Deloitte.

Emerging issues of data ownership, interoperability, (re)usability and access to data, and liability

Liability in the area of autonomous systems and advanced robots / IoT-systems'

13 July 2017

hans.graux@timelex.eu

open, competitive choice for IT users

Introduction

Main objective and scope of the study

The main objective of the present study is to: "support the European Commission and inform the Commission's Impact Assessment concerning emerging issues in relation to the data economy, IoT, contractual arrangements and research data in relation to:

- Data ownership,
- Interoperability,
- (Re)-usability and access to data, and
- Liability.

Restrictions linked to **data protection and data location** are out of scope of the assignment.

The Internet of Things and robotics

Scoping remarks

Working definitions:

- **IoT** = "Internetworking" of physical devices, allowing them to collect, exchange or otherwise process data (semi-)autonomously in order to support certain functionalities
- Robotics = mechanical or virtual agents embedded in physical devices that allow the devices to act (semi-)autonomously

Examples? Self-steering drones, self-driving cars, domotics (vacuum, lawnmower, ...), maintenance / construction robots

Core characteristics

Physical devices: not necessarily constrained to a virtual environment

Therefore: physical impact, potentially implying material / physical damage

• (Semi-)autonomous: fully human controlled systems are out of scope

Therefore: data driven: dependant on sensors or external data sources

Therefore: logically controlled: dependant on pre-programmed routines

Therefore: attribution challenge: to which entity (human/company) is behaviour assigned?

Ecosystems and classifications

One size does not fit all

Autonomy

	Semi – autonomous	Autonomous
What?	Human controls operation of the device	Device operates fully independently
	E.g. smart car – lane support – speed control	E.g. smart car - self-driving
Implication?	Human bears some liability	Liability must go 'elsewhere'

Dependence

	Self - contained	External driver
What?	Device depends fully on its own sensors	Device obtains external data
	,	E.g. agricultural drone obtains soil humidity data from land sensors and irrigates on that basis
Implication?	Drone errors originate solely from drone	Drone errors may have external causes

Ecosystems and classifications

One size does not fit all

Operating environment

	Closed	(Semi-)open	
What?	Device remains in tightly confined space	Device could operate semi-freely	
	E.g. delivery robot in a storage facility	E.g. delivery drone in public airspace	
Implication?	Risk must be managed within the space	thin the space Risk may escape its context	

Risk context

	Low	High	
What?	Device errors are (relatively) low impact	Device errors are (relatively) high impact	
	E.g. vacuum robot shortcircuits and causes fire	E.g. nuclear facility maintenance robot shortcircuits and causes fire	
Implication?	Liabilities are foreseeable and manageable	Liabilities may escalate	

Extra-contractual, contractual and statutory liability Problem definition

Basis for liability claims and concepts of damages					
Contractual liability	Extracontractual liability, including torts	Statutory liability, including Product Liability			
Compensatory (actual) versus punitive versus nominal – Direct versus indirect – Intentional versus unintentional and (grossly) negligent - Incidental, special, strict or consequential – Material (including physical and lethal harm) and immaterial (including notably lost profits, lost business opportunity and reputational harm)					

Key problems:

- What does this mean? Interpretation and laws can differ from country to country.
- Applicability? Is an IoT / robotics device a product? A service? A hybrid?
- Innovation? How do we deal with unforeseeable risks, autonomous devices, self-learning, ...?
- **Effectiveness?** How do we ensure that access to compensation is available?

Extra-contractual and contractual liability – Product liability Preliminary findings – Product Liability Law

Scoping

- What is a 'product'? IoT? Robot? Data?
- Fading line between products/services

E.g. I buy connected sensors that monitor my crop fields, and lets me see my farm via a cloud based service. Suddenly my data is no longer shown. Did I buy a defective product? Or is there a problem with the data? Or the cloud service?

E.g. Will a self-driving car ultimately be a product or a service?

Extra-contractual and contractual liability – Product liability Preliminary findings – Product Liability Law

Defect

- Exclusive focus on safety, without criteria for assessment
- What safety is a person 'entitled to expect' for evolutive / self-learning / autonomous products?
- What is the role of the consumer for products that receive updates or where users determine the use cases?
- **E.g.** The Mirai botnet badly secured video cameras were used to stage a DDoS attack. Were they defective? For the consumers, they worked just fine.
- **E.g.** My drone has a collision detection system. After a software update, it no longer works and it crashes into someone. Was it defective? Is it now?
- **E.g.** My car receives an update that will improve impact detection and avoidance. I don't install it and crash soon afterwards. Who is liable?
- **E.g.** Investment algorithms caused the "May 6, 2010, Flash Crash", destroying around 1 trillion dollars in 36 minutes through high frequency trading. Did anything go wrong?

Extra-contractual and contractual liability – Product liability Preliminary findings – Product Liability Law

The producer of a product

- Manufacturer or importer
- What about composite/complex products and product/software chains?

E.g. If I monitor my farm through connected sensors from company A, drones from company B, bundled by company C and analysed by company D, where do I go in case of trouble?

Damage and evidence

- Difficult to attribute the defect and to identify the producer
- Limited scope of damage material only
- Only 'for private use or consumption'

Extra-contractual and contractual liability – Product liability

Preliminary findings – Product Liability Law

Emerging complementary laws

- E.g. self-driving cars or drones
- Can create fragmentation: how do I develop a cross border drone delivery service or a self-driving taxi service across the EU?

10

Extracontractual and contractual liability Possible policy options

No intervention

No specific measures taken

Non-regulatory options

- Recommended liability provisions, including model contract clauses and best insurance practices in a specific sector or in general
- Identifying appropriate standards for safety assessments and certification in a specific sector or in general
- Establishing Member State specific coordination and cooperation mechanisms to address cross border data economy challenges
- Funding innovation and research, including in particular in relation to industrial / big data platforms

Regulatory options

- Sector specific legislation on minimum liabilities to be borne by certain service providers in certain sectors
- General revision of liability law
 - Expanding the scope of Product Liability law
 - Rules for products with elevated risk profile
 - Alternative liability allocation risk-opening approach / risk management approach; potentially coupled with insurance obligations

Outcomes of the public consultation on Building a European Data Economy On emerging challenges of the Internet of Things and robotics liability

From 10.1/26.04.2017 – 212 respondents (producers and consumers) - 50 position papers

- 74% rated contractual and extra-contractual liability as the most consumerfriendly type of product liability regime to deal with damage
- 71% believe that contracts can address the attribution of liability.
- Most frequent damages are economic losses (e.g. missed opportunities). The main reason not to launch compensation procedures was the procedural costs.
- 67% of producers factor in the risk of liability when pricing their IoT/robotics device. But 51% of these do not take any insurance coverage.
- Would a **risk management approach** be a way forward? **42% said yes**, 14% did not know, and 28% did not have sufficient information.
- 60% believe that an IoT/robotics device should have an event data recorder
- 32/50 papers stated that the current liability framework is adequate, 8 called for a revision, whereas the remainder did not conclude on the need to revise.

