Mode of Action/Human Relevance Framework: A Hypothesis-Based Weight of Evidence Approach

Vicki L. Dellarco, Ph.D.
Office of Pesticide Programs
U.S. Environmental Protection Agency

This talk represents the view of presenter & does not necessarily represent the decisions or stated policies of the EPA.
Topics

- Tumor profiles in rodents (pesticide database) & humans
- Approach to evaluate the human relevance of an animal mode of action for tumors (and noncancer endpoints)
- Case Example
Mouse Tumor Distribution

Rat Tumor Distribution

219 Pesticides
Value of Mode of Action Data

Data Before Defaults

Hazard Characterization
- Animal endpoints plausible in humans?

Dose Response Analyses
- Shape of the dose response curve?

Quantitative Relevance to Humans
- Toxicological equivalency of exposures to humans?

Exposure Estimation

Risk Characterization
- Hazard X Exposure = Risk

Uncertainty Characterization
How Do You Determine the Weight of Evidence (WoE) for Establishing a Mode of Action (MoA)?

- Needs to be based around specific hypothesis against data

MoA/Human Relevance Framework

- Based on Bradford Hill criteria for causality
- Distinguished MoA vs. Mechanism of Action
Approach: MoA/Human Relevance Framework

History

- ILSI 2003
 - Framework for human relevance analysis of information on carcinogenic modes of action

- ILSI 2005
 - Extends Framework to noncancer outcomes & life stage information

- IPCS 2006 & 2008
 - Adopts Human Relevance Framework

MoA = Plausible hypothesis with measured key events (vs detailed molecular description of causality)

Key Event: Critical, Rate Limiting, Quantifiable
Reasons for MoA/Human Relevance Framework

- Provides Transparency
 - Clarifies extent of WoE as a basis for decision making
- Ensures rigor of evaluations & consistency of documentation
- Aids in Identification of Critical Data or Research Needs
 - Basis for iterative dialogue between risk assessors & researchers
- Sufficiency of Evidence
 - Requires expert judgment, peer engagement & review
Q1. Is the weight of evidence sufficient to establish the MoA in animals?

- Yes
- No

Q2. Are the key events in the Animal MoA plausible in humans?

- No
- Yes

Q. Taking into account kinetic & dynamic factors, are key events in Animal MoA plausible in humans?

- No
- Yes

Animal-Human Comparability Indicates Human Relevance

MoA Relevant: Continue with Risk Assessment

Data Insufficient to Characterize MoA

MoA Not Relevant to Humans: No Need to Continue Risk Assessment

MoA Unlikely Due to Quantitative Differences

Specific to Test Species
Question 1: Sufficient Weight of Evidence to Establish MoA in Animals?

- Postulated MoA (theory of the case)
 - Other possible MoAs

- Experimental support for key events
 - Concordance of dose-response relationships
 - Temporal association
 - Strength, consistency and specificity of association of toxicological effect with key events
 - Biological plausibility and coherence

- Uncertainties, inconsistencies, & data gaps
Q1. Is the WoE for MoA in Animals Sufficient?

- Begins with Formulating a Hypothesis
 - Sequence of “Key Events” described
 - Other MOAs?

Critical components (key events) of a toxicity pathway
Other metabolites? DNA reactivity?
Example of an MoA: It’s an Iterative Process

Cacodylic Acid & Induced Bladder Cell Tumors in Rats

<table>
<thead>
<tr>
<th>Possible MOA</th>
<th>Evidence</th>
<th>Initial Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutagenic</td>
<td>Numerous studies do not support direct DNA reactivity</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>[but suggestion of indirect mechanism via ROS - oxidative damage - mostly in vitro]</td>
<td>Possible</td>
</tr>
<tr>
<td>Mitogenic</td>
<td>Studies do not support</td>
<td>No</td>
</tr>
<tr>
<td>Cell injury & regenerative proliferation</td>
<td>Multiple studies DMA(^V\rightarrow DMA^{III})</td>
<td>Possible</td>
</tr>
</tbody>
</table>
Cacodylic Acid: Mode of Action

Measurable Key Events in Target Tissue

DMAIII Metabolite

Urothelial Toxicity

Regenerative Proliferation

Hyperplasia

ROS
DNA Damage

Stable Chromosome Aberrations

Sustained

BrdU Labeling

Urinary Bladder Tumors
Q1. Is the WoE for MoA in Animals Sufficient?

- **Experimental Support**
 - Key events characterized & measured in the species/tissue of interest
 - Dose response relationships for key events are compared with one another & with those for adverse outcome
 - key events always observed at doses below or similar to those associated with the adverse outcome
 - Temporal Association
 - Key events & adverse outcome occur in expected order
Cacodylic Acid: Association of Key Events & Rat Bladder Tumors

Temporal

<table>
<thead>
<tr>
<th>Dose</th>
<th>Metabolism DMA(^V) ⇄ DMA(^{III})</th>
<th>Urothelial Toxicity</th>
<th>Regenerative Proliferation</th>
<th>Hyperplasia</th>
<th>Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ppm</td>
<td>+</td>
<td>slight</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 ppm</td>
<td>+</td>
<td>+</td>
<td>slight</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40 ppm</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>100 ppm</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>
Q1. Is the WoE for the MoA in Animals Sufficient? (Cont’d)

Strength, Consistency & Specificity

- Evidence linking key events & outcome
 - Consistency of associations found in repeated experiments within a lab & among different labs
 - Inhibition of DMAV \(\Rightarrow\) DMAIII reduced cytotoxicity
 - Cessation of exposure results in recovery of tissue

Biological Plausibility & Coherence

- Hypothesized MoA make sense based on broader knowledge & in relation to what is also known for the substance specifically
 - Regenerative proliferation associated with persistent toxicity appears to be a risk factor for bladder cancer in humans
Q1. Is the weight of evidence sufficient to establish the MoA in animals?

Yes \(\rightarrow\) MoA Relevant: Continue with Risk Assessment

No \(\rightarrow\) MoA Not Relevant to Humans: No Need to Continue Risk Assessment

Q2. Are the key events in the Animal MoA plausible in humans?

Yes \(\rightarrow\) Yes

No \(\rightarrow\) No

Q. Taking into account Kinetic & dynamic factors, are key events in Animal MoA plausible in humans?

No \(\rightarrow\) MoA Unlikely Due to Quantitative Differences

Yes \(\rightarrow\) Animal-Human Comparability Indicates Human Relevance

Specific to Test Species
Q2: Comparative Analysis of Key Events

<table>
<thead>
<tr>
<th>Key Event</th>
<th>Rat</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of DMA(^{III}) in urine</td>
<td>Yes, Data</td>
<td>Limited evidence indicates significantly less</td>
</tr>
<tr>
<td>Persistent urothelial cytotoxicity</td>
<td>Yes, Data</td>
<td>Unknown: Potential if sufficient DMA(^{III}) is produced</td>
</tr>
<tr>
<td>Sustained regenerative prolif/hyperplasia</td>
<td>Yes, Data</td>
<td>Unknown: Potential if sufficient cell killing is produced & sustained</td>
</tr>
<tr>
<td>Bladder Tumors</td>
<td>Yes, Data</td>
<td>No epidemiologic data, but Potential Assumed</td>
</tr>
</tbody>
</table>
Cytotoxicity – Cacodylic Acid

Implications for Risk Assessment

✓ MoA plausible in humans
✓ Nonlinear Dose Response

Must be sufficient DMAIII to produce sufficient cell killing to lead to regenerative proliferation

Cytotoxicity & enhanced proliferation need to be sustained

Frequency of mutations dependent on enhanced proliferation & possibly on generation of ROS

✓ Sustained exposure required
In Summary

Reasons for MoA/Human Relevance Framework Provides

- Transparent Consideration of Weight of Evidence Basis for MoA
- Promotes Use of All Relevant Data
- Defines the “Key Events” Relevant to Risk Assessment
- Delineates Types of Data that are Preferred over Defaults
- Aids in Identification of Critical Data or Research Needs
For more information: Mode of Action & Human Relevance Framework

- **ILSI Website**

 http://www.ilsi.org

- **IPCS Harmonization Website**

 http://www.who.int/ipcs/methods/harmonization/index.html

This paper was produced for a meeting organized by Health & Consumer Protection DG and represents the views of its author on the subject. These views have not been adopted or in any way approved by the Commission and should not be relied upon as a statement of the Commission’s or Health & Consumer Protection DG’s views. The European Commission does not guarantee the accuracy of the data included in this paper, nor does it accept responsibility for any use made thereof.