Outline

Introduction
 • ETSI TR 103 376: Content and Methodology

Results: main gaps (per knowledge area) and recommendations
 • Identified by expert team and by the survey respondents
 • For all vertical domains (Smart Cities, Smart Living, Smart Farming, Smart Wearables, Smart Mobility, Smart Environment, Smart Manufacturing)

Conclusion and summary
 • Main topics identified
Rationale for this study
• The **coverage of the IoT landscape** - and the possibility to develop large-scale interoperable solutions - is **not fully guaranteed** since some elements in this landscape may be missing.

Main Objectives
• To provide, starting from the use case families selected for the IoT LSPs, the **collection of all missing functionalities** identified in SDOs/SSOs to offer solutions addressing the use case requirements
• To check that there are **no omissions in the standardization activity** with regard to the use cases (in particular, gaps with respect to the framework).
• To **propose some recommendations to overcome potential gaps**. Particular attention is paid on standardization of the horizontal application layer and the need to assure an interworking framework among different vertical industrial segments.
TR 103 376: Identification of standards gaps and recommendations

Nature of gaps
- Missing standards
- Missing APIs
- Duplications that would require harmonization
- Missing interoperability profiles that would clarify the use cases
- Classified as: technical, business or societal gaps (incl. security and privacy)

Gaps identification methodology
- Survey to obtain inputs from the standardization and stakeholders community:
 - 215 answers, include gap identification as well as proposed solutions
- STF experts analysis to expand on the current standards landscape
 - For each vertical, extract requirements from the AIOTI reports and other documentation
 - Identify if SDOs/Alliances address the target requirement (using TR 103 375)

All identified gaps recorded in the TR, to serve as a reference for the LSPs

Resolution of the gaps
- Dissemination of STF 505 results: to point to gaps and allocate them
- It is left to the proper organizations of the IoT community to fill the gaps
TR 103 376 : Structure

General Considerations
- Definition, identification and mapping of gaps
- Vertical domains and Knowledge areas covered

Gap analysis in the context of:
- Smart Cities
- Smart Living environments for aging well
- Smart Farming and food security
- Smart Wearables
- Smart Mobility
- Smart Environment
- Smart Manufacturing

Cross IoT platform interoperability and harmonization

Annex: the ETSI STF 505 Gap Analysis Survey
An example of TR content: Identification of security gaps in Smart Cities

Input from the standardization and stakeholders community

• Captured by the survey

<table>
<thead>
<tr>
<th>Nature of the gap</th>
<th>Knowledge Area</th>
<th>Criticality</th>
<th>How can standardization or regulation improve this?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privacy and security aspects not sufficiently covered, developed and not real</td>
<td>Communication and Connectivity (network and service levels); Integration/Interoperability; IoT Architecture; Security and Privacy</td>
<td>3</td>
<td>IoT and big data pose new challenges to an acceptable model of privacy and security management and rules (in terms of civil rights and "industrial privacy/security" guarantees: it is necessary to find out new models/approaches</td>
</tr>
</tbody>
</table>

Expanded by STF 505 experts analysis on the current landscape

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Organizations providing related standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level of trust (common good objective)</td>
<td>3GPP W3C</td>
</tr>
<tr>
<td>bootstrap authentication and key agreement for application security</td>
<td></td>
</tr>
<tr>
<td>End-to-end security</td>
<td>3GPP, Hypercat, IEEE, IETF</td>
</tr>
<tr>
<td>Confidentiality and privacy, protection of personal data; encryption</td>
<td>OASIS</td>
</tr>
<tr>
<td>Secure remote access to the system from third-parties; user authentication, access control</td>
<td>IEEE Hypercat</td>
</tr>
</tbody>
</table>
49 main gaps result from the consolidation view (TR 103 376)
Main gaps and recommendations per knowledge area
Connectivity

Fragmentation of the standardization landscape.

Large number of heterogeneous & competing communications and networking technologies

• ➔ Choose solutions with additional criteria: IPR, licensing and monthly fees, deployment cost, security, energy consumption.
• ➔ Further criteria: flexibility, prioritization of the flows, scalability, resilience to external factors and possible issues in the network, high network availability, spectrum resources availability
• ➔ May need refinement of existing standards
Upper layers: service and application

- **Data interoperability**: lack of easy translation mechanisms between different specific models. Need of a global and neutral data model. Seamless inter-working between data systems
 - ➔ Develop **semantic interoperability** to enable harmonization

- **Interoperable processing rules**: lack of definition for advanced analysis and processing of sensor events and data to interpret the sensor data in an identical manner across heterogeneous platforms
 - ➔ Develop **guidance for decision-making processes**, for data organization, storage and exchange.

- **APIs to support application portability among devices/terminals**
 - ➔ **Interoperability of platforms**: data level (semantic) + application level (services)
Global-level standards (international vs. regional level)

- **Harmonization** / Interoperability of similar messages defined at regional level

Fragmentation due to competitive platforms and standards

- Develop **technical guidance of compatibility** between standards
- Some clarification may be brought by **refinement of the use cases**
- Develop **interworking / cooperation between platforms**, e.g. possibility to exchange data. Manage applications heterogeneity
- Focus on the **whole value-chain** (devices, platform, etc....), not only on connectivity. Enable the support of a wide range of sensors, devices, protocols, services ... Ensure **flexibility and scalability**
Applications management (life-cycle)

Usability [Societal gap]

- Develop **tools to enable ease of** installation, configuration, maintenance, operation of devices, technologies, and platforms.
- Simplify the **personalization of the system.** Enable **easy accessibility and usage** to a large non-technician public.
- When suitable, allow **secure remote access** to perform device maintenance. Enable **continued support to the client** after purchase.

Applications tailored to individual needs: evolution, flexibility of the components

- Standardized **methods to distribute software components** to devices across a network, for life-cycle management in the field.
- Built-in **application performances' monitoring.**
Deployment tools

- Unified model/tools for deployment and management of large scale distributed networks of devices
IoT Architecture

Identification

- Provide a *global reference for unique and secured naming mechanisms*
- Federate existing identification schemas. Secured IoT nodes identification model

Multiplicity of IoT HLAs, platforms and discovery mechanisms

- *oneM2M* is emerging as a global international platform that has gained a very large support of various actors (ref. workshop held in ETSI in November 2016)
- Develop specific solutions at the Service Layer to enable communications between the platforms (e.g., offer plugins to oneM2M platform)
- Allow smart objects to move and enter different eco-systems (e.g. during an update of the system or change of provider)
Quality assurance and certification

- Building of certification mechanisms defining “classes of devices” and covering features such as robustness, consumption, accuracy, reliability, resilience over long periods of time (self-sufficient operation)
- Standardisation of test specifications and suites (hardware and software) and proper guidelines regarding the final characteristics that correspond to the expectations
- Definition of approval processes for IoT devices conformance assessment.

Device modularity

- Standardisation of the ability to add/remove hardware capabilities to a device
Privacy and security issues can be a blocking factor for user’s acceptance and prevent large scale deployments. Security and privacy are addressed on an isolated basis for part of the applications

- Develop “classes of devices” and device tagging for security
- Develop mature data management, data security, data privacy and ownership standards, rules to ensure trust in a common good objective, foster security by design initiatives
- Develop data rights management (ownership, storage, sharing, selling, etc.). Define samples, good practices, regulations...
- Develop education of end users on these features

Lack of highly secure and trusted environments

- Build Risk Management Framework and Methodology
- Develop a workflow to establish trust between the players
Societal gaps [including regulations]

- **Lack of knowledge about potentialities of IoT among decision makers, users**
 - ➡️ **Dissemination** fosters awareness from the different actors
 - ➡️ Encourage the development of *education and dissemination material of IoT standards* and specifications

- **Green Technologies**
 - ➡️ Insert *low power and low energy constraints* integration in the whole value chain.

- **Liability for data privacy**
 - ➡️ Regulations to enforce the *respect of privacy* at all levels of the IoT systems and *distribute the liability* between the different providers and actors
Ethics. Transparency and choice for citizens

- Guarantee of integrity, ethical by design
- Exchange data on security breaches to raise awareness and avoid their repetition

Not everything should be smart

- Definition of what is useful to society and what is useless. Adaptation to the needs

Green Technologies

- Develop pollution management

Regulations for frequency harmonization and usage
Business gaps

Lack of a reference for business cases and value chain model to guide choices for deployment

- Define an integrated vertical business architecture, considering all actors of the value chain, from manufacturers to dealers, installers, service providers, end users...
- Clarify what is proprietary, open source, subject to IPRs
- Reduce delay of standardization to avoid proprietary solutions (vendor lock-in). But in parallel, enable the insertion of existing proprietary solutions (de-facto standards) in the architecture
- Roadmaps to market taking into account renewal cycle. Simplify early deployments
- Foster new investment paradigms to small companies, early adopters, vs. extreme competition
- Give priority to cost effective implementations, reusable solutions
Business gaps (cont.)

Collaboration between vertical domains, siloed applications

- ➔ Develop **communication between stakeholders** from technology and vertical domain
- ➔ Specify the **collaboration of siloed applications and services**, create a global value chain (e.g., healthcare service links with other services such as smart home for living environment, smart cities for outside activities, smart mobility)
- ➔ Develop **more transversal and common solutions** (compatibility) and business models. Aim at the seamless interoperability or plug and play of the different standardised IoT architectures and platforms
Interoperability will be essential for the deployment of the IoT ecosystem and for ensuring seamless flow of data across sectors and value chains **

- Solutions should be *more than technical solutions*
- Existing standards to be refined to *address non-technical issues*
- **Certification mechanisms** are a very important topic, mandatory to complete technological developments
- **Security and privacy** are still a limiting factor
- Regulations and dissemination are needed to *ensure users’ acceptance*
- Solutions should give advantage to *transversal compatibility* rather than vertical domain specifics
Thank you for your attention!

Michelle Wetterwald
FBConsulting, member of STF505
Sophia Antipolis, France
michelle.wetterwald@gmail.com

STF 505 Homepage: https://portal.etsi.org/STF/stfs/STFHomePages/STF505
ANNEX
Consolidated view of the main gaps

<table>
<thead>
<tr>
<th>Main Gaps Identified (by topic)</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security and privacy</td>
<td>7</td>
<td>14.3</td>
</tr>
<tr>
<td>Connectivity</td>
<td>5</td>
<td>10.2</td>
</tr>
<tr>
<td>Data interoperability</td>
<td>5</td>
<td>10.2</td>
</tr>
<tr>
<td>Service platform</td>
<td>5</td>
<td>10.2</td>
</tr>
<tr>
<td>Devices and sensors</td>
<td>3</td>
<td>6.1</td>
</tr>
<tr>
<td>Interoperable processing rules</td>
<td>3</td>
<td>6.1</td>
</tr>
<tr>
<td>Autonomicity, decision-making processes</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>Data Models</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>Communication infrastructure</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Cyber Security</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Data handling</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Decision-making processes</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Devices certification</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Devices modularity</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Duplication of standards according to different regions of the globe</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Ease of use</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Fragmentation of the technology according to the target application</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Integration of a larger set of IoT devices</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Position accuracy</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Processing rules and decision-making processes</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Usability and customization of the solutions</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Others</td>
<td>4</td>
<td>8.2</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>100</td>
</tr>
</tbody>
</table>