AIOTI WG03 Workshop IoT Platforms & Standardization Industrial IoT Panel Bruxelles, 8 February 2017

> Mauro Isaja – <u>mauro.isaja@eng.it</u> Engineering Group

Hello!

Mauro Isaja – mauro.isaja@eng.it Project Manager, Research & Development BU @Engineering Group The first IT player in Italy:

- 9% market share
- > 1,000 large accounts in all markets
- > 8,100 employees

Technical background: developing and delivering commercial solutions to the industry and finance sectors

Current role: project coordinator of FAR-EDGE, technical lead of BEinCPPS Perspective on IIoT standardization: digital platforms for the manufacturing industry, pilot experimentations focused on real-world production scenarios

Setting the Context

BE in CPPS

FoF-09-2015 – ICT Innovation for Manufacturing SMEs (I4MS)

Project Summary			
Туре	IA		
Start	01/11/2015		
Duration	36		
Budget	9.5M		
Coordinator	POLIMI		

FoF-11-2016-b – Novel Architectures for Factory Automation

Project Summary			
Туре	RIA		
Start	01/10/2016		
Duration	36		
Budget	4.5M		
Coordinator	ENG		

Common Philosophy BE (in CPPS)

Open Platforms Open Source Software

Technical results assessed on real production systems

Different Strategies BE in CPPS

Digitizing Industry Innovation Action: adoption/extension of Cyber-Physical Production Systems major focus on business/migration

Leadership in Digital Platforms Research & Innovation Action: advancement over SotA major focus on technology/ functionality

Different Approaches BE in CPPS

Bottom-up: from an existing generic platform to the implementation of specific use cases (users build their innovation on

top of available functionality)

Top-down: from specific user requirements to the design and implementation of a more generic platform (users start from an abstract "platform concept")

BEinCPPS Overview

BE (in CPPS

Business Experiments

in

Cyber-Physical Production Systems

http://beincpps.eu/

- Goals
 - Integrate a novel service platform based on SotA technology – i.e., as a convergence of CPS, IoT and Future Internet platforms
 - Experiment new CPS-based business processes in pilot factories located in five European regions ("Regional Champions")

• Impact

- Build an SME-oriented business ecosystem based on the service platform and on regionally-scoped Digital Innovation Hubs
- Extend the Regional Champion experience to other regions by means of Open Calls

• Status

- Sixteen months into the project
- First-generation service platform deployed on pilot factories, first round of experimentation ongoing, launching of DIHs

FAR-EDGE Overview

• Goals

- Reference implementation of an IoT-enabled open platform for FA based on Edge Computing principles and Blockchain technology for shortening data paths and decentralize control
- Enable more powerful and flexible FA solutions
- Impact
 - Creation of a multi-sided ecosystem (OEMs, ICT providers and integrators, standard bodies and communities, end users) around the open platform

• Status

- Five months into the project
- Investigating scenarios, requirements, standards & technologies
- Design of the open platform's architecture started

Factory Automation Edge Computing Operating System

The FAR-EDGE Pilots

Cross-Plant Process Synchronization

Automation	Security	Communication		
IEC61499	OAuth2.0	NGSI	MQTT	OPC UA
BPMN2.0		AMQP	CoAP	LWM2M

Lessons Learned:

The Manufacturing Enterpise Perspective

• Standardization can only be pushed forward by **business concerns** like **reducing cost**, **avoiding vendor lock-in** and **enabling new/enhanced business processes**

- In planning the adoption of standards, reduction of cost must be objectively proven
- Vendor lock-in is normally **not perceived as a concern**, but this is **slowly changing**

• Enhancing existing processes is **perceived as difficult**, because of the **risk of disruption**

• Introducing entirely new processes (or even plants) is perceived as less difficult

Lessons Learned:

The Technology Provider Perspective

- Pursuing vendor lock-in is gradually becoming a less profitable and more risky strategy
- Standards tend to reduce the cost of development, but are not a competitive advantage

Lessons Learned:

The Research Project Perspective

- The mission is to **promote technology**, using funding and *sandboxed* environments to **overcome the barriers to experimentation**
- Running on-the-field experimentation is like injecting new technology into the factory's DNA: in the end, the expected result is to **lower the barriers to future adoption**
- Promoting standardization is **not different** than promoting new technologies

Status Check: IIoT Interop in Factories

Gridwise Interoperability Context Setting Framework From AIOTI WG03 report on Semantic Interoperability, v2.0

- Current target of research actions: achieve semantic interoperability
- Adoption by the manufacturing industry mandates mature standards
- Ontologies and ICT tools are in the early stages of their development
- Awareness of users is low, research actions must demonstrate business benefits
- Current target of innovation actions: standardize field communication
- Mature standards are available
- Mature ICT tools are starting to be available
- Market demand is low but growing at least for new equipment

Focus on Communication

Gridwise Interoperability Context Setting Framework From AIOTI WG03 report on Semantic Interoperability, v2.0

Emerging winner on the Edge level Commercial and Open Source implementations of the software stack

Focus on Semantic Interoperability

Gridwise Interoperability Context Setting Framework From AIOTI WG03 report on Semantic Interoperability, v2.0

- Not a requirement today at the Edge level: shopfloor systems are mostly homogeneous, RT control software is built ad-hoc
- Might change when plug-and-produce smart objects / machinery will become a reality outside of labs (e.g., SmartFactoryKS)
- Not a requirement at the Cloud level as well: plant / factory / enterprise systems are wired to the Edge level by ad-hoc integration
- Might change if manufacturing industries will adopt standard-based off-the-shelf solutions for their upper layers of the automation pyramid, or even outsource them to SaaS providers (e.g., Virtual Fort Knox)

Thank you! by Mauro Isaja – mauro.isaja@eng.it