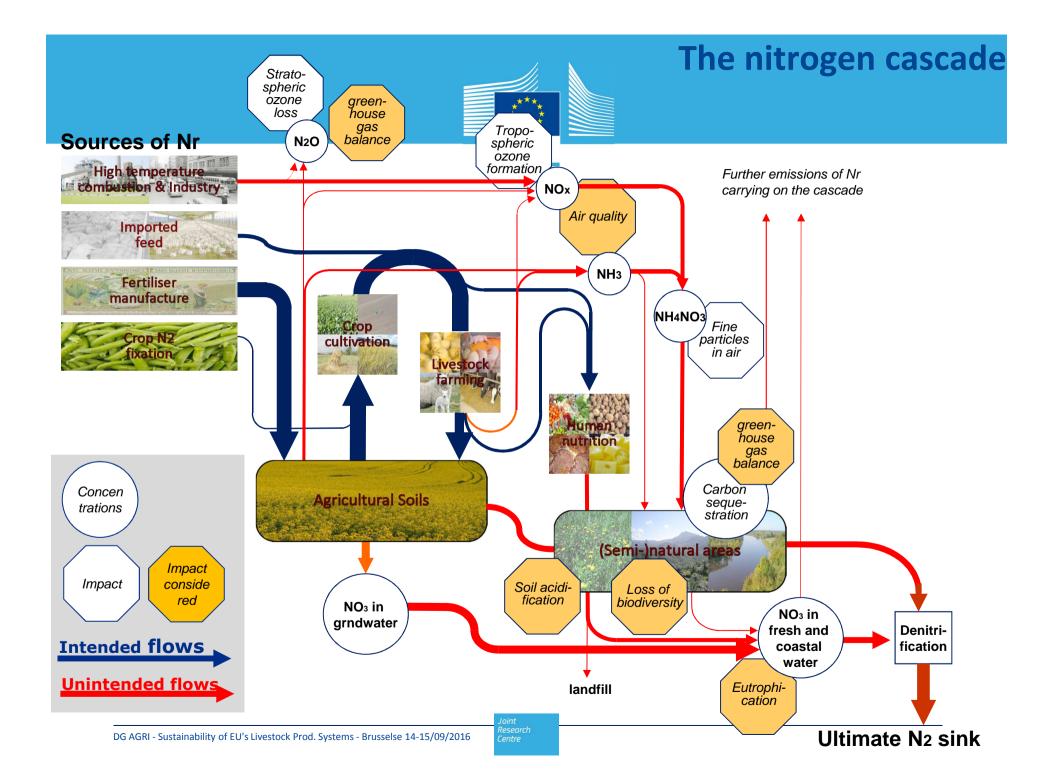
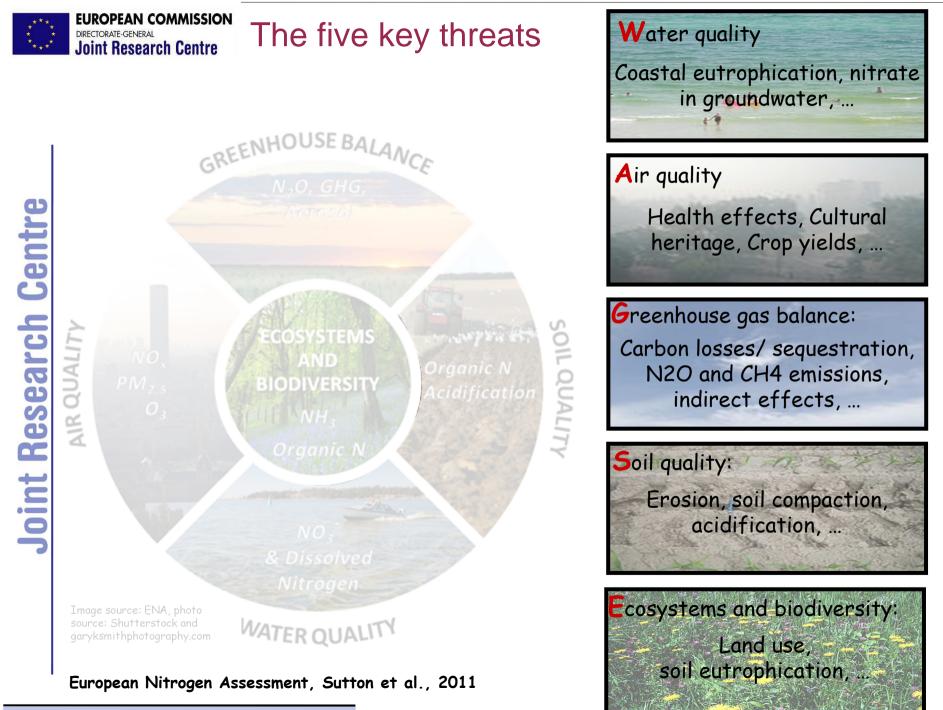


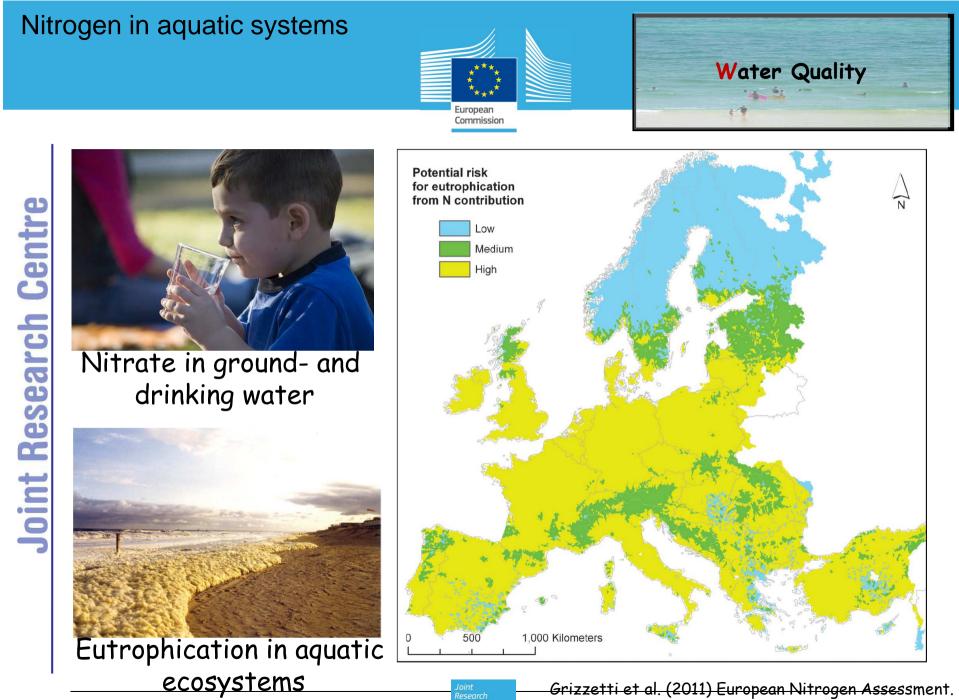
Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity

Environmental Research Letters, 10(11), 115004., 2015 http://doi.org/10.1088/1748-9326/10/11/115004

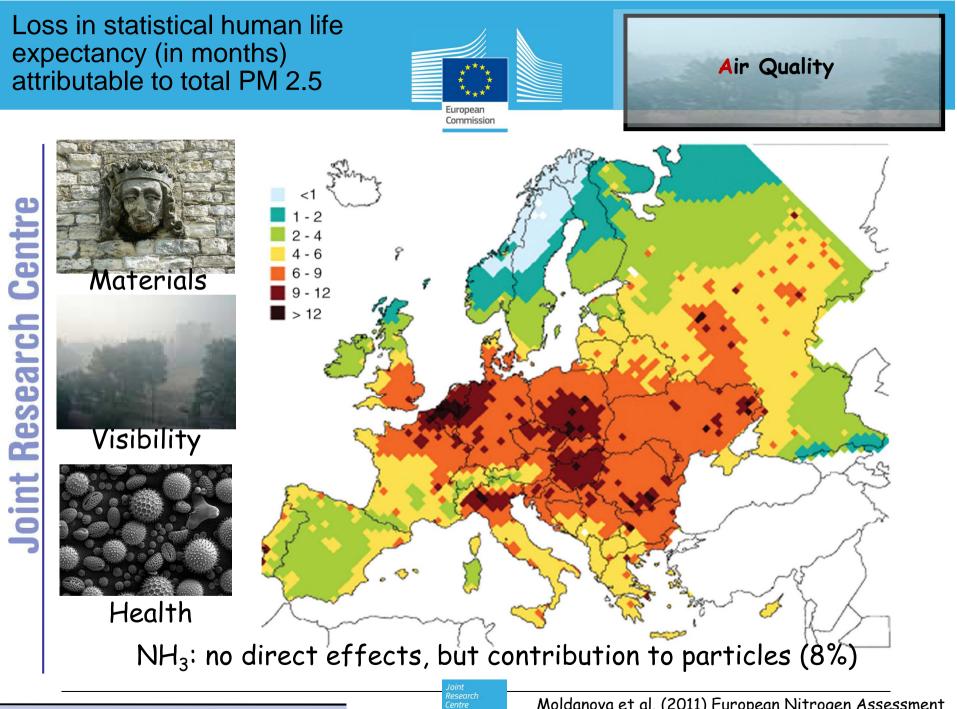
> Research Centre

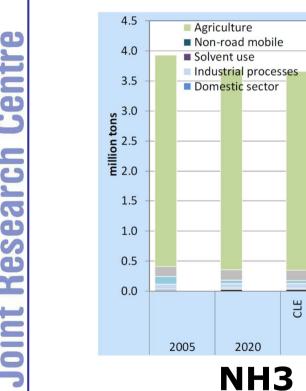

www.jrc.ec.europa.eu

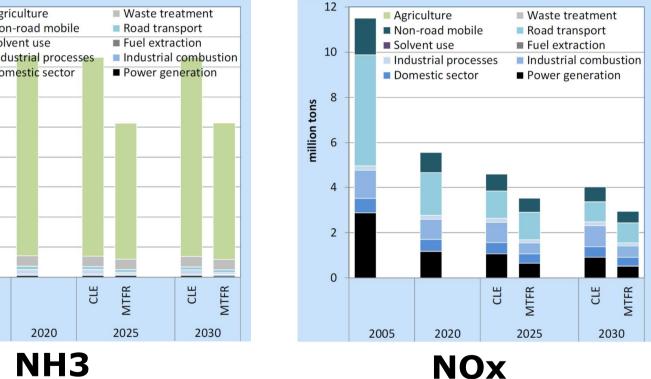

Adrian Leip, European Commission, Joint Research Centre (JRC) E-mail: adrian.leip@jrc.ec.europa.eu

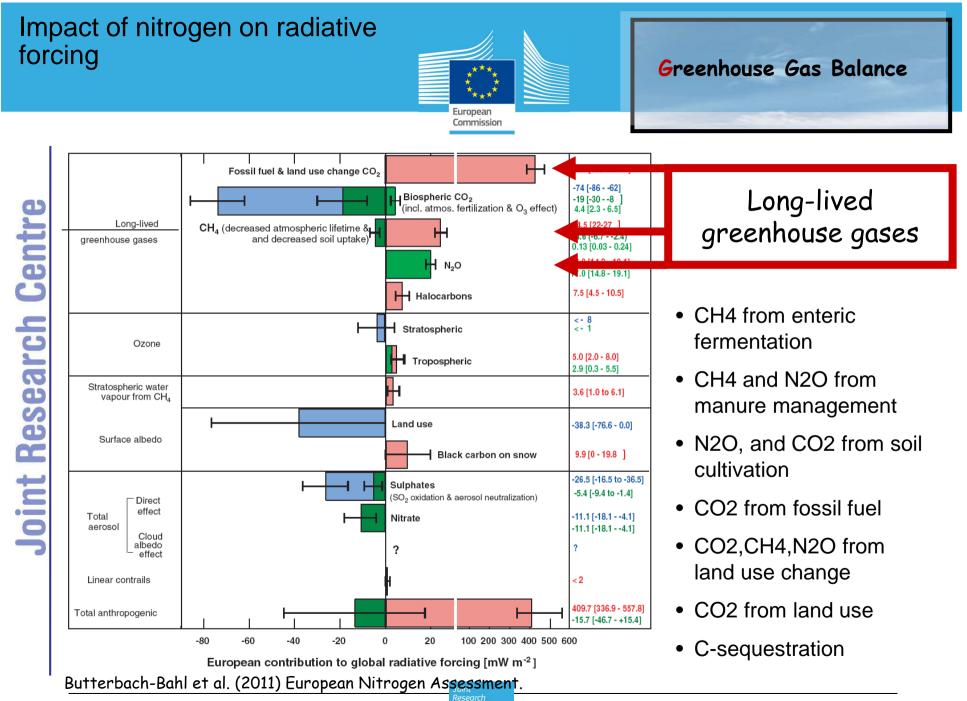

Gilles Billen, Josette Garnier, Bruna Grizzetti, Luis Lassaletta, Stefan Reis, David Simpson, Mark A Sutton, Wim de Vries, Franz Weiss1 and Henk Westhoek

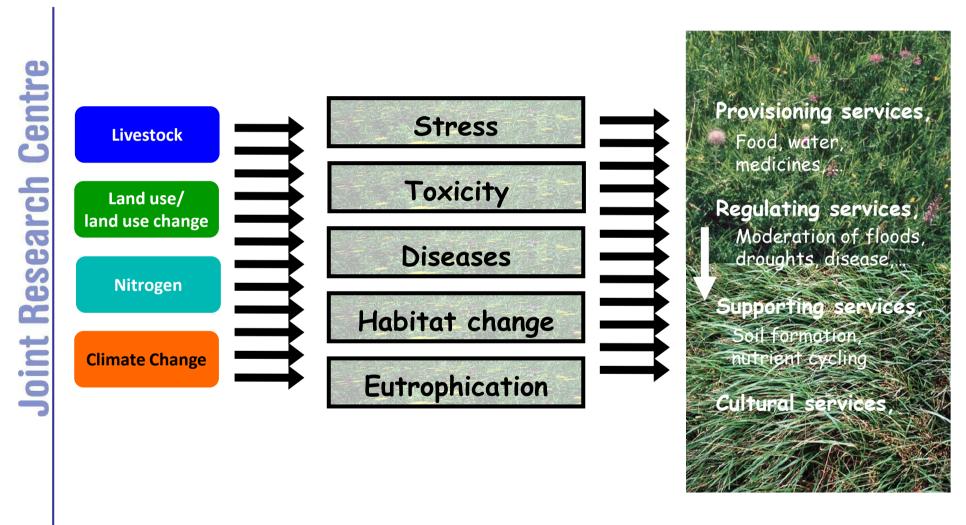
> Serving society Stimulating innovation Supporting legislation

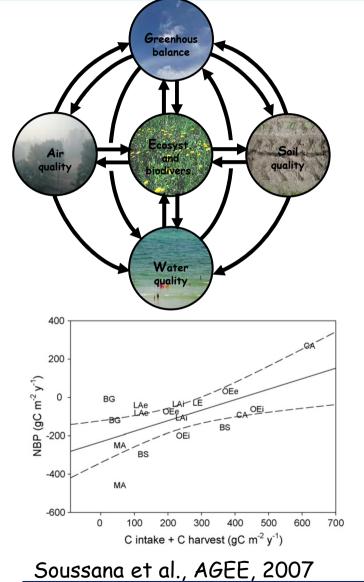



JRC-AL 19.05.2011 - Sustainability AnimalFoods - Stockholm - 4


^{Bran} Grizzetti et al. (2011) European Nitrogen Assessment. Brink, van Grinsven et al. (2011) European Nitrogen Assessment.


JRC-AL 19.05.2011 - Sustainability AnimalFoods - Stockholm - 5


Amann et al., 2014. The Final Policy Scenarios of the EU Clean Air Policy Package TSAP Report #11 Version 1.1a; http://pure.iiasa.ac.at/11149/1/XO-14-076.pdf


Multiple effect of animals on biodiversity

Ecosystems and biodiversity

- Soil organic carbon sequestration
 - permanent grasslands
 - forests through N-deposition (until saturation)
- "Good" soil management
 - enhances soil quality/C-sequestration
- "Bad" soil management
 - soil compaction + soil erosion
 - reduces productivity
- Peatlands lose organic matter
 - under cultivation → CO₂ and N₂O emissions
 - risk also in natural peatlands at high N-dep.
 - Soil acidification

- NH₃ is increasingly dominating
- leaching of heavy metals

Method: using shares of relevant emissions as a proxy for

contribution to impact

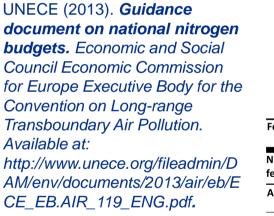
 Table 1. Overview of emissions caused by livestock rearing and feed that were quantified in the study.

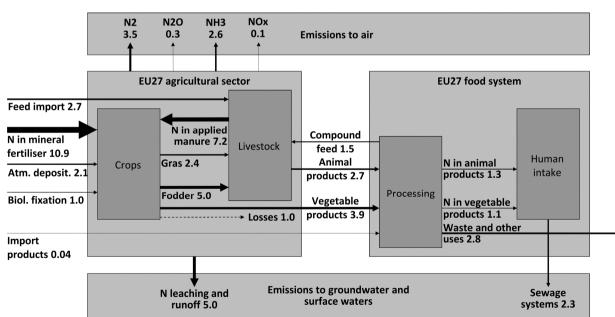
	Livestock rearing	Feed				
	Direct and energy ^a	Cultivation excl. energy ^b	Energy incl. feed processing and transport ^c			
Air quality	NH ₃ , NO _x	NH ₃ , NO _x	NO _x			
Climate change	CH ₄ , N ₂ O, CO ₂ (NH ₃ , NO _x)	N_2O , CO_2 (NH_3 , NO_x)	CO ₂			
Soil quality	NH ₃ , NO _x , SO ₂	NH_3, NO_x	$NO_{x}SO_{2}$			
Terrestrial biodiversity	CH_4 , N_2O , CO_2 , NH ₃ , NO_x	N ₂ O, CO ₂ , NH ₃ , NO ₃ , land use	$NO_{x}O_{2}$			
Quality of inland and coastal water	N and P losses	N and P losses				

Note: Direct livestock rearing includes livestock housing and manure management and storage; energy consumption from housing, milking, buildings etc. Cultivation of forages (grass, fodder maize, fodder beet etc) and other feed includes all direct and indirect emissions not linked with the consumption of energy.

^a Place of emissions is EU27.

 $^{\rm b}\,$ Place of emissions is EU27 for forages and both EU27 and rest of the world for other feed.


 $^{\rm c}\,$ Place of emissions is both EU27 and rest of the world.


Models:

- GHG, Nr emissions → LCA approach: CAPRI (Leip et al., 2014; Weiss and Leip, 2012)
- SO2: EDGAR data base (European Commission, 2011)
- Biodiversity: Mean Species Abundance concept: GLOBIO model (Alkemade et al., 2009)
- GlobalNEWS: P losses from soils to the watershed (Mayorga et al, 2010)
- Eutrophication potential: ICEP model (Garnier et al., 2010)

A nitrogen budget consists of the quantification of <u>all major nitrogen flows</u> across all sectors and media <u>within given boundaries</u>, and flows across these boundaries, in a given time frame (typically one year), as well as the changes of nitrogen stocks within the respective sectors and media.

Leip, A., Weiss, F., Lesschen, J.P., Westhoek, H. (2014). The nitrogen footprint of food products in the European Union. J. Agric. Sci. 152, 20-33. doi:10.1017/S0021859613000786

Results

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

	Air and soil qu	uality	Air and soil q	uality	Air qua	ality	Global warm	ing
	NH ₃		NO _x		NH ₃ and	INO _x	GHG	
	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg CO _{2eq} yr ⁻¹]	Share
Agriculture	2.8	100%	0.46	100%	3.2	100%	1062	100%
Livestock	2.3	82%	0.30	66%	2.6	80%	861	81%
Feed	1.1	41%	0.23	49%	1.4	42%	560	53%
Feed imports	0.2	8%	0.12	25%	0.3	10%	411	39%
	Global warming C-sequestration		Global warming		Soil qu	ality	Soil qualit	у
			GHG + seques	GHG + sequestration		SO ₂		$\rm NH_3$ and $\rm NO_x$ and $\rm SO_2$
	Emissions [Tg CO _{2eq} yr ⁻¹]	Share	Emissions [Tg CO _{2eq} yr ⁻¹]	Share total	Emissions [Teq yr ⁻¹]	Share	Emissions [Teq yr ⁻¹]	Share
Agriculture	-104	100%	958	100%	0.021	100% ^{a,f}	0.19	100%
Livestock	-82	80%	779	81%	0.014	67%	0.15	79%
Feed	-43	42%	516	54%	0.010	50%	0.08	42%
Feed imports	-10	10%	400	42%			0.01	8%
	Biodiversit	y ^b	Biodiversi	ty ^b	Water qu	ality N	Water qualit	y P ^b
	Land Use	,	Loss of biodiv	ersity	N		DIP ^c	1
	Area [Mio km ²]	Share	Relative MSA [%]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg P yr ⁻¹]	Share
Agriculture	2.0	100%	-34%	100% ^{a,e}	6.0	100%	0.025	100%
Livestock	1.4	69%	-25%	76%	4.4	73%	0.018	73%
Feed	1.4	69%	-25%	74%	4.2	71%	0.018	73%
Feed imports	0.2	11%			0.6	10%		

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

	Air and soil q	uality		
	NH ₃			
	Emissions [Tg N yr ⁻¹]	Share		
Agriculture	2.8	100%		
livestock	2.3	82%		
Feed	1.1	41%		
Feed imports	0.2	8%		

DG AGRI - Sustainability of EU's Livestock Prod. Systems - Brusselse 14-15/09/2016

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

	Air and soil q	uality		
	NH ₃		NO _x	
	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share
Agriculture	2.8	100%	0.46	100%
Livestock	2.3	82%	0.30	66%
Feed	1.1	41%	0.23	49%
Feed imports	0.2	8%	0.12	25%

Clobalwammina

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

	Air and soil q	Air and soil quality NH ₃		quality	Air quality		
	NH ₃				NH ₃ and NO _x		
	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	
Agriculture	2.8	100%	0.46	100%	3.2	100%	
Livestock	2.3	82%	0.30	66%	2.6	80%	
Feed	1.1	41%	0.23	49%	1.4	42%	
Feed imports	0.2	8%	0.12	25%	0.3	10%	
	Clabalwar			•	Soil qu	ality	

Global Warming

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

							Global warm	ing
						-	GHG	
						[Emissions Tg CO _{2eq} yr ⁻¹]	Share
Agriculture							1062	100%
Livestock							861	81%
Feed							560	53%
								200/
Feed imports	_						411	39%
Feed imports	C-sequestrat	ion	GHG + seques	tration			411	
Feed imports	C-sequestrat Emissions [Tg CO _{2eq} yr ⁻¹]	ion Share	$\frac{\text{GHG} + \text{seques}}{\text{Emissions}}$ $[\text{Tg CO}_{2eq} \text{yr}^{-1}]$	tration Share total				
Feed imports Agriculture	Emissions		Emissions	Share				
	Emissions [Tg CO _{2eq} yr ⁻¹]	Share	Emissions [Tg CO _{2eq} yr ⁻¹]	Share total				
Agriculture	Emissions [Tg CO _{2eq} yr ⁻¹] -104	Share 100%	Emissions [Tg CO _{2eq} yr ⁻¹] 958	Share total 100%				

Biodivoroit

ca 1/3 Land use change and energy ca 1/3 Livestock emissions ca 1/3 Soil emissions

Soil Quality

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

	Air and soil q	uality	Air and soil	quality	Air quality		
	NH ₃		NO _x	NO _x		INO _x	
	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	
Agriculture	2.8	100%	0.46	100%	3.2	100%	
Livestock	2.3	82%	0.30	66%	2.6	80%	
Feed	1.1	41%	0.23	49%	1.4	42%	
Feed imports	0.2	8%	0.12	25%	0.3	10%	

Clobal warmin

Soil quality

	n	SO ₂		NH_3 and NO_x and SO_2	
	are al	Emissions [Teq yr ⁻¹]	Share	Emissions [Teq yr ⁻¹]	Share
lture		0.021	100% ^{a,f}	0.19	100%
		0.014	67%	0.15	79%
		0.010	50%	0.08	42%
5				0.01	8%

Biodiversity

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

Table S3-1 Drivers of biodiversity loss in the EU-27 in 2010, and share of livestock production in this loss.

^{\$} Infrastructure, encroachment and fragmentation

			Driver of biodiversity loss					Total
	Unit	Conversio	Conversion of land to		N	Climate	Land	biodiver
		Crop land	Grazed land	Forest land	deposition	Change	use ^{\$}	sity loss
Results from the GLOBIO model (Alkemad	e et al 2009, Kram and Stehfe	est 2012)						
MSA loss due to	% of original biodiversity	23	10	9	2	2	20	65
MSA loss due to	% of biodiversity loss	35	15	14	2	3	30	100
Results from this study								
Share of all agriculture in pressure factor	% of original biodiversity	23	9.6	0	0.9	0.3	0	34
	share in driver of biodiversity loss relative	100	100	0	57	12	0	
Share of livestock in pressure factor	% of original biodiversity	15	9.6	0	0.7	0.2	0	25
	share in driver of biodiversity loss relative	65	100	0	44	8	0	
Share of feed in pressure factor	% of original biodiversity	15	9.6	0	0.3	0.1	0	25
	share in driver of biodiversity loss relative	65	100	0	21	2	0	

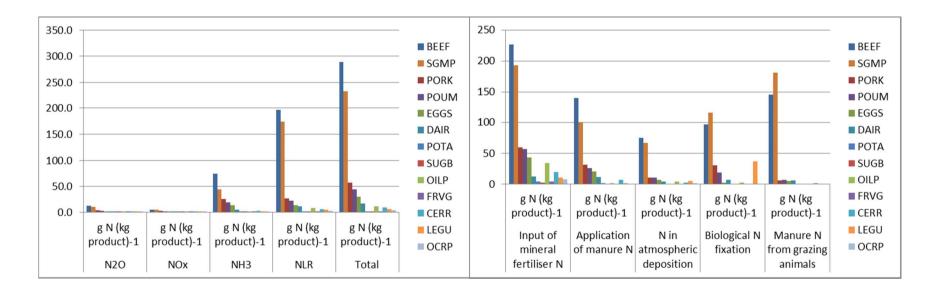
	Biodiversi	ty ^b	Biodiver	sity ^b	
	Land Us	e	Loss of biodiversity		
	Area [Mio km ²]	Share	Relative MSA [%]	Share	
Agriculture	2.0	100%	-34%	100% ^{a,e}	
Livestock	1.4	69%	-25%	76%	
Feed	1.4	69%	-25%	74%	
Feed imports	0.2	11%			

Water Quality

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.

	odiversity	N		DIP ^c	
	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions $[Tg P yr^{-1}]$	Share
	100% ^{a,e}	6.0	100%	0.025	100%
	76%	4.4	73%	0.018	73%
	1%	4.2	71%	0.018	73%
		0.6	10%		

Table 2. Share of the livestock sector, feed production and feed imports on the emissions of pollutants due to agriculture in EU27 with relevance for air quality, global warming, soil quality, biodiversity and water quality for the year 2004.


	Air and soil qu	uality	Air and soil q	uality	Air qua	lity	Global warm	ing
	NH ₃		NO _x		NH ₃ and	NO _x	GHG	
	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions [Tg CO _{2eq} yr ⁻¹]	Share
Agriculture	2.8	100%	0.46	100%	3.2	100%	1062	100%
Livestock	2.3	82%	0.30	66%	2.6	80%	861	81%
Feed	1.1	41%	0.23	49%	1.4	42%	560	53%
Feed imports	0.2	8%	0.12	25%	0.3	10%	411	39%
	Global warming		Global warn	ning	Soil qu	ality	Soil qualit	у
	C-sequestrat	tion	GHG + seques	tration	SO ₂	!	NH ₃ and NO _x a	nd SO ₂
	Emissions [Tg CO _{2eq} yr ⁻¹]	Share	Emissions [Tg CO _{2eq} yr ⁻¹]	Share total	Emissions [Teq yr ⁻¹]	Share	Emissions [Teq yr ⁻¹]	Share
Agriculture	-104	100%	958	100%	0.021	100% ^{a,f}	0.19	100%
Livestock	-82	80%	779	81%	0.014	67%	0.15	79%
Feed	-43	42%	516	54%	0.010	50%	0.08	42%
Feed imports	-10	10%	400	42%			0.01	8%
	Biodiversit	y ^b	Biodiversi	ty ^b	Water qu	ality N	Water qualit	y P ^b
	Land Use	•	Loss of biodiv	ersity	N		DIP ^c	
	Area [Mio km ²]	Share	Relative MSA [%]	Share	Emissions [Tg N yr ⁻¹]	Share	Emissions $[Tg P yr^{-1}]$	Share
Agriculture	2.0	100%	-34%	100% ^{a,e}	6.0	100%	0.025	100%
Livestock	1.4	69%	-25%	76%	4.4	73%	0.018	73%
Feed	1.4	69%	-25%	74%	4.2	71%	0.018	73%
Feed imports	0.2	11%			0.6	10%		

Nitrogen footprint family

c2g Nr footprints for 12 food categories in the EU

c2g N-input footprints for 12 food categories in the EU

Based on: Leip et al (2015). Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004

Agricultural budget and indirect flows and share caused by livestock production, feed, a seed imports

European Commission

	Total	Total EU27	Share
	Agricultural LCA	budget flow	agriculture
	flow within		
	EU27 territory		
Air pollution - NH3 emissions [Tg N yr-1]	2.6	2.7	94%
Air pollution - NOx emissions [Tg N yr-1]	0.3	2.6	13%
Air pollution - SO2 [Teq yr-1]	0.021	0.35	6%
Air pollution - NOx + NH3 emissions [Tg N yr-1]	2.9	5.3	55%
Soil acidification [Tg Teq yr-1]	0.18	0.56	32%
GHG emissions [Tg CO2eq yr-1]	651	4889	13%
GHG emissions - Carbon sequestration [Tg CO2eq yr-1]	-93	-170.5	55%
GHG emissions - GHG + Carbon sequestration	558	4718.4	12%
[Tg CO2eq yr-1]			
Water pollution - N [Tg N yr-1]	5.4	9.1	59%
Water pollution - DIP [Tg P yr-1]	0.025	0.25	10%
Land Use [Mio km2]	1.8	4.2	42%
Loss of biodiversity [relative MSA]	-34%	-65%	51%

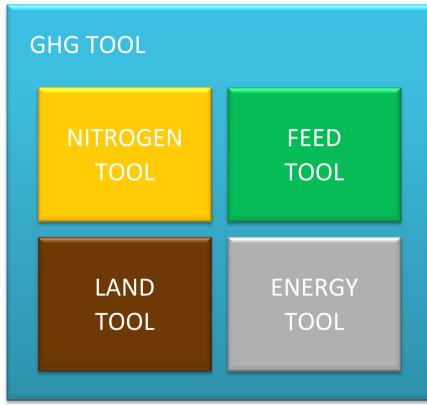
FAO-LEAP

- The **Livestock Environmental Assessment and Performance** partnership (LEAP Partnership) is a multi-stakeholder initiative, with secretariat hosted at the FAO
- Proliferation of environmental assessment methods
- Based on Life cycle thinking, supply chains, eco-efficiency
- Development of LEAP-guidelines to support the harmonization in calculating and benchmarking the environmental performance of livestock supply chains and respective products
- Currently under development
 - Guidelines on <u>Water Footprinting</u>
 - Guidelines on <u>Nutrient Cycles</u> (LEAP guidelines on nutrient accounting and impact assessment in complement to previous LEAP guidelines on feed and livestock supply chains)
 - Which assessment frameworks are suited for benchmarking the environmental performance of livestock supply chains?
 - Which indicators are relevant for nutrient assessments?
 - Guidance on specific allocation (multi-cropping, crop-rotation, manure, ...) and accounting 'problems' (soil stock changes, resource scarcity, ...)

UNECE-Convention on Long Range Transboundary Air Pollution (CLRTAP) Task Force on Reactive Nitrogen Expert Panel on N and Food

Questions

i. How far could a combination of improved farm level technical measures and shifts in consumption go to improving the Nitrogen Use Efficiency of the overall food system of Europe? And what need the incentives be in order to realize this NUE improvement?


European Commission

- ii. What is the **relative potential of dietary changes and food waste reduction** to reduce nitrogen air pollution and other environmental threats?
- iii. What are the health effects of a range of dietary patterns that generate less nitrogen pollution (ie. positive and negative)? Potential health effects include those from air pollution and those that are nutrition related. Is it possible to identify particular dietary patterns that achieve health-environmental synergies?
- iv. To what extent can a stronger link between the scientific evidence on environment and health strengthen the case for controlling nitrogen pollution and optimizing diets to meet human health goals?

Mitigation measures

Feed and food are key!!

- Many mitigation measures have 'systemic' effect
- They can be monitored and implemented via relatively simple N and Feed farm-level tools

Research Centre Leip, A., Carmona-Garcia, G., & Rossi, S. (in press). Mitigation measures in the Agriculture, Forestry, and Other Land Use (AFOLU) sector. Quantifying mitigation effects at the farm level and in national greenhouse gas inventories (JRC Technical Report). **UNECE-Convention on Long Range Transboundary Air Pollution (CLRTAP)**

Task Force on Reactive Nitrogen Expert Panel on N and Food

1 PART 1: Food Chain Nitrogen Use Efficiency

- 1.1 The limits of Farm-scale NUE
- 1.2 Food losses and circular nitrogen flows in the post farm gate food chain
- 1.3 Full chain NUE in Europe and case studies

2 PART 2: The relevance of Nitrogen for the consumer

- 2.1 Dietary recommendations & nutrition scores of diet
- 2.2 Nitrogen-smart diet choices: Alternative protein sources
- 2.3 Health effect of Nr losses in the food chain

3 PART 3: Getting the consumer involved

- 3.1 Policies and societal changes
- 3.2 Nitrogen Neutrality: Concept and applications

4 PART 4: Making the case: nitrogen and food

- 4.1 Representative diet-pathways: the cost of unhealthy diets
- 4.2 Healthy and nitrogen-smart: trade-off or win-win?
- 4.3 Reduction of N pollution: improved supply versus changed demand

Build on the new scenario framework for climate change analysis (RCPs/SSPs/SPA), introducing consistent 'agriculture and food' storylines.

Interested to contribute?? mailto: Adrian Leip

adrian.leip@jrc.ec.europa.eu

Conclusion

- Livestock remains to be a significant contributor to environmentally relevant emissions
- Likely both supply and demand side changes are needed if ambitious emission reduction targets are envisaged
- There is scope for emission reductions with feed and N management measures (but feed and N would need to be monitored)

Agriculture contributes between 10% (water pollution – DIP) and 59% (water pollution – N) to environmental threats

Livestock contributes between 69% (biodiversity) and 81% (global warming) – N) to agricultural relevant emissions

Thank you!

adrian.leip@jrc.ec.europa.eu