Agricultural and Food Innovation: Europe in a Changing Global Reality

Philip G. Pardey

University of Minnesota

Designing the Path: A Strategic Approach to EU Agricultural Research and Innovation January 27, 2016, Brussels, Charlemagne Building

Outline

Thinking and acting for the long run

- Food and Agricultural Futures
 - Changing Agricultural Demand Realities
 - Changing Agricultural Supply (Production and Productivity) Realities
- Changing Food and Agricultural R&D Realities
- Implications for Food and Agricultural R&D

Why the Long Run Matters

Source: Alston, Anderson, James and Pardey (2010, 2011)

Illustrative Technology Development Lags (US)

Source: Pardey, Alston and Ruttan (2008) and Alston et al. (2010)

Illustrative Technology Development Lags (US)

Source: Pardey, Alston and Ruttan (2008) and Alston et al. (2010)

U.S. Maize Technology Adoption Lags

Source: Beddow (2012)

U.S. Maize Technology Adoption Lags

Source: Beddow (2012)

Changing Agricultural Demand Realities

Population continues to grow, as will per capita incomes

BUT

In important respects agricultural demand futures will not be like the past

Population Projections, 1950-2100

Source: UN Population Division (2015).

Age Pyramids

Source: UN Population Division (2015).

Behind the Aggregate Population Numbers

- Between 2015 and 2050
 - More than half the projected global population growth will occur in Africa
 - More than half the growth will occur in just nine countries (India, Nigeria, Pakistan, DR Congo, Ethiopia, Tanzania, United States, Indonesia and Uganda)
- Global life expectancy is expected to rise from 70 years in 2010-15 to 77 years in 2045-50, and 83 years in 2095-2100
 - The number of people aged 60 or more is projected to be 1.4bill. by 2030,
 2.1bill by 2050, and 3.2bill by 2100.

(The projected slowdown in population growth arising from a reduction in fertility is due to aging)

GDP Per Capita, 1980-2050 (2005 PPP\$)

Source: CEPII projections (Foure et al. 2012).

Food Costs -- Farm vs Post-Farm Shares

Changing Agricultural Production and Productivity Realities

Changing Location of World Agriculture, 1961 vs 2013

Corn Movement in the U.S., 1899-2007

Source: Beddow and Pardey (2015)

Corn Movement in the U.S., 1899-2007

Moving Matters

279 kilometers north 342 kilometers west

16 to 21 percent of corn output growth

ut by County, 2007

Source: Beddow and Pardey (2015)

Spatial Concentration in Production

Past and Projected Global Average Crop Yield Growth

Productivity Maintenance – The Case of Wheat Rusts

Running hard to stand still!

Stem Rust Stripe Rust Leaf Rust

Three Rusts—Seasonally Vulnerable

Vulnerability to Wheat Rusts Worldwide

	Stem, Leaf and Stripe Rust Vulnerability			
	None	Only One	Only Two	All Three
	(Percentage of output, all farms)			
Western Europe	0.0	0.0	0.7	99.2
North America	2.2	12.5	37.1	48.3
Australia	0.0	10.3	17.8	71.9
Sub-Saharan Africa	11.0	3.6	13.9	71.6
China	0.0	0.0	11.5	88.5
India	6.3	18.8	72.5	2.5
World	3.2	6.9	27.1	62.7

Shifting Ground

The Global Food and Agricultural R&D Landscape

Global Public and Private Food & Agricultural R&D, 1960-2011

The Social Payoffs to Agricultural R&D

Have the returns to R&D declined over time?

- 2,829 IRR evaluation estimates from 492 separate studies
- Preliminary result: No evidence of a change in the returns to agricultural R&D over time

Behind the Aggregate R&D Numbers

- Agricultural R&D spending still highly concentrated spatially
 - But big changes in the (rank order) of top 10 spenders

Spatial Concentration -- Top 10 Country Share

Behind the Aggregate R&D Numbers

- Agricultural R&D spending still highly concentrated spatially
 - But big changes in the (rank order) of top 10 spenders

- Shift to more private performance
 - But private spending is mainly concentrated in the rich (58.2%) and faster growing middle income countries (BIC 35.7%)

Private Share of Total Agriculture & Food R&D

Private Food and Agricultural R&D in Rich Countries

Behind the Aggregate R&D Numbers

- Agricultural R&D spending still highly concentrated spatially
 - But big changes in the (rank order) of top 10 spenders

- Shift to more private performance
 - But private spending is mainly concentrated in the rich (58.2%) and faster growing middle income countries (BIC 35.7%)

A stark and growing global divide

Shifting Global Shares of Public Food & Ag R&D, 1960-2011

Concluding Remarks

- Food demand largely follows population, which will continue to shift to Asia and, especially, Africa
- R&D likely to remain highly spatially concentrated
 - A growing disconnect between the geography of agricultural demand and the location of agricultural R&D performance
- Shift towards more contestable and project-oriented (often shorter-term) funding of public science
 - The problems are just as hard as they ever have been
 - The present returns are just as high (pointing to persistent underinvestment)
- Accountability for sure, but with a firm and focused eye to the long-run nature of the problems and the innovation processes in play

Thanks!

www.instepp.umn.edu

www.harvestchoice.org