRL, MRL for applications/products mentioned by the participants
   - In case there is already something on the market: What is the quality, is it real?

4. **Barriers/challenges**
   - RBW: What are key barriers/challenges? Where shall one invest to solve problems?
     What is the critical path? How can a road look like?
   - Implications for research activities?
Roadmapping
Key questions (2)

5. Time related aspects:
   - Window of opportunity? (Market-side time related aspects)
   - Hierarchy of activities and actions that are executed to meet those targets
   - Time dimension for those activities
     - When can the target be reached?
     - When is next step reached (on coarse scale)
     - Probability?
     - Compare to other elements (what comes first?)
     - Concrete product examples
     - Early adopter? When?
     - What comes later? When are which markets addressable?
     - Are there multiple ‘paths’ or ‘routes’ to reaching that target?
     - Is there a product or application area that can be served “along the way” (e.g. Li-S batteries is the main goal, but along the way (or when those work), also standard LiB can be enhanced…
Roadmap – example from Graphene Flagship: Photonic network components

Market side/competing roadmaps

Challenge

Remark

Integration, reliability, yield

Heterogeneous display, better quality graphene, lower contact resistance

Responsibility, contacting, performance limited by assembly

Wafer scale integrated on Si

Wafer scale integrated on SiN

KPIs from DoA TRL assessment

Graphene/2D-based applications

© Fraunhofer ISI
Seite 13
Conclusions
One possible point of view

- Qualitative assessment as guideline, based on insights
- Two possible measures for prioritization

- European perspective (EU companies/Industries enabled by this GRM development, macroeconomic perspective, strong integrators outside Europe, dominating industry)
- overall market potential and market need for solutions offered by GRM
- Negative assessment can point towards global value chains, where most added value will be potentially generated outside of Europe

<table>
<thead>
<tr>
<th>Application sub topics</th>
<th>Current technological potential (USP)</th>
<th>Market potential (EU perspective)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub topic 1</td>
<td>- - (rather poor)</td>
<td>- (not good)</td>
</tr>
<tr>
<td>Sub topic 2</td>
<td>0 (not promising)</td>
<td>+ (promising)</td>
</tr>
<tr>
<td>Sub topic 3</td>
<td>++ (very promising)</td>
<td>? (undecided, not assessable, still open question)</td>
</tr>
</tbody>
</table>
Innovation roadmapping for emerging technologies: success factors (1)

- Backing and commitment of project coordination and funding agencies (scientists might have other priorities than engaging in innovation and roadmapping)
- Use Roadmap as one information source affecting further funding and clearly communicate this role
- Set up interdisciplinary roadmapping team combining science, engineering, economic and societal perspectives AND methodological experience
- Interact intensively with scientific work and researchers, feedback information thereby creating commitment
- Use approach that is as transparent as possible to create broad acceptance in the project (e.g. through feedback loop and offers for involvement)
Innovation roadmapping for emerging technologies: success factors (2)

- Expose researchers to industry expectations, challenge scientific excellence with needs and demand of industry and users: workshops
- Implement application driven way of thinking (market pull)
- Include market research
- Take into account European perspective, i.e. Industrial basis and beneficiaries of developments to enable European added value
- Take ecosystem perspective: there is no standalone, single actor mode of innovation
- Be hard in methodologies
- Develop and include an external perspective via STI monitoring
Graphene Flagship TIR: lessons learned

- Industry engagement is crucial even at early stage or low TRL
- Don’t ask industry for interest in emerging technology, rather ask for needs, functions, cost, performance....
- Design and include roadmap into research planning at earliest possible stage
- Focus on purpose of roadmap:
  - Start with internal management and planning tool
  - Expand for dissemination
  - Don’t do this in parallel
Graphene Flagship TIR: The current version

4 main topics with 18 subtopics and ~84 application areas covering nearly all industrial sectors

Existing roadmaps, market reports, strategic documents, databases (market data, patents, publications, news)

2 Workshops with 82 participants

65 interviews in total, 46 with industry

470 pages content
92 Figures
97 Tables
31 Roadmaps

© Fraunhofer ISI
Seite 18
Structure of roadmapping document

For each topic

1. Introduction
   • Delineation of topic
   • Role of graphene/2D materials
2. Market perspective (opportunities and threats)
   • Market overview
   • Opportunities and threats
3. Graphene/2D materials perspective
   • Current strengths and weaknesses
4. KPIs
5. Roadmap
   • Current maturity
   • Barriers/Challenges
   • Potential actions
   • Roadmap
6. Conclusion - Current technological potential (USP) and Market potential (EU perspective)
Graphene Flagship TIR

4 main topics with 18 subtopics and ~84 application areas covering nearly all industrial sectors

Existing roadmaps, market reports, strategic documents, databases (market data, patents, publications)

2 Workshops with 82 participants

STI Roadmap: Revised Annex 2 to deliverable 15.1

Graphene and other 2D materials
Technology and Innovation Roadmap
Version 3

Michael Meister, Annette Braun, Barbel Hüsing, Ulrich Schmoch, Thomas Reiss

Contact at Fraunhofer ISI:
Dr. Thomas Reiss
Competition Center Emerging Technologies
Fraunhofer Institute for Systems and Innovation Research ISI
Breslauer Straße 48 | 76139 Karlsruhe | Germany
Phone +49 721 6809-160 | Fax +49 721 6809-315
thomas.reiss@isi.fraunhofer.de
www.isi.fraunhofer.de

January 23rd, 2017

547 pages
470 pages content

© Fraunhofer ISI
Seite 20