Scientific Committee on Emerging and Newly-Identified Health Risks

SCENIHR

PRELIMINARY REPORT ON

THE SAFETY OF MEDICAL DEVICES CONTAINING DEHP-PLASTICIZED PVC OR OTHER PLASTICIZERS ON NEONATES AND OTHER GROUPS POSSIBLY AT RISK

Approved for public consultation by the SCENIHR during the 19th plenary of 21-22 June 2007
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

About the Scientific Committees

Three independent non-food Scientific Committees provide the Commission with the sound scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission’s attention to the new or emerging problems, which may pose an actual or potential threat.

They are: the Scientific Committee on Consumer Products (SCCP), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR) and are made up of external experts.

In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Evaluation Agency (EMEA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).

SCENIHR

Questions concerning emerging or newly-identified risks and on broad, complex or multi-disciplinary issues requiring a comprehensive assessment of risks to consumer safety or public health and related issues not covered by other Community risk-assessment bodies. In particular, the Committee addresses questions related to potential risks associated with interaction of risk factors, synergic effects, cumulative effects, antimicrobial resistance, new technologies such as nanotechnologies, medical devices, tissue engineering, blood products, fertility reduction, cancer of endocrine organs, physical hazards such as noise and electromagnetic fields and methodologies for assessing new risks.

Scientific Committee members

Anders Ahlbom, James Bridges, Wim De Jong, Jana Hajslová, Philippe Hartemann, Thomas Jung, Mats-Olof Mattsson, Jean-Marie Pagès, Konrad Rydzynski, Dorothea Stahl, Mogens Thomsen, David Williams

Contact:
European Commission
Health & Consumer Protection DG
Directorate C: Public Health and Risk Assessment
Unit C7 - Risk Assessment
Office: B232
B-1049 Brussels

Sanco-Sc1-Secretariat@ec.europa.eu

© European Commission 2007

The opinions of the Scientific Committees reflect the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The opinions are published by the European Commission in their original language only.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

ACKNOWLEDGMENTS

Members of the working group are acknowledged for their valuable contribution to this memorandum. The members of the working group are:

The SCENIHR members:
Prof. Jim Bridges (chair)
Dr. Wim De Jong
Prof. Jana Hajslová
Prof. Dorothea Stahl

External experts:
Dr. Kristofer Almdal, Risø National Laboratory, Denmark
Prof. Jurgen Angerer, Institut für Arbeits-, Sozial- und Umweltmedizin der Universität Erlangen-Nürnberg, Germany
Prof. Gisela Degen, Scientific Committee on Consumer Products (SCCP)
Prof. Jouni Jaakkola, University of Birmingham, United Kingdom
Prof. Bo Jansson, Scientific Committee on Health and Environmental Risks (SCHER)
Dr. Ole Ladefoged, Scientific Committee on Health and Environmental Risks (SCHER), (rapporteur)
Prof. G. Latini, Clinical Physiology Institute, Italy
Prof. Kimmo Peltonen, EVIRA, Finland
Prof. Elizabeta Ranucci, University of Milano, Italy
Dr. Suresh Rastogi, Scientific Committee on Consumer Products (SCCP)
Dr. Jorge Rodrigues Inacio, Karolinska University Hospital, Sweden

ABSTRACT

The Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) has evaluated the exposure to DEHP for the general population and patients during medical procedures. In many cases the exposure is significant and exceeds the toxic doses observed in animal studies. There is limited evidence indicating a relation between DEHP exposures and certain effects in humans. However, it is recognised that especially the potentially high exposure during medical treatments raise a concern, even in the absence of clinical or epidemiological evidence, for harmful effects in humans. For certain uses of DEHP alternative plasticizers for PVC are available. The Committee got access to toxicity data for eight possible alternative plasticizers and compared their toxicity with that of DEHP. In respect to reproductive toxicity in animal studies DEHP induces more severe effects compared with some of the alternatives. A risk assessment of these available alternative plasticizers could not be performed due to a lack of exposure data from medical devices. Each alternative to DEHP, however, must also be evaluated with regard to their functionality in respect to medical devices. The risk and benefits of using alternative plasticizers should be evaluated case by case.

Keywords: SCENIHR, scientific opinion, DEHP, medical devices, neonates, alternative plasticizer, risk

To be cited as: SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks), Preliminary report on the safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk, 21-22 June 2007

1 Resigned in February 2006.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

EXECUTIVE SUMMARY

The Scientific Committee on Medicinal Products and Medical Devices (SCMPMD) published its Opinion on Medical Devices containing Di-(2-ethylhexyl)phthalate (DEHP) plasticized PVC in 2002. That Opinion stated that there were no reports concerning any adverse effects in humans following exposure to DEHP-PVC, even in neonates or other groups of relatively high exposure. In addition, there were no indications that neonates of high DEHP exposure have any altered long term fertility patterns. Since 2002, substantial new information on exposure to DEHP has become available as well as data on reproductive toxicity obtained in laboratory animal and human studies. Also for DEHP a so-called tolerable daily intake (TDI) was calculated in recent risk evaluations. Therefore an overview is presented on the safety of DEHP in medical devices. In addition, the availability, suitability and safety of alternative plasticizers for DEHP have been evaluated.

Certain medical procedures used in high risk groups result in a significant exposure to DEHP. In view of the reproductive toxicity observed in animal studies in which young immature animals were more susceptible to DEHP toxicity, newborn and pre-term born male infants are of special concern. Exchange transfusion in neonates, total parenteral nutrition in neonates, multiple procedures in sick neonates, and haemodialysis in peripuberal males are examples of procedures applied in high risk groups. Other risk groups are pregnant women in haemodialysis or lactating women. Also massive infusion of blood into trauma patients is of concern due to exposure levels substantially exceeding the TDI of DEHP.

The toxicity of DEHP in laboratory animals is summarized. The reproductive effect of DEHP in developing and postnatal pups appears at low levels with a TDI of 48 µg/kg bw/d, derived from a two generation study in rats with a No Observed Adverse Effect Level (NOAEL) of 4.8 mg/kg bw and applying a safety factor of 100.

Possible alternative plasticizers were evaluated for their potential toxicity and ranked according to toxicity and leaching, or leaching resulting in exposure. For reproductive toxicity the dose of DEHP is an order of magnitude lower compared with some of the alternative plasticizers. For some of the alternative plasticizers a complete evaluation could not be performed due to lack of data on either toxicity or exposure.

For most of the alternative plasticizers added in similar concentrations to PVC as DEHP, the leaching seems to be of the same order of magnitude, which is in part due to the similar properties of these compounds. Nonetheless, for some alternatives considerable lower leaching was observed.

There is limited evidence indicating a relation between DEHP exposures and certain effects in humans. However, it is recognised that especially the potentially high exposure during medical treatments raise concern, even in the absence of clinical or epidemiological evidence for harmful effects in humans. Some alternatives may be suitable to replace DEHP in certain medical devices, while for other devices it may be difficult to achieve the same functionality as PVC plasticized with DEHP. The risk and benefit of using alternative plasticizers should be evaluated case by case.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 3
ABSTRACT .. 3
EXECUTIVE SUMMARY .. 4
1. BACKGROUND ... 9
2. TERMS OF REFERENCE .. 9
3. SCIENTIFIC RATIONALE .. 10
 3.1. Introduction .. 10
 3.2. Present use of plasticized PVC in medical devices .. 12
 3.3. Physicochemical properties of plasticizers ... 13
 3.4. DEHP (di(2-ethylhexyl) phthalate) .. 14
 3.4.1. Physico-chemical properties ... 14
 3.4.2. Use ... 14
 3.4.3. Metabolism of DEHP in humans .. 15
 3.4.4. DEHP exposure of the general population ... 18
 3.4.5. DEHP exposure assessment from probabilistic calculations ... 19
 3.4.6. DEHP exposure assessment from urinary metabolite excretion .. 20
 3.4.7. Exposure to DEHP following medical procedures .. 22
 3.4.8. Adult exposure during medical procedures .. 23
 3.4.9. Newborns at risk ... 24
 3.4.10. Summary on the exposure to DEHP ... 26
 3.4.11. Toxicity .. 27
 3.4.12. Animal Studies .. 27
 3.4.13. Mechanisms of Action of DEHP .. 29
 3.4.14. Evidence from epidemiological studies .. 31
 3.4.15. Conclusion ... 35
 3.5. Alternative plasticizers in PVC medical devices .. 37
 3.5.1. Introduction ... 37
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

3.5.2. Exposure to alternative plasticizers................. 37
3.5.3. Toxicity of the alternative plasticizers.................. 39
3.5.4. Conclusions on the risks of the alternative plasticizers 39
3.6. Combined exposure to plasticizers........................... 40
3.7. Potential alternative polymer plasticizers in PVC medical devices ... 41
3.8. Conclusion .. 41
4. OPINION .. 43
5. MINORITY OPINION .. 45
6. LIST OF ABBREVIATIONS .. 45
7. REFERENCES ... 48
ANNEX I EVALUATION OF INDIVIDUAL PLASTICIZERS 63
1. ATBC (ACETYL TRI-N-BUTYL CITRATE) 63
 1.1. Physico-chemical properties 63
 1.2. Use .. 63
 1.3. Exposure ... 63
 1.4. Metabolism .. 63
 1.5. Toxicity .. 64
 1.6. Human data .. 65
 1.7. Conclusion ... 65
2. BTHC (N-BUTYRYL-TRI-N-HEXYL CITRATE) 66
 2.1. Physico-chemical properties 66
 2.2. Use .. 66
 2.3. Exposure ... 66
 2.4. Metabolism .. 66
 2.5. Toxicity .. 66
 2.6. Human data .. 68
 2.7. Conclusion ... 68
3. COMGHA (Glycerides, Castor-oil-mono-, hydrogenated, acetates) 69
 3.1. Physico-chemical data .. 69
 3.2. Use .. 69
 3.3. Exposure ... 69
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

3.4. Metabolism ... 70
3.5. Toxicity ... 70
3.6. Human data ... 70
3.7. Conclusion ... 70

4. DEHA (DI(2-ETHYLHEXYL) ADIPATE) ... 71
4.1. Physico-chemical properties ... 71
4.2. Use ... 71
4.3. Exposure ... 71
4.4. Metabolism ... 71
4.5. Toxicity ... 71
4.6. Human data ... 72
4.7. Conclusion ... 72

5. DINCH (1,2-CYCLOHEXANEDICARBOXYLIC ACID, DIISONONYLESTER) 73
5.1. Physico-chemical properties ... 73
5.2. Use ... 73
5.3. Exposure ... 73
5.4. Metabolism ... 73
5.5. Toxicity ... 73
5.6. Human data ... 75
5.7. Conclusion ... 75

6. DINP (DI-ISO-NONYL PHTHALATE) ... 75
6.1. Physico-chemical properties ... 75
6.2. Use ... 76
6.3. Exposure ... 76
6.4. Metabolism ... 76
6.5. Toxicity ... 76
6.6. Human data ... 77
6.7. Conclusion ... 77

7. DEHT (DI(2-ETHYLHEXYL) TEREPHTALATE) ... 79
7.1. Physico-chemical properties ... 79
7.2. Use ... 79
7.3. Exposure ... 79
7.4. Metabolism ... 79
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

7.5. Toxicity ... 80
7.6. Human data .. 81
7.7. Conclusion ... 81

8. TOTM (TRIOCYLTRIMELLITATE) .. 82
8.1. Physico-chemical properties 82
8.2. Use .. 82
8.3. Exposure ... 82
8.4. Metabolism .. 82
8.5. Toxicity ... 82
8.6. Human data ... 84
8.7. Conclusion ... 84
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

1. BACKGROUND

According to Council Directive 93/42/EEC, Medical Devices may only be placed on the market if they meet the essential requirements laid down in the Annex I of the Directive.

For certain medical procedures such as blood transfusion, haemodialysis, parenteral nutrition or endotracheal tubing, the flexibility of certain parts of a medical device is essential. Various substances are used to ensure this flexibility, among which DEHP [Di-(2-EthylHexyl) Phthalate] is the most frequently used plasticizer in PVC medical devices. DEHP may migrate from the device to the human body, resulting in a certain degree of patient exposure.

Safety concerns have been expressed for high-risk patients groups, such as neonates, infants, pregnant and breast-feeding women exposed to DEHP. In September 2002, the Scientific Committee on Medicinal Products and Medical Devices adopted an opinion on “Medical Devices containing DEHP plasticized PVC; Neonates and Other Groups Possibly at Risk from DEHP toxicity” according to which “there is no evidence that any of these groups do experience DEHP related adverse effects”. However, “a lack of evidence of causation between DEHP-PVC and any disease or adverse effect does not mean that there are no risks”.

According to published data on reproduction toxicity, neonates and prepubertal males may suffer adverse effects from DEHP exposure in medical devices. According to a recent risk evaluation of DEHP on human health carried out in the context of the “existing” chemicals substances legal framework, it is now possible to determine a Tolerable Daily Intake (TDI) of DEHP, when present in the environment.

It is therefore necessary for the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) to review and possibly update the opinion adopted in 2002. Since alternative DEHP-free medical devices have been recently introduced in the market, the long-term effect of these alternative plasticizers or alternative materials, when used in medical devices, are not well known. In view of possible safety concerns linked to the use of DEHP in PVC plasticized medical devices, it is essential to review and evaluate available scientific data related to the safety of these alternatives for patients and in particular to high risk groups.

2. TERMS OF REFERENCE

1. Update of the scientific opinion adopted in September 2002 on DEHP plasticized medical devices. Taking into consideration recent scientific developments, the SCENIHR is requested to review and possibly update, if appropriate, the scientific opinion adopted in September 2002 on “Medical Devices containing DEHP Plasticized PVC; neonates and other groups possibly at risk from DEHP toxicity”.

In particular, the Scientific Committee is requested to evaluate:

- If DEHP in PVC plasticized medical devices is a cause for concern to neonates and children in paediatric care, in particular in relation to male fertility and tissue development,
- If there are other patient groups at risk, in particular in view of clinical procedures resulting in high exposure,
- If it is possible to establish Tolerable Intake Values of DEHP leaching from soft PVC as a basis for risk assessment for high risk patient groups, taking into account the route of exposure.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

2. Medical devices containing alternative plasticizers: possible risk for certain uses or to certain patient groups. Since alternative DEHP free medical devices have been developed and are used to treat patients, the Scientific Committee is requested to evaluate the potential risks of currently available alternatives in relation to patient health, when used in medical devices.

3. SCIENTIFIC RATIONALE

3.1. Introduction

Whilst recognising that there are several non-PVC based materials that could provide effective alternatives for medical devices, this opinion does not address these materials. Although the published Call for Information included both alternative plasticizers and alternative materials, only the former was submitted.

Polyvinylchloride (PVC) is used extensively for a very wide range of purposes ranging from a lining for landfill waste disposal sites to a food wrapper for foods. One of the key attributes of PVC that has led to its widespread use is its stability and flexibility, which is achieved by the incorporation of plasticizers in particular phthalates.

The use of PVC in medical devices represents a very minor percentage of the total amounts of PVC manufactured each year. Nonetheless the use of plasticized PVC in a wide range of medical devices has been very important for a number of reasons:

- flexibility in a variety of physical forms from tubes to membranes
- chemical stability and possibility to sterilise.
- low cost and wide availability.
- lack of evidence of significant adverse consequences in patients.

A plasticizer is a substance which when added to a material, usually a polymer, makes it flexible, resilient and easier to handle. There are more than 300 different types of plasticizers described of which between 50 and 100 are in commercial use. The most commonly used plasticizers are phthalates. In Western Europe about one million tonnes of phthalates are produced each year, of which approximately 900,000 tonnes are used to plasticize PVC (http://www.plasticisers.org). The most common are: di-iso-nonyl phthalate (DINP) di-iso-decyl phthalate (DIDP) and di(2-ethylhexyl) phthalate (DEHP). These are used in PVC based medical devices such as medical tubing and blood bags, but also in other products such as electrical cables, toys, footwear, packaging, building materials, paints, rubber products, adhesives and cosmetics. There is a reduction in the use of DEHP as plasticizer in PVC as indicated by the five fold decrease in tonnages used between 1994-2002 in Sweden (KEMI Product register).

Secondary plasticizers, also known as extenders, also play a role in flexible PVC formulations. Chlorinated paraffins (CPs), epoxidised soya bean oil (ESBO) and epoxidised linseed oil (ELO) are commonly used secondary plasticizers. CPs also act as flame retardants, ELO and ESBO as lubricants and also as secondary stabilisers to PVC due to their epoxy content, which can remove hydrochloric acid from the degrading polymer. Plasticizers are not chemically bound to PVC, and may therefore leach (leak, migrate) into the surrounding environment. In this opinion the term leach will be used for consistency.

The biological properties of the phthalate plasticizers used in PVC, especially DEHP, have been the subject of a very substantial amount of research. As a consequence concerns have been raised about the implications for human health and to the environment of three particular properties of DEHP observed in experimental animals/other experimental systems namely the potential to cause:
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

- reproductive and developmental effects.
- endocrine disruption and testes toxicity.
- peroxisome proliferation in the liver and thereby increase the incidence of liver cancer in rodents.

Reports on these properties have resulted in calls from various organisations and individuals to replace DEHP with other plasticizers that do not show such properties.

In addition a number of bodies have called for a reduction in PVC use or even an outright ban on PVC itself because of their concerns about the environmental problems associated with PVC disposal, especially the production of dioxins as a result of the incineration of PVC.

The above concerns have resulted in the SCENIHR being asked by the Commission Services to review and where appropriate update the Opinion of its predecessor committee (The Scientific Committee on Medical Products and Medical Devices Opinion (SCMPMD) of September 2002) on the risks and benefits of the use of PVC, incorporating DEHP, in medical devices. Possible alternative materials could not be evaluated in view of the lack of an analysis of the risks associated with these materials at that moment. However, it was concluded that some alternative plasticizers could replace DEHP in PVC on some conditions for which evaluation of risk and benefits should be done on a case-by-case basis.

In 2002 Health Canada (2002) recommended that alternative products that are already available should be utilized for all ECMO (extracorporeal membrane oxygenation) procedures in newborns and infants. Tubing and storage bags used for administration of lipophilic drugs or drugs which contain surfactants (i.e., lipophilic drug formulations) should not contain DEHP, or strategies to decrease DEHP exposure should be employed, particularly when administering these drugs to infants and children. As alternative products are already available, it was recommended that total parenteral nutrition solutions be administered to newborns only via products, which do not contain DEHP. At that time the Food and Drug Administration (FDA) of USA was recommending the manufactures of medical devices to consider eliminating the use of DEHP in such devices that can result in high exposure in sensitive patients and that certain products be labelled with their DEHP content.

The SCENIHR decided that in order to address this request a risk assessment needed to be carried out in which PVC containing DEHP should be the benchmark. It was also agreed that the evaluation should concentrate on new information that was not available to the SCMPMD in its deliberations in 2002.

DEHP is the main plasticizer used in PVC based medical devices. According to European Pharmacopoeia, only DEHP, ESBO and ELO should be used as plasticizers in medical devices (Medical Devices Directive 93/42/EEC). A number of other substances are used as plasticizers in medical devices, and some non-PVC based materials are also available as alternative to DEHP-PVC. In order to obtain the most updated information DG SANCO published a Call for Information in March 2006 inviting interested parties to submit:

1) Scientific peer reviewed research papers and reviews (later than 1995) on this issue.
2) Data on safety evaluation.
3) Other publicly available credible scientific information that may not be easily available and which is directly relevant to this issue.

The results of this Call for Information and information available from other sources were used as a basis for the following evaluation on DEHP and its alternatives in PVC medical devices. Consequently in this report only the risks from DEHP and possible alternative plasticizers for which sufficient suitable information has been provided are considered. Information on the following compounds was obtained from the stakeholders:
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

- Glycerides, Castor-oil-mono-, hydrogenated, acetates (COMGHA, CAS 736150-63-3)
- Acetyl-tri-n-butyl citrate (ATBC, CAS 77-90-7)
- n-Butyryl-tri-n-hexyl citrate (BTHC, CAS 82469-79-2)
- Di-iso-nonyl-1,2-cyclohexanedicarboxylate (DINCH, CAS 166412-78-8)
- Dioctyl terephthalate (DOTP, CAS 6422-86-2)
- Trioctyl trimellitate (TOTM, CAS 3319-31-1)

In addition “new” phthalates like DINP may also be used in medical devices and SCENIHR also looked for information for that substance. Another compound that is used as plasticiser in food packaging materials, DEHA, was also added to the list which thus also contains the following substances:
- Di-iso-nonyl phthalate (DINP, CAS 68515-48-0 and 28553-12-0)
- Di(2-ethylhexyl) adipate (DEHA, CAS 103-23-1)

It must also be emphasised that in the following evaluation only risks and health benefits to patients who are exposed to medical devices are considered. Thus the following risk/benefit considerations are excluded from our consideration:
- Health, safety and environmental aspects of PVC manufacture and incorporation into medical devices.
- Health and safety of medical and ancillary staff handling or otherwise exposed to PVC medical devices and any substances released from them.
- Environmental risks associated with disposal of PVC containing medical devices.

The focus of this opinion is on the possible risk for patients exposed to medical devices, but as there is a considerable exposure to plasticizers for the general public, this has been taken into account in the evaluation.

The safety assessment performed here includes currently available as well as proposed alternatives of DEHP in medical devices for neonates and for other patient groups, in particular in view of clinical procedures resulting in high exposure. Thus, important medical devices (blood bags, catheters, dialysis equipment, enteral feed containers, gastrointestinal tubes, IV solution storage and administration sets, tubing used in neonates, tubing used for respiratory therapy and containers for total parenteral nutrition (TPN)) and potential DEHP alternatives are the focus of the evaluation.

Finally it is pertinent to point out that only the risks from the use of plasticizers in PVC medical devices have been evaluated. The SCENIHR was not requested to consider the health risks from other substances that might leach out of a PVC medical device such as stabilisers, other additives and contaminants.

In the following chapters the data on DEHP are considered first which is followed by a comparison with the biological properties of the other plasticizers.

3.2. Present use of plasticized PVC in medical devices

Quantitative information of the amount of plasticized PVC used for medical devices is not available. Medical applications account for 0.5% of the total PVC volume used in Western Europe\(^2\). The world PVC use was \(2.94 \times 10^7\) t in 2004 with a 4.3% annual growth rate\(^3\). The Western European use is approximately \(5.8 \times 10^6\) t. According to the EU life cycle assessment report medical applications account for 0.5% of the PVC used in Europe. Thus approximately \(3 \times 10^4\) t of plasticized PVC is used for medical applications annually in Europe.

\(^2\) Final Report of EU-Contract No. ETD/FIF.20020892: Life Cycle Assessment of PVC and of principal competing materials
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

It is possible to greatly reduce the use of DEHP-PVC in hospital procedures as demonstrated in several hospitals around Europe. This might be achieved by using PVC containing alternative plasticizers or using alternative materials. However, this probably can not be achieved for all medical procedures.

DEHP is used in PVC to manufacture bloodbags. DEHP is leaching into the blood in which it contributes to the stability and survival by stabilising the red blood cell membrane (Labow et al. 1987). This prolongs the possibilities of blood storage up to 6-8 weeks after blood collection. Similar effects have also been demonstrated with some other alternative plasticizers in PVC blood bags. This effect may need to be taken into account in the risk-benefit evaluations of the PVC plasticizers.

The use of plastics in medical application is increasing and the medical plastics market was anticipated to grow by more than 3% annually in 2005. There is also a considerable interest from innovative medical plastic producers in developing alternative materials to plasticized PVC.

3.3. Physicochemical properties of plasticizers

The most important physical parameters for evaluating potential human and environmental exposures are water solubility, octanol/water partition coefficient and leaching data. Furthermore the vapour pressure of the plasticizers at the use temperature may in some cases be important. Whereas the solubility and vapour pressure data are available to some extent, very little information is available on leaching.

Table 1 summarizes important physical chemical characteristic, some of which have been estimated (in Italics in the table) limiting their validity. It is possible to predict the relative exposure to be expected from the use of different plasticizers. The rate of leaching is dependent on the lipophilicity of the compound and of the material stored, duration of storage, storage temperature, contact area and, in some cases, agitation. In general, the plasticizers show a higher extent of leaching in lipohilic solutions. The clearest conclusion that can be drawn is that there is a severe lack of data on solubility, water/oil partition coefficients and especially leaching of the plasticizers under conditions relevant to the usage in plasticized products.

Table 1. Overview of some physical properties of the assessed plasticizers.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Vapor pressure at 20°C (Pa)</th>
<th>Water Solubility (µg/L)</th>
<th>log K_{ow}</th>
<th>Water extractability (%)</th>
<th>Kerosene extractability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMGHA</td>
<td>$<2.8 \times 10^{-4}$ at 100°C (4)</td>
<td>7×10^2 (4)</td>
<td>6.0 – 7.7 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATBC</td>
<td>6×10^{-4} (3)</td>
<td>6×10^2 (3)</td>
<td>4.3 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTHC</td>
<td>8×10^{-8} (3)</td>
<td>6×10^{-2} (3)</td>
<td>8.2 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHA</td>
<td>4×10^{-4} (3)</td>
<td>0.5 (3)</td>
<td>8.1 (3)</td>
<td>0.10</td>
<td>>70</td>
</tr>
<tr>
<td>DEHP</td>
<td>3.4×10^{-8} (1)</td>
<td>3.0 (1)</td>
<td>7.5 (1)</td>
<td>0.01</td>
<td>44.3</td>
</tr>
<tr>
<td>DINCH</td>
<td>$<2.8 \times 10^{-8}$ at 100°C (4)</td>
<td>20 (4)</td>
<td>10.0 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DINP</td>
<td>6×10^{-3} (2)</td>
<td>0.6 (2)</td>
<td>8.8 (2)</td>
<td>0.07</td>
<td>77</td>
</tr>
</tbody>
</table>
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

<table>
<thead>
<tr>
<th></th>
<th>DOTP 3×10^{-2} (3)</th>
<th>1 (3)</th>
<th>8.3 (3)</th>
<th>0.09</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTM 8×10^{-6} (3)</td>
<td>6 $\times 10^{-2}$ (3)</td>
<td>11 (3)</td>
<td>0.0</td>
<td>>70</td>
</tr>
</tbody>
</table>

Data in Italics are estimates

a: Loss of plasticizers from a 1 mm, PVC sheet containing 40 wt % plasticizer when extracted with water at 50°C for 24 hours (ASTM D1239-55 (from Sears, 1989)).

b: Loss of plasticizers from a 1 mm, PVC sheet containing 40 wt % plasticizer when extracted with kerosene at 23°C for 24 hours (ASTM D1239-55 (from Sears, 1989)).

3: Estimated with [EPISUITE](http://www.epa.gov/opptintr/exposure/pubs/episuite.htm) 3.20

4: From dossier (see Annex)

As can be seen in Table 2 the assessed plasticizers are very lipophilic, and all of them, except ATBC, have log K_{ow} values above 7 and low water solubility. In this respect the alternatives are not very different from DEHP. The leaching of these substances from PVC to body fluids/tissues can thus be expected to be of similar magnitude compared with DEHP with the possible exception of ATBC.

3.4. DEHP (di(2-ethylhexyl) phthalate)

3.4.1. Physico-chemical properties

The evaluation of DEHP is included in this Opinion as a basis for comparison with the different alternatives. The chemical characteristics of DEHP are presented below.

CAS Reg. No.: 117-81-7

Synonyms:

Empirical formula: $C_{24}H_{38}O_4$

Structure:

![DEHP Structure](image]

Molecular weight: 390.6

Melting point: -50°C

Boiling point: 385°C

Vapour pressure: 0.000034 Pa (20°C)

Solubility in water: 0.003 mg/L

Log K_{ow}: 7.5

Purity: 99.7%

Impurities: Other phthalates. Up to 0.5% Bisphenol A is added to some products.

3.4.2. Use
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The use of DEHP in Europe 1997 has been estimated to 476,000 ton and about 97% of that is used as plasticizer in polymers, mainly PVC (ECB, 2006). About 22% of that is used for products with mainly outdoor applications, while the remaining 462,000 tons end up in products being used indoors. The use in medical devices is estimated at 0.5% of the total production of which the major use (more than 95%) is soft medical grade PVC in containers, flexible tubing and medical gloves. The typical concentration of DEHP in plasticized PVC is 30% (ECB, 2006).

3.4.3. Metabolism of DEHP in humans

In mammals, including man, DEHP is converted into a variety of metabolites (Figure 1). The first and fast stage in the metabolism of DEHP is the hydrolytic cleavage to mono(2-ethylhexyl) phthalate (MEHP) and 2-ethylhexanol (2-EH). After oral uptake enzymatic hydrolysis occurs already in mouth (Niino et al. 2003, Niino et al. 2001) and especially in the gastrointestinal tract (Albro et al. 1982, Albro and Thomas 1973). Thus it can be assumed that the majority of DEHP is rapidly absorbed as MEHP in gut following oral administration. DEHP hydrolyzing lipases can be found in many tissues (especially in pancreas, intestinal mucosa, liver) and in blood plasma of rats (Albro and Thomas 1973, Daniel and Bratt 1974).

![Figure 1. DEHP metabolism](image)

Figure 1. DEHP metabolism (according to Albro 1982; Peck and Albro 1982; Schmid and Schlatter 1985). Major metabolites according to Koch (2005a) are highlighted.

Further metabolism takes place in the liver (Albro 1986) with 2-EH and MEHP undergoing a set of oxidative reactions. In rats the formed 2-EH is rapidly metabolized to 2-ethylhexanoic acid, which is further oxidised by \(\omega \)- and \((\omega-1)\)-oxidation and subsequent \(\beta \)-oxidation to acetate and \(\text{CO}_2 \) (Albro 1975). Also in human urine several of these oxidative metabolites have been identified (Wahl et al. 2004, Wahl et al. 2001).
MEHP is metabolized to produce a large number of oxidative metabolites (Figure 1). Oxidative metabolism of MEHP starts with hydroxylation of the alkyl chain at various positions and the formation of primary (ω-oxidation) and secondary alcohols (ω-n-oxidation). These hydroxylated products can undergo further oxidative reactions to the respective ketones and carboxylic acids. After that the carboxylated alkyl chain can be subject to α- or β-oxidation to yield shorter carboxylated alkyl chains (Albro et al. 1982, Albro et al. 1983, Peck and Abro 1982, Schmid and Slatter 1985).

The rate of absorption in rats and non-human primates has been estimated to be around 50% for doses up to about 200 mg/kg (ECB 2004). At higher doses there may be a dose-limited absorption in non-human primates in contrast to rodents (Rhodes et al. 1983). In previous human metabolism studies urinary excretion rates between 10 and 31% after oral DEHP administration were found (Bronsch 1987, Schmid and Slatter 1985), which indicated a maximal oral bioavailability of 50% as well (ECB 2004). However, Koch et al. (2004b, 2005) found that the majority of orally administered DEHP is systemically absorbed in humans and excreted via urine. After two days of administration of deuterium ring-labelled DEHP (0.35 mg, 2.15 mg and 48.5 mg) to a male healthy volunteer about 75% of the dose was excreted in urine in form of the five major metabolites mono(2-ethyl-5-hydroxyhexyl) phthalate (SOH-MEHP) (24.7%), mono-(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) (21.9%), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) (14.9%), MEHP (7.3%) and mono[2-(carboxymethyl)hexyl] phthalate (2cx-MMHP) (5.4%). No dose dependency in metabolism and excretion was observed for the dose range investigated. Taking into account that further minor DEHP metabolites, such as mono(2-ethyl-3-carboxypropyl) phthalate, mono(2-ethyl-4-carboxybutyl) phthalate, and mono(2-(1-oxoethyl)hexyl) phthalate, were excreted in human urine (Figure 1) (Albro et al. 1982, Schmid and Slatter 1985, Silva et al. 2006a) and so far only periods up to 48 h after administration were observed one can assume that the majority of an orally taken DEHP dose is absorbed and excreted via urine. In contrast to rodents, β-oxidation metabolism might not be a major pathway in primates and humans (Albro et al. 1982).

Koch et al. (2004b, 2005) found that excretion in urine followed at least a two-phase elimination model. The first elimination phase (after 4-8 h absorption and distribution) lasted until 14-16 h after D4-DEHP administration, with an elimination half-life of about 2 h for all five metabolites. In the second elimination phase considerably longer half-lives were estimated for the oxidized DEHP metabolites 2cx-MMHP (24 h), 5cx-MEPP (12-15 h), SOH-MEHP (10 h), 5oxo-MEHP (10 h) than for the simple monoester MEHP (5 h). The respective half-lives in serum were estimated to be shorter than two hours except for 2cx-MMHP, for which the half-life was at least 5h. In contrast to urine MEHP was seen to be the dominant metabolite in serum.

After long-term exposure, which generally may occur in the general population, the ratios among the DEHP metabolites excreted in urine seem to be shifted in favour to the metabolites with longer half-lives. In population studies 5cx-MEPP was found to be the principal urinary metabolite, followed by SOH-MEHP, 5oxo-MEHP, 2cx-MEHP, and MEHP (Preuss et al. 2005, Silva et al. 2006b).

Apart from the first hydrolysis step to MEHP the metabolism of DEHP appears to be qualitatively unaffected by the route of administration (ECB 2004). After intravenous exposure to DEHP via a voluntary platelet donation the secondary metabolites SOH-MEHP, 5cx-MEPP and 5oxo-MEHP were the major urinary metabolites followed in some distance by the simple monoester MEHP and 2cx-MMHP (Koch et al. 2005a, Koch et al. 2005b). Furthermore, the elimination characteristics and relative distribution of the DEHP metabolite in urine were found to be rather similar to that after oral administration (Table 2). Thus there are no indications that the toxicokinetics behaviour of DEHP in humans is fundamentally different after intravenous compared to oral exposure.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Table 2: Relative distribution (in %) of the five major DEHP metabolites (sum is set as 100%) in human urine after oral administration (D4-DEHP) and intravenous exposure

<table>
<thead>
<tr>
<th>Route</th>
<th>5OH-MEHP</th>
<th>5cx-MEPP</th>
<th>5oxo-MEHP</th>
<th>MEHP</th>
<th>2cx-MMHPP</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>34.8</td>
<td>27.6</td>
<td>22.4</td>
<td>8.8</td>
<td>6.3</td>
<td>Koch 2005a</td>
</tr>
<tr>
<td>Intravenous</td>
<td>26.4</td>
<td>27.2</td>
<td>23.1</td>
<td>13.3</td>
<td>10.0</td>
<td>Koch 2005b</td>
</tr>
</tbody>
</table>

Distribution studies in rodents indicate that DEHP is widely distributed in the tissues without evidence of accumulation (Daniel and Bratt and Butterworth 1974, Gaunt 1982, Pollack et al. 1985). Similar distribution patterns have been found between rats and marmosets after oral administration even though in marmosets absorption from the gut was lower (Rhodes et al. 1986). DEHP and its metabolites may be secreted into the milk of lactating rats (Dostal et al. 1987, Parmar et al. 1985) and also pass into human milk (Bruns-Weller and Pfjordt 2000, Calafat et al. 2004, Gruber et al. 1998, Mortensen et al. 2005, Zhu et al. 2006). In rodents 14C-DEHP has found to cross the placenta barrier and distribute into foetal tissues (Lindgren et al. 1982, Singh et al. 1975, Srivastava et al. 1989). The monoester MEHP was found in rat and human amniotic fluid (Calafat et al. 2006, Silva et al. 2004).

Glucoronidation is the major conjugation pathway in mice, guinea pigs and non-human primates (Albro et al. 1982, Egestad et al. 1996). Earlier studies suggest that glucuronides are not formed in rat (Albro et al. 1982, Kluwe 1982) however in a most recent study MEHP was mostly found as glucuronide conjugate in maternal urine (Calafat et al. 2006). In humans at least 65% of the MEHP derivates in the urine seem to be excreted as glucuronides following oral or intravenous administration (Albro et al. 1982, Bronsch 1987, Schmid and Slatter 1985). Large inter individual variations in the glucuronidation were observed for some DEHP metabolites (Dirven et al. 1993, Silva et al. 2006b). While the carboxylic acid metabolites were found to be excreted only partially in their glucuronidated form, the alcohol and ketone metabolites are excreted mainly as glucuronic acid conjugates (Silva et al. 2006b).

The data regarding metabolism and bioavailability following inhalation and dermal exposure are limited. With respect to inhalation no reliable human or adequate animal data in a relevant animal model are available. It can be assumed that only a fraction of the amount inhaled will be available to the lungs while the majority will probably be swallowed and become orally bioavailable (ECB 2004). The dermal absorption appears to be poor in human. Wester et al. (1998) estimated that dermal absorption amounts to approximately 1.8% of a 24-hour applied dose of 14C-DEHP solubilized in ethanol. In rats the bioavailability of DEHP after dermal exposure has been estimated to be around 10% (Elisi et al. 1989, Melnick et al. 1987). However, the results of in vitro studies (Barber et al. 1992, Scott et al. 1987) indicate that the rat skin is about 4-fold more permeable for DEHP than human skin. So, approximately 2.5% of a dermal dose may be adsorbed by human skin.

There are indications that the oxidative pathway in DEHP metabolism is a function of age. In several studies higher ratios of the oxidative metabolites 5OH-MEHP, 5oxo-MEHP and 5cx-MEPP to the simple monoester MEHP were found in children in comparison to adults (CDC 2005, Koch et al. 2004a, Silva et al. 2006b). Also among children increasing ratios with decreasing age were observed (Becker et al. 2004). In neonates there is a higher capacity for oxidation of MEHP with 5cx-MEPP being by far the principal metabolite (Egestad et al. 1996, Koch et al. 2006).

3.4.4. DEHP exposure of the general population
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

DEHP is only physically dispersed in PVC and can therefore easily leach, migrate or gas out from PVC articles. Therefore DEHP can be present in air, dust, water, soils, sediments, and food and has become a ubiquitous environmental contaminant (Clark et al. 2003b). Diet has been determined as the main source of DEHP exposure for the general population with fatty foods (e.g. dairy, fish, oils) containing the highest DEHP levels (Clark et al. 2003b, ECB 2004, Meek and Chan 1994, Peterson and Breindahl 2000, Wormuth et al. 2006). DEHP contamination of food may occur due to bioaccumulation in certain foods as well as during processing, handling, transportation, packaging and storage. Further sources of DEHP exposure are indoor air, household dust, consumer products, and medical procedures.

3.4.5. DEHP exposure assessment from probabilistic calculations

Exposure estimates based on probabilistic calculations from DEHP levels in environmental media and food are given in Table 3. The deduction of DEHP exposure from concentrations in environmental media is difficult due to the numerous sources and routes that have to be considered, and due to the uncertainties in assumptions made for the exposure assessment. Moreover, since DEHP is omnipresent in the environment contamination can easily occur during analytical procedures (David et al. 2003). Finally, one has to consider that the calculated DEHP exposure via food might be based on outdated DEHP contents in food or that the DEHP burdens have not been corrected for background contamination (Clark et al. 2003a), which would lead to an overestimation of the DEHP exposure. The range of DEHP exposure in the general population from all sources excluding medical and occupational exposure has been estimated to be 1 to 30 µg/kg bw/d (CERHR 2005, Doull et al. 1999, Huber et al. 1996). Children are assumed to have higher exposures to DEHP than adults (Clark et al. 2003a, Meek et al. 1994, Müller et al. 2003).

Table 3: DEHP exposure for the general population (µg/kg bw/d) estimated from DEHP contents in environmental media and food (modelling studies)

<table>
<thead>
<tr>
<th>Study</th>
<th>Age group</th>
<th>Median</th>
<th>Upper bound (P 95, max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meek (1994) a</td>
<td>20-70 years</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-19 years</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-11 years</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5-4 years</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-0.5 years</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>MAFF (1996) b</td>
<td>Adults</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Clark (2003a) c</td>
<td>Adult (20-70 years)</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teen (12-19 years)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Child (5-11 years)</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toddler (7 months-4 years)</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>Müller (2003) d</td>
<td>Infant (0-6 months)</td>
<td>5-7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>children (7-14 years)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>children (1-6)</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infant 6-12 months</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Wormuth (2006) e</td>
<td>Children</td>
<td>1.8</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td>2.7</td>
<td>15.5</td>
</tr>
</tbody>
</table>

a estimated daily DEHP exposure from air, food, drinking water by the population of Canada
b dietary exposure in UK
c considering all exposure pathways excluding children’s and other consumer products
d combined oral, inhalatory and dermal exposure via several pathways in Denmark
e scenario-based approach including oral, dermal and inhalation pathways for Europeans
3.4.6. DEHP exposure assessment from urinary metabolite excretion

The individual and actual internal exposure to DEHP can be determined by measuring DEHP metabolites in urine (Blount et al. 2000, Koch et al. 2006, Koch et al. 2003b). Specific urinary DEHP metabolites can serve as biomarkers of DEHP exposure covering all sources and routes of exposure. So far, urinary levels of DEHP metabolites have been measured in several studies in Germany and USA, which have revealed the ubiquitous exposure of the general population to DEHP (Table 4). The data from both countries are in good accordance and lie within the same order of magnitude. While in the first studies only the simple monoester MEHP has been determined in urine, the parameter spectrum has been steadily increasing. By now the secondary metabolites have been recognized as much more reliable biomarkers for an assessment of the DEHP exposure (Koch et al. 2006, Koch et al. 2003b). They are excreted to a higher extent than MEHP and are more specific as they are not susceptible to contamination. By contrast, MEHP can be formed by hydrolysis of DEHP during sample handling and processing. Mono(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) was found to be the main urinary metabolite measured in the general population, followed by mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono(2-ethylhexyl) phthalate (MEHP), and mono(2-carboxy-methylhexyl) phthalate (2cx-MMHP) (Table 4). This is partly in contrast to the metabolic excretion pattern found after a single dose of D4-DEHP (Koch et al. 2005a) with 5OH-MEHP as the main metabolite. However, due to the chronic exposure in the general population the ratios may be shifted to the metabolites with the longest half-lives, which are the carboxy metabolites. In general, children showed higher concentrations of DEHP metabolites than adults with higher ratios of the oxidative metabolites compared to MEHP (Becker et al. 2004, CDC 2005, Koch et al. 2004a).

Table 4: Median body burden to DEHP of the general population, indicated by urinary concentrations of DEHP metabolites (in µg/l)

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of sampling</th>
<th>n (age)</th>
<th>5cx-MEPP</th>
<th>5OH-MEHP</th>
<th>5oxo-MEHP</th>
<th>2cx-MMHP</th>
<th>MEHP</th>
<th>FOD (%)</th>
<th>DEHP [µg/kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koch (2003b) 2</td>
<td>2002</td>
<td>85 (7-63)</td>
<td>n.d.</td>
<td>46.8</td>
<td>36.5</td>
<td>n.d.</td>
<td>10.3</td>
<td>100</td>
<td>5.8</td>
</tr>
<tr>
<td>Barr (2003) 1</td>
<td>1999-2000</td>
<td>2541 (>6)</td>
<td>n.d.</td>
<td>35.9</td>
<td>28.3</td>
<td>n.d.</td>
<td>4.5</td>
<td>96</td>
<td>4.3</td>
</tr>
<tr>
<td>Silva (2004) 1</td>
<td>2001/2002</td>
<td>254 (3-14)</td>
<td>n.d.</td>
<td>52.1</td>
<td>41.4</td>
<td>n.d.</td>
<td>7.2</td>
<td>100</td>
<td>(6.3)</td>
</tr>
<tr>
<td>Becker (2004) 2</td>
<td>2003</td>
<td>19 (2-6)</td>
<td>n.d.</td>
<td>49.6</td>
<td>33.8</td>
<td>n.d.</td>
<td>6.6</td>
<td>100</td>
<td>(5.6)</td>
</tr>
<tr>
<td>Kato (2004) 1</td>
<td>2001</td>
<td>127 (n.s.)</td>
<td>n.d.</td>
<td>17.4</td>
<td>15.6</td>
<td>n.d.</td>
<td><LOD</td>
<td>95</td>
<td>2.4</td>
</tr>
<tr>
<td>CDC (2005) 1</td>
<td>2001/2002</td>
<td>742 (12-19)</td>
<td>n.d.</td>
<td>32.9</td>
<td>22.6</td>
<td>n.d.</td>
<td>4.4</td>
<td>NA</td>
<td>(3.7)</td>
</tr>
<tr>
<td>Swan (2005) 1</td>
<td>1999-2002</td>
<td>85 (>18) pregnant women</td>
<td>n.d.</td>
<td>11.4</td>
<td>11.1</td>
<td>n.d.</td>
<td>3.3</td>
<td>98</td>
<td>1.4</td>
</tr>
<tr>
<td>Silva (2006) 1</td>
<td>2003/2004</td>
<td>129 (adults)</td>
<td>15.6</td>
<td>15.3</td>
<td>7.1</td>
<td>5.9</td>
<td>3.1</td>
<td>100</td>
<td>1.9</td>
</tr>
<tr>
<td>Wittassek (accepted) 2</td>
<td>2001/2003</td>
<td>120 (20-29)</td>
<td>19.5</td>
<td>14.6</td>
<td>13.4</td>
<td>5.8</td>
<td>5.0</td>
<td>100</td>
<td>2.3</td>
</tr>
</tbody>
</table>

1 US population
2 German population
* Frequency of detection for at least one DEHP metabolite in %
From the urinary concentrations measured daily DEHP exposure has been calculated by comparison with urinary excretion rates determined in human metabolism studies (Anderson et al. 2001, Koch et al. 2004b, Koch 2005a, Schmid ans Slatter 1985). Since in the most metabolite excretion studies 24h urine samples were not available the amount of the DEHP metabolites excreted throughout a day has to be extrapolated from spot urine concentrations. This can be done by using reference values for the daily creatinine excretion (separately for men, women and children). For calculation of daily DEHP intake following equation has been applied:

\[
\text{DI (\text{\(\mu\)g/kg bw/day})} = \frac{\text{UE}_{\text{met}} \cdot \text{CE}}{F_{\text{UE}}} \cdot \text{MW}_{\text{DEHP}}
\]

\(\text{UE}_{\text{met}}\): urinary excretion of one or several DEHP metabolites in \(\mu\text{mol/g crea}\)

\(\text{CE}\): reference value for daily creatinine excretion [\(\text{g crea/kg/day}\)]

\(F_{\text{UE}}\): molar ratio between the urinary excreted amount of DEHP metabolite(s) and the DEHP amount taken up determined in human metabolism studies

\(\text{MW}_{\text{DEHP}}\): molecular weight of DEHP

\(\text{CE}\):

- women 18 mg/kg/day
- men 23 mg/kg/day

Calculation:

Volume related concentrations ~ Creatinine related concentrations

Alternatively, also a volume based calculation model has been applied (Wittassek et al. 2007). Ideally, 24 urine samples are collected for a daily DEHP intake estimation as the absolute amount of the excreted DEHP metabolites during a whole day is directly accessible (Wittassek et al. 2007). However, this is laborious and e.g. for children not a realistic approach.

First daily DEHP intake evaluations were based on the excretion of the simple monoester MEHP only (David et al. 2000, Kohn et al. 2000). At that time, available metabolism studies indicated that urinary MEHP represented between 2.4% and 13% of the DEHP dose (Anderson et al. 2001, Schmid and Slatter 1985), which led to substantial differences in the resulting daily intake values depending on the excretion factor used. More recent daily intake calculations implement also the secondary DEHP metabolites (Koch et al. 2003a; Wittassek et al. 2007, Wittassek et al. 2007). Estimations based on three or five DEHP metabolites may lead to more reliable estimations of the daily DEHP intake.

In general, daily DEHP intake estimations based on urinary biomarkers give values in the same order of magnitude as those based on probabilistic calculations (Table 5). The current median DEHP exposure for the German general population has been estimated to be between 2 and 5 \(\mu\text{g/kg bw/d}\) (Koch et al. 2003a; Wittassek et al. 2007). Children seemed to be higher exposed in relation to kg bw/ with a median exposure of around 4 to 8 \(\mu\text{g/kg/d}\) (Wittassek et al. 2007). The results of a retrospective biomonitoring study (Wittassek et al. 2007) indicate that the inner burden to DEHP has decreased during the last twenty years in Germany by a factor of nearly two.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Table 5: Daily DEHP intake estimations (µg/kg bw/d) deduced from urinary DEHP metabolite measurements

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Sampling year</th>
<th>n (age)</th>
<th>DEHP intake estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>David (2000)</td>
<td>USA</td>
<td>1988-1994</td>
<td>289 (20-60)</td>
<td>Median 0.6<sup>a</sup></td>
</tr>
<tr>
<td>Kohn (2000)</td>
<td>USA</td>
<td>1988-1994</td>
<td>289 (20-60)</td>
<td>Median 0.7</td>
</tr>
<tr>
<td>Koch (2003a)</td>
<td>Germany</td>
<td>2002</td>
<td>85 (7-63)</td>
<td>Median 13.8<sup>d</sup> 4.6<sup>e</sup></td>
</tr>
<tr>
<td>Wittassek (2007)</td>
<td>Germany</td>
<td>2001/2002</td>
<td>239 (2-14)</td>
<td>Median 4.3<sup>g</sup> 7.8<sup>h</sup></td>
</tr>
<tr>
<td>Wittassek (accepted)</td>
<td>Germany</td>
<td>2001/2003</td>
<td>120 (20-29)</td>
<td>Median 2.7</td>
</tr>
</tbody>
</table>

^a Geometric Mean
^b Values based on MEHP; metabolic factors adopted from Anderson et al. (2001)
^c Values based on MEHP; metabolic factors adopted from Peck and Albro (1982)
^d Values based on 5OH-MEHP and 5oxo-MEHP; metabolic factors from Schmid and Schlatter (1985)
^e Values based on 5OH-MEHP and 5oxo-MEHP; applying metabolic urinary factors from Koch et al. (2005)
^f Values based on MEHP, 5OH-MEHP and 5oxo-MEHP; applying metabolic urinary factors from Koch et al. (2005)
^g creatinine based evaluation
^h volume based evaluation
ⁱ Values based on MEHP, 5OH-MEHP, 5oxo-MEHP, 2cx-MMHP and 5cx-MEPP; applying metabolic urinary factors from Koch et al. (2005)

3.4.7. Exposure to DEHP following medical procedures

DEHP is currently the primary plasticizer used in PVC-containing medical devices such as containers for blood or nutrients, tubings and catheters. Thus patients undergoing medical treatment can be exposed to DEHP released from PVC medical devices (FDA 2002, Health_Canada 2002). The following procedures which a potential for high exposure to DEHP are identified:

- Exchange transfusion in neonates
- ECMO in neonates
- Total Parenteral Nutrition (TPN) in neonates
- Multiple procedures in sick neonates
- Haemodialysis in peripubertal males
- Haemodialysis in pregnant or lactating women
- Enteral nutrition in neonates and adults
- Hearth transplantation or coronary artery bypass graft surgery
- Massive infusion of blood into trauma patient
- Transfusion in adult undergoing ECMO

Depending on the medical procedure exposure to DEHP varies widely and is a function of the lipophilicity of the fluid that comes into contact with the medical devices, the PVC surface size, the temperature, the flow rate and the contact time (Haishima et al. 2005, Hanawa et al. 2003, Hanawa et al. 2000, Kambia et al. 2003, Loff et al. 2002, Loff 2000, Loff et al. 2004). Polyethylene linings of PVC articles (e.g. tubings) do not seem to substantially prevent the release of DEHP (Bourdeaux et al. 2004, Demore et al. 2002).
3.4.8. Adult exposure during medical procedures

Exposure to DEHP due to the usage of PVC medical devices can be short- or long-term. Long-term exposures in adults comprise haemodialysis, continuous ambulatory peritoneal dialysis (CAPD), transfusions of blood and blood products to patients with leukemia, aplastic anemia, sickle cell anemia, clotting disorders, administration of total parental nutrition (TPN) and enteral nutrition of critically ill patients. Short-term DEHP exposures include blood transfusions e.g. in trauma patients, patients undergoing surgical procedures or extracorporeal membrane oxygenation (ECMO) procedures, and intravenous infusion of drugs.

Reported DEHP exposures estimated due to medical procedures for adults are summarized in Table 6. The reported data are based on measurements of DEHP blood levels in patients before and after specific medical procedures, area under curve (AUC) calculations and DEHP levels in stored blood and blood components together with different scenario assumptions (e.g. rate extraction of DEHP). Long-term haemodialysis is the continuously repeated procedure, which may result in the highest cumulative dose of DEHP (up to 2200 µg/kg/d). Blood transfusions to trauma patients or during ECMO may be the short-term procedure that gives the highest acute DEHP exposure in adults (up to 10 mg/kg/d).

<table>
<thead>
<tr>
<th>Medical procedure</th>
<th>Daily DEHP dose (µg/kg/d)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>640 a,b,c (150-2200)</td>
<td>Pollack (1985)</td>
</tr>
<tr>
<td></td>
<td>450 a,b,c (270-1210) – delivered dose</td>
<td>Faouzi (1999)</td>
</tr>
<tr>
<td></td>
<td>100 a,b,c (20-360) – retained dose</td>
<td>Dine (2000)</td>
</tr>
<tr>
<td></td>
<td>230 c (50-850) – retained dose</td>
<td></td>
</tr>
<tr>
<td>Continuous ambulatory peritoneal dialysis</td>
<td>20 e</td>
<td>Mettang (1996)</td>
</tr>
<tr>
<td>Long-term transfusion of blood and blood products</td>
<td>6-90 f</td>
<td>Jacobson (1977)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doull (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ponait (1993)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Health Canada (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mazur (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loff (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kambia (2003)</td>
</tr>
<tr>
<td>Long-term total parenteral nutrition</td>
<td>130-280 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800-2000 µg/day d (infants/children)</td>
<td></td>
</tr>
<tr>
<td>Short-term exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusions of blood components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma patient</td>
<td>8500 f</td>
<td>Jaeger (1972)</td>
</tr>
<tr>
<td></td>
<td>1300-2600 f (2.5L whole blood)</td>
<td>Sjoberg (1985b)</td>
</tr>
<tr>
<td>During ECMO</td>
<td>3000-10000 f (21-46 units combined blood products)</td>
<td>Butch (1996)</td>
</tr>
<tr>
<td>Cardiopulmonary bypass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During artificial heart transplant</td>
<td>2400 e</td>
<td>Barry (1989)</td>
</tr>
<tr>
<td>IV Infusion of drugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-lipophilic drugs</td>
<td>< 5 f</td>
<td>Health Canada (2002)</td>
</tr>
<tr>
<td>Lipophilic drugs</td>
<td>up to 1500 f</td>
<td>Pearson (1993)</td>
</tr>
</tbody>
</table>

a assuming three dialysis sessions per week for a 70 kg patient
b area under curve (AUC) calculations
c estimated by DEHP blood levels coming to and/or from the patient, 4h-dialysis treatment
d based on estimated rates of DEHP extraction from PVC storage bags and infusion lines
e calculated from DEHP serum concentrations measured in patients
f based on DEHP concentrations in stored blood and blood components or infusion solutions
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The estimated DEHP doses given in Table 6 are based on measurements of DEHP itself. However, analytical determination of DEHP is prone to contamination during sample handling and processing. This is to be kept in mind when assessing the DEHP exposure levels estimated.

Patients receiving blood and blood products are not only exposed to DEHP but also to its hydrolysis product, mono(2-ethylhexyl) phthalate (MEHP), which is formed by plasma lipases (Albro and Thomas 1973, Peck et al. 1979). The conversion has been shown to increase with increasing storage time and temperature, while storage at low temperatures prevent it (Cole et al. 1981, Inoue 2005, Rock et al. 1978). MEHP has been measured in stored blood, blood products and peritoneal dialysate (Cole et al. 1981, Labow et al. 1986, Peck et al. 1979, Rock et al. 1978, Sjoberg et al. 1985a, Sjoberg et al. 1985b). Nevertheless, the data available are not sufficient to accurately calculate the in vitro conversion rates (Health Canada 2002). The MEHP exposure due to exchange transfusion has been estimated to be in the range of 5 to 680 µg/kg/d (Sjoberg et al. 1985a, Sjoberg et al. 1985b).

Exposure to DEHP can also occur through voluntary medical treatments such as apheresis procedure to donate blood products (Table 7). Many disposables used in apheresis are manufactured from PVC containing DEHP. Highest DEHP exposure has been estimated for continuous-flow plateletpheresis (dual needle technique). Based on urinary measurements of DEHP metabolites Koch et al. (2005b) calculated for such donors (overall) daily DEHP intakes of 28.2-38.1 µg/kg/d. For platelet donors undergoing the single needle discontinuous-flow technique values were some lower with 14-24 µg/kg/d. The internal burden after plasma donation (3.1-9.6 µg/kg/d) was not elevated in comparison to controls (3-11.6 µg/kg/d), which indicates that the DEHP dose associated with plasmapheresis is not elevated above background. This may be because the lipid-rich plasma may contain most of the DEHP, which is removed from the body by the procedure. Buchta (2003) estimated from serum DEHP concentrations exposures of 1.8-20.3 µg/kg/d due to apheresis procedure.

<table>
<thead>
<tr>
<th>Donation procedure (apheresis technology used)</th>
<th>n</th>
<th>Mean daily DEHP dose (range) [µg/kg/d]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>5</td>
<td>6.2 (3.0-11.6)</td>
<td>Koch 2005b</td>
</tr>
<tr>
<td>Plasma</td>
<td>6</td>
<td>5.7 (3.1-9.6)</td>
<td></td>
</tr>
<tr>
<td>Platelet (discontinuous)</td>
<td>6</td>
<td>18.1 (14.3-23.8)</td>
<td>Koch 2005c</td>
</tr>
<tr>
<td>Platelet (continuous)</td>
<td>6</td>
<td>32.3 (28.2-38.1)</td>
<td></td>
</tr>
<tr>
<td>Platelet (continuous)</td>
<td>1</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td>Platelet (discontinuous)</td>
<td>19</td>
<td>6.5 (1.8-20.3)</td>
<td>Buchta 2003</td>
</tr>
<tr>
<td>Platelet (continuous)</td>
<td>17</td>
<td>7.2 (2.0-20.3)</td>
<td></td>
</tr>
</tbody>
</table>

3.4.9. Newborns at risk

Developing fetus and the neonate represent the most vulnerable phases of life particularly with regard to developmental and reproductive toxicity. In particular, neonates in the Neonatal Intensive Care Unit (NICU) environment, due to their small body size, their physical condition and multiple medical device-related DEHP exposure (feeding tubes, infusion tubing systems, umbilical catheters, PVC blood bags, transfusion tubing systems, hemodialysis systems, cardiopulmonary bypass, continuous peritoneal dialysis, extracorporeal membrane oxygenation circuits or endotracheal tubes) combined with their
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

developmental vulnerability represent a population at particularly increased risk (CERHR 2005; FDA 2001; Health Canada 2002).

In fact, neonates receive higher doses, in terms of body weight, of DEHP than the general population (Calafat et al. 2004b; Green et al. 2005) and their daily dose to DEHP may increase up to 20 folds the tolerable daily intake (Jaeger et al. 2005). The combination of prenatal and postnatal exposures may exacerbate the reproductive hazard. Therefore a concern was raised about potential health effects of DEHP (CERHR 2005, ECB 2006). Accordingly research into alternatives to DEHP-containing medical devices that may come in contact with human tissues was suggested (Jaeger et al. 2005). In addition, further studies are needed to evaluate if less invasive medical treatments may reduce phthalate exposure risk (Latini et al. 2003b).

Table 8 gives estimates of DEHP exposures in neonates resulting from medical treatments calculated from spot measurements of DEHP or delivered doses using AUC calculations. The values are related to a 4 kg infant. However, most newborns requiring medical intensive care are premature born babies who weight significantly lighter, in general between 500 and 2500 g. Therefore, the DEHP exposure in relation to body weight may even be higher in premature newborns. The DEHP exposure estimates reach for many procedures the mg/kg range. Compared to adults undergoing the same medical procedures the values are significantly higher and are several orders of magnitude above the exposure levels estimated for the general population. The highest short-term exposure may occur due to double volume exchange transfusion (up to 23 mg/kg/d) while ECMO is the medical treatment, which may give the highest daily exposure over a prolonged period of time (up to 14 mg/kg/day). Moreover, critically ill neonates generally require not only a single medical treatment but also a combination of several medical interventions, which may lead to even much higher DEHP exposure. The FDA (2002) has estimated an upper-bound daily DEHP dose on the order of 3 mg/kg/d for a newborn (4 kg) in the neonate intensive care unit (NICU) setting considering exposure from multiple devices. Such exposures may occur for a period of weeks or even months. However, the total DEHP exposure may vary dramatically from medical centre to centre, depending on the treatment protocols and specific medical devices used (Rosenberg 1994).

Table 8: Estimated dose of DEHP received by neonates undergoing medical procedures calculated from measurement of DEHP in patient’s blood or calculated from the leaching rate of DEHP from the medical apparatus (Health Canada 2002)

<table>
<thead>
<tr>
<th>Medical procedure</th>
<th>Daily DEHP dose (µg/kg/d) of neonate (4 kg)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infusion of pharmaceuticals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Midazolam (24 ml)</td>
<td>7 a</td>
<td>Loff (2000)</td>
</tr>
<tr>
<td>• Fentanyl (29 ml)</td>
<td>33 a</td>
<td></td>
</tr>
<tr>
<td>• Propofol (1%, 10 ml, 24h)</td>
<td>1640 a</td>
<td></td>
</tr>
<tr>
<td>TPN</td>
<td>30 (free of lipid) a</td>
<td>Loff (2000)</td>
</tr>
<tr>
<td></td>
<td>2500 (lipid emulsion 20%, 27°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3250 (fat infusion, 33°C) a</td>
<td></td>
</tr>
<tr>
<td>Exchange transfusion – short term</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200-22600 c</td>
<td>Plonait (1993)</td>
</tr>
<tr>
<td></td>
<td>840-3300 b</td>
<td>Sjoberg (1985a)</td>
</tr>
<tr>
<td></td>
<td>1700-4200 a</td>
<td>Sjoberg (1985b)</td>
</tr>
<tr>
<td>Single dose Platelet-Rich Plasma (20 ml)</td>
<td>323 a</td>
<td></td>
</tr>
<tr>
<td>Single dose Fresh Frozen Plasma (20 ml)</td>
<td>138-2020 a</td>
<td></td>
</tr>
<tr>
<td>ECMO - sub-acute</td>
<td>Up to 14,000 d</td>
<td>Shneider (1989)</td>
</tr>
<tr>
<td></td>
<td>(14000 µg/kg/ 10 days)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 (heparin coated PVC tubing)</td>
<td>Karle (1997)</td>
</tr>
<tr>
<td></td>
<td>Up to 3,490 e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(34900 µg/kg/ 10 days)</td>
<td></td>
</tr>
<tr>
<td>Respiratory therapy - oxygen therapy</td>
<td>< 130 f</td>
<td>Health Canada 2003</td>
</tr>
</tbody>
</table>
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Respiratory therapy using endotracheal tube < 700

Aggregate exposures of NICU infants (iv administration of sedatives, TPN, replacement transfusion)

<table>
<thead>
<tr>
<th>Reference</th>
<th>N</th>
<th>Birth weight ± SD [g]</th>
<th>5cx-MEPP</th>
<th>5OH-MEHP</th>
<th>5oxo-MEHP</th>
<th>2cx-MMHP</th>
<th>MEHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calafat 2004</td>
<td>6</td>
<td>666 ± 167</td>
<td>n.d.</td>
<td>2221 (13161)</td>
<td>1697 (10413)</td>
<td>n.d.</td>
<td>129 (704)</td>
</tr>
<tr>
<td>Koch 2006</td>
<td>45</td>
<td>1976 ± 714</td>
<td>293 (5500)</td>
<td>41.6 (557)</td>
<td>34.8 (406)</td>
<td>8.3 (129)</td>
<td>-</td>
</tr>
</tbody>
</table>

a results of 41 urine samples of premature newborns; intensive care interventions for more than 2 weeks
b DEHP exposure was rated low, medium or high based on the kind of medical devices used
c premature neonates treated with various medical procedures
d: not determined
n.s.: not specified

Based on the urinary measurements Koch (2006) estimated for 45 premature neonates a median daily DEHP dose of 42 µg/kg bw/d and a 95th percentile of 1780 µg/kg bw/d. The large difference between the median and the 95th percentile indicate a great variability in DEHP exposure for newborns in intensive care, which may reflect the variety and intensity of the medical procedures performed. The maximum estimated daily DEHP intake was 2300 µg/kg bw/d, which is separated from the NOAEL (4.8 mg/kg bw/d) for testicular and developmental toxicity in rats only by a factor of two (Wolfe 2003). Based on the data of Calafat et al. (2004) even higher maximal DEHP exposures up to 6000 µg/kg bw/d have been estimated well above the NOAEL observed in the rat study (CERHR 2005).

3.4.10. Summary on the exposure to DEHP

The general population is exposed to DEHP through a variety of routes with food being the primary source. Several metabolite excretion studies suggest exposure to DEHP in the whole general population. In general, DEHP exposure assessments from probabilistic calculations from DEHP measurements in environmental media and dose reconstructions from urinary metabolite levels agree within an order of magnitude. Most recent studies suggest a current median exposure of 2 to 5 µg/kg bw/day, whereas the 95th percentile is estimated to be between 6 and 17 µg/kg bw/day. Children may have somewhat higher body...
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

burden of DEHP than adults. There are indications that exposure to DEHP in the general population has decreased during the last years.

Medical procedures using PVC medical devices can lead to DEHP exposures much higher than the background levels. However, the extent of exposure largely depends upon the medical treatments given and the duration of the treatment. In adults, highest doses of DEHP may result by transfusions of blood components reaching up to several mg/kg bw/day. It has been shown that also voluntary medical treatments such as apheresis procedure to donate blood products can cause significant exposure to DEHP. For adults the extent of exposure varies depending on medical procedures conducted. For some treatments the mg/kg bw/day range may easily be reached. For blood transfusion procedures peak values up to 22 mg/kg bw/day have been estimated. Premature neonates in intensive care units, being dependent on multiple medical procedures, can receive even higher DEHP exposures than adults relative to their kg bw. These exposures may be in the same range as the doses inducing reproductive toxicity in animal studies.

3.4.11. Toxicity

Comprehensive reports have been issued recently which provide in depth evaluations of the toxicity of DEHP, in particular, the European Union Risk Assessment Report of 2006 (draft version, an update of the final report published in 2004 in the framework of the Existing Chemicals program at http://ecb.jrc.it) and the NTP-CERHR Expert Panel Update on the Reproductive and Developmental Toxicity published in 2006 (available http://cerhr.niehs.nih.gov). SCENIHR has carefully considered these summary documents along with new pertinent original publications.

3.4.12. Animal Studies

Acute toxicity

Acute toxicity studies of good quality indicate low acute toxicity of DEHP, with an LD50 of >25 g/kg in rats and mice. The intravenous acute toxicity of DEHP is higher, with an LD50 in the region of 200-250 mg/kg in rats. The acute toxicity of MEHP is about five times higher than that of DEHP (ECB 2006; NTP-CEHRHR, 2005).

Repeated dose toxicity

Numerous studies investigated the toxicity of DEHP upon short-term and repeated administration to experimental animals, mostly rats and with application by the oral route. Many of these studies are comparable to guideline studies and conducted in conformity with GLP. Target organs for DEHP induced toxicity in rodents were kidney, liver and testis.

The effects on the kidneys included increased absolute and relative organ weights, increased incidence and severity of mineralization of the renal papilla, increased incidence and/or severity of tubule cell pigment, and increased incidence and/or severity of chronic progressive nephropathy. In long-term studies in rats and mice, there was no indication that DEHP-related changes in the kidney were reversible upon cessation of DEHP-exposure. The lowest NOAEL for kidney toxicity is 500 ppm DEHP in the diet (corresponding to 28.9 mg/kg/day in the males and 36.1 mg/kg/day in the females) derived from a well-performed 104-week-study in rats (Moore 1996, David et al. 2000a) and based on increased absolute and relative kidney weight in both sexes at the next higher dose level (LOAEL = 146.6 mg/kg bow/day). More severe kidney lesions were observed at the highest dose level.

The most striking effects observed in the liver are hepatomegaly due to hepatocyte proliferation (characterised by increased replicative DNA synthesis/cell division and
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

hypertrophy), peroxisome proliferation, and hepatocellular tumours. The effects on the liver (hepatomegaly) are apparently mediated by peroxisome-proliferator activated receptor (PPAR\(\alpha\)) and agonistic interaction of DEHP and its metabolite MEHP with the receptor. There are, however, marked species differences in the PPAR\(\alpha\)-mediated effects of DEHP, such that the hepatotoxic effects of DEHP in rodents are not judged to be relevant for humans (IARC, 2000).

In repeated exposure study 16 rats were pretreated with 100 mg/m\(^3\) for 2 weeks (aerosol) 6 hours per day, 5 days per week. The study indicates that following repeated inhalation exposure long term retention does not occur. There are no other relevant studies in rodents investigating the health effects in the respiratory tract.

Genotoxicity/mutagenicity

DEHP has been studied extensively in a wide range of *in vitro* and *in vivo* assays for detection of gene mutations, DNA damage, and chromosomal effects. Most of the studies are performed according to GLP principles and are comparable to guideline studies for mutagenicity or genotoxicity. The results have been negative in the majority of assays with DEHP and metabolites (MEHP and 2-EH). Positive results were obtained in assays on cell transformation, induction of aneuploidy, and cell proliferation. However, these test systems are also sensitive to several non-genotoxic substances such as tumour promoters and/or peroxisome proliferators. Thus, in conclusion, DEHP and its major metabolites are considered to be non-mutagenic substances.

Carcinogenicity

Several studies on the carcinogenicity (and mechanisms of carcinogenicity) of DEHP have been performed in rats and mice with oral administration, and an inhalation study in Syrian golden hamsters. These studies are summarized in the RAR report of 2006 and other summary documents (IARC, 2000).

The results of four different peroral long-term carcinogenicity studies in rats and mice indicate clearly that DEHP is a hepatocarcinogen in both males and females of the two species. In the NTP studies (1982a), the LOAEL for tumour induction in mice was 3000 ppm DEHP in the diet (670 mg/kg bow per day for male mice). A NOAEL for DEHP-induced tumour development in the rat has not been identified as the lowest dose in the study resulted in an increase of the incidence of liver tumours. The LOAEL for tumour induction in rat was 6000 ppm DEHP in the diet (320 mg/kg bw per day for male rats). Two more recent long-term carcinogenicity studies in rats and mice have been conducted by Moore (1996, 1997) and reported by David et al. (2000a and 2000b). An overall NOAEL for the tumour induction and for the effects on the liver, kidney and testis was established as 500 ppm DEHP (29 mg/kg bw/day for male rats). The LOAEL and the NOAEL for tumour induction (male mice with hepatocellular neoplasms) in this study was 1500 and 500 ppm DEHP in the diet, respectively (corresponding to 292 and 98 mg/kg bw per day for males of the two dose groups respectively). The LOAEL and the NOAEL for non-neoplastic effects on the liver in this study were 500 and 100 ppm DEHP in the diet, respectively (98 and 19 mg/kg bw per day for males of the two dose groups respectively). Marked species differences with respect to hepatic response to peroxisome proliferation are apparent. Rat and mice seem to exhibit the highest sensitivity. Guinea pigs and monkeys are relatively insensitive. In marmosets, the liver weight was not affected and a slight increased activity of peroxonal enzymes was observed following administration of 2000 mg/kg bw for 14 days.

In conclusion: DEHP was found to induce liver tumors in rats and mice mainly by the activation of the PPAR\(\alpha\) receptor, a mechanism considered not to be relevant in the human liver.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Immunotoxicity

Larsen and colleagues (2001a, 2001b) studied adjuvant effects of DEHP, and MEHP and other phthalate monoesters in a subcutaneous injection model in BALB/c mice. Ovalbumin was used as the model antigen and ovalbumin-specific IgE, IgG1, and IgG2a antibodies were measured as indicators of allergic response. MEHP produced a significant increase in both IgE and IgG1 levels, and DEHP increased IgG1 levels, these antibodies being related to a Th2 response predominant in Type I allergy. The adjuvant activity was noted when DEHP was mixed with the antigen ovalbumin.

One of the metabolites of DEHP, MEHP (monoethylhexylphthalate) induced immunosuppression, i.e. reduced antibody titres, when the same protocol was used (Larsen et al. 2001b), indicating that DEHP and its metabolites have the potential to interact with the immune system in various ways, although it is unknown whether such effects are observed in humans after oral or parenteral exposition to DEHP.

Some monophthalates have been shown to promote cytokine IL-6 and IL-8 production in the human epithelial cell line A549, indicating a potential role in inflammatory process (Jepsen et al. 2004).

Reproductive toxicity

The reproductive or developmental toxicity of DEHP have been studied in rats, mice, hamsters, ferrets and marmosets. Based on the available data, which varies in both study designs and number of animals included, testicular effects have been demonstrated in both male rodents and non-rodents. The testis toxicity of DEHP is age dependent (Sjoberg et al. 1985b). The lowest NOAEL is seen in the range from 3.5 to 4.8 mg/kg b.w. in rats. The females need to be exposed in the most critical period of 12-21 days during pregnancy to see testicular effects at low doses (< 10 mg/kg bw) (Fabjan et al. 2006). In mice, after continuous exposure during breeding a NOAEL for maternal developmental toxicity of 600 and 20 mg/kg bw/day can be identified. In ferrets a LOAEL is 1200 mg/kg bw/day (Lake 1976). In animal experiments DEHP is embryotoxic and causes malformations in mice but not in rats when given orally in doses close to the maternal toxic dose (Sullivan et al. 1991).

In a previous CSTEE opinion (CSTEE, 1998), testicular toxicity was identified as the critical endpoint for DEHP from a 13-week dietary study in Sprague-Dawley rats, and a NOAEL was set at 3.7 mg/kg bw/day based on mild Sertoli cell vacuolation (Poon et al. 1997). Since that time, the result of a new multigenerational reproductive toxicity study of DEHP in Sprague-Dawley rats has become available (Wolfe and Layton 2003). The ECB 2006 evaluated the study in which three generations were fed DEHP in the diet corresponding to doses of 0.1, 0.5, 1.5, 4.8 14, 46, 359 and 775 mg/kg bw/day. There were dose-dependent effects on numerous testis related parameters (decreased testicular weight, small or aplastic testes, seminiferous tubular atrophy, infertility at high doses) The NOAEL for both testicular toxicity and developmental toxicity from this experiment was determined at 4.,8 mg/kg bw/day.

The CSTEE agreed with the RAR to use this NOAEL rather than 3.7 mg/kg bw/day from the study of Poon et al. (1997), since the endpoints seen in the Wolf and Langley (2003) study are more robust and the study was well performed (CSTEE 2004).

3.4.13. Mechanisms of Action of DEHP
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

In general three mechanisms have been proposed to account for liver carcinogenicity

- Hepatomegaly and peroxisome proliferation leading to oxidative stress and generation of electrophilic free radicals
- Increased hepatocyte proliferation/suppression of hepatocellular apoptosis and
- Activation of peroxisome proliferators-activated receptors (PPARs).

Still the understanding of the mechanism of action in the liver is not clarified.

The effect of DEHP on liver cells has been studied in details and the peroxisome proliferators are involved in the hepatotoxicity of DEHP. PPARs play a number of important roles in normal physiology and play a role as a modulator of signal molecules that mediate changes in gene expression to maintain lipid homeostasis (Rusyn et al. 2006).

The mechanisms of the toxic effect of DEHP on the male reproductive organ have been investigated in several animal studies. Also in the testis peroxisome proliferators-activated receptors PPAR and their subtypes are now in focus to explain some of the reproductive effects of phthalates. The alpha and beta subtypes are expressed in adult rat testis, as well as in neonatal and adult Sertoli and Leydig cells although the literature shows significant discordance in results to explain the role of PPAR (Corton & Lapinskas 2005, Latini et al. 2006).

The antiandrogenic effects of phthalates have been suggested to be due to reduced androgen availability in target organs causing malformations of male reproductive organs and low adult sperm counts (Gray et al. 2000; Barlow et al. 2003). The phthalates with side-chain length C4 to C6 produce similar severe reproductive effects in experimental animals. Steroidogenesis in foetal rats is reduced by DEHP ex vivo and DINP, DBP, DIBP, and DEHP seem to reduce testicular testosterone production by a similar mechanism of action (Barlow & Foster, 2003; Borch et al. 2004; Borch et al. 2006a). In addition, plasma LH levels in male foetuses were elevated (Borch et al. 2004). Immunohistochemistry showed a clear reduction in the nuclear receptor steroidogenic factor-1 (SF-1) and peroxisome proliferator PPAR gamma after gavage administration of 300 mg/kg bw/day DEHP (Borch et al. 2006b). Phthalates are PPAR agonists and have been found to reduce testosterone production in primary Leydig cell culture and in adult rats (Corton and Lapinskas 2005).

In mice there is a study that demonstrates the same spectrum of developmental toxicity in normal mice and mice that were genetically incapable of expressing peroxisome proliferation due to lack of PPAR-alfa indicating a role for the direct toxicity (RAR 2006). In laboratory animals the metabolites are less studied but one report suggests that at least in rats the antiandrogenic effect is partly caused by 2 antiandrogenic metabolites 5OXO-MEHP and 5-OH-MEHP (Stroheker et al. 2005).

In adult or prepubertal rats, other mechanisms of action than PPARs activation may be of importance. In the rat testis the Sertoli cell may be the target for acute toxicity after exposure to high doses of DEHP. In Sertoli cells, it has been shown that the cell structure protein vimentin and an increased caspase-3 level activity, appear to be sensitive and early markers of MEHP testis toxicity at 6 hours after one application of 400 mg/kg bw by gavage (Dalgaard et al. 2001). The same effect of DEHP after oral doses of 5 and 10 g/kg bw for 4 weeks resulted in collapse of vimentin in the Sertoli cells (Dalgaard et al. 2000).

Little is known about the mechanism of action in humans. However, DEHP is able to induce in animals all the malformations, which are present in the so called testicular dysgenesis syndrome. The testicular dysgenesis syndrome includes the following human male reproductive disorders, cryptorchidism and hypospadias in babies or testis cancer and low sperm counts in young men. It has been proposed that maldevelopment (dysgenesis) of the foetal testis results in hormonal malfunction or other malfunctions of the testicular somatic
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

cells eventually leading to the malformations as part of the testicular dysgenesis syndrome (Sharpe & Skakkebaek 2003).

In humans most information of DEHP exposure is obtained by measuring of the DEHP metabolites in urine (Koch et al. 2005). However, the role of the metabolites in inducing toxic effects or possible mechanism of action is not well known. It may be assumed that the half-life of these metabolites may play a role in their ultimate toxic effects. In laboratory animals the metabolites are less studied but some studies determining DEHP metabolites suggests that at least in rats the antiandrogenic effect of DEHP is partly caused by 2 antiandrogenic metabolites, namely 5oxo-MEHP and 5OH-MEHP (Stroheker et a. 2005).

3.4.14. Evidence from epidemiological studies

Fetal development and adverse pregnancy outcomes

Potential male developmental effects in humans include hypospadias, cryptorchism and decreased anogenital distance which are part of the so called testicular dysgenesis syndrome. There is limited epidemiologic evidence of the effects of phthalates on these health outcomes.

Hypospadias and cryptorchism.

Van Tongeren and colleagues (2002) developed a job-exposure matrix (JEM) to assess exposure to potential endocrine disrupting agents, including phthalates. Vrijheid and colleagues (2003) applied this JEM in a study of 3471 hypospadias cases identified from the National Congenital Anomaly System of England and Wales in 1980-1996, which included a total of 35962 cases of congenital anomalies. The authors compared the prenatal exposures of hypospadias cases with exposures of all the cases. The risk of hypospadias was not related to estimated maternal occupational exposure to phthalates. For 1992-96 there was an increased risk of hypospadias related to probable exposure, mainly among hairdressers, with an adjusted odds ratio of 1.52 (1.05-2.20) without social class adjustment, and 1.26 (0.81-1.97) after such adjustment. The JEM was also applied in a Dutch nested case-control study of 56 cases of hypospadias and 78 cases of cryptorchism and 313 controls selected from a cohort of 8,698 male newborns. No association was found between estimated occupational exposure to potential endocrine disrupting agents and these outcomes (Pierik et al. 2004).

Decreased anogenital distance

Swan et al. (2005) provided the first indications for the effects of phthalates on anogenital distance in a study of 134 male infants. Eighty five of the participating pregnant women gave a prenatal urine sample, which was analysed for nine phthalate metabolites commonly used as biomarkers of exposure to phthalates. Anogenital distance was measured after the delivery. For the 9 urinary metabolites measured, including monomethyl phthalate, monoethyl phthalate, mono-n-butyl phthalate, mono-iso-butyl phthalate, monobenzyl phthalate, mono-3-carboxypropyl phthalate, mono-2-ethyl-5-hydroxyhexyl phthalate, mono-2-ethylhexyl phthalate, mono-2-ethyl-5-oxohexyl phthalate. Four of these were associated with anogenital index (AGI=anogenital distance/kg bw), being monoethyl phthalate, mono-n-butyl phthalate, monobenzyl phthalate and mono-iso-butyl phthalate. Boys with a reduced anogenital index (AGI) may have an increased likelihood of impaired testicular descent, penile volume and scrotal size, although in the study itself, no diseases or malformations were identified. However, the data were considered insufficient as solid evidence for an effect and need further elaborations with larger studies, but add to the concern for male reproductive effects (Kaiser 2005, Sharpe 2005).

Birth weight and gestational age
Latini and colleagues (2003) measured serum DEHP and MEHP concentrations in the cord blood of 84 consecutive newborns. Detectable cord blood phthalates concentrations were found in almost 90% of these individuals. In this single study the mean gestational age was significantly lower among newborns with detectable cord blood MEHP compared with those without (38.2 vs. 39.4 weeks). Also the mean birth weight was lower (3,150 vs. 3,475 g) although the difference was not statistically significant. In logistic regression analysis adjusting for potential confounders, the absence of MEHP was a significant determinant of gestational age. This study suggests a possible effect of DEHP on pregnancy outcome.

Pubertal development

Two epidemiologic studies have investigated associations between pubertal development and measures of phthalate exposure in young girls. The relation between serum phthalate concentrations and premature breast development was studied in a case-control study of 41 patients from the San Juan City Hospital Pediatric Endocrinology Division and 35 controls from the general pediatric care who did not have signs of premature sexual development (Colon et al. 2000). Higher serum levels of DMP, DEP, DBP, and DEHP plus its metabolite MEHP were measured in cases than controls. The average concentration of DEHP was 450 ppb in cases and 70 ppb in controls, the difference being statistically significant. This was not seen with other phthalates studied. There appears to be a correlation between DEHP exposure and breast development in young females.

Endometriosis

Two case-control studies have investigated the relations between biomarkers of DEHP exposure and the risk of endometriosis. A case-control study of Cobelli and colleagues (2003) provided first evidence of an association between plasma and peritoneal fluid levels of DEHP and the risk of endometriosis. The 24 cases were patients who underwent diagnostic laparoscopy for ovarian cysts or chronic pelvic pain and dysmenorrhea and who had a histological confirmation of endometriosis. The 35 controls were health age matched individuals without infertility or reproductive diseases. The cases had a higher plasma concentration of DEHP (median 0.57 µg/ml, interquartile range 0.06-1.23) than the controls (0.18 µg/ml 0-0.44, P=0.0047), but the plasma MEHP and peritoneal DEHP and MEHP concentrations were similar. Reddy and colleagues (2006) conducted a case-control study with 49 infertile women with endometriosis and two control groups. The first control group (I) included 38 age-matched women without endometriosis but with infertility related to tubal defects, fibroids, polycystic ovaries, idiopathic infertility and pelvic inflammatory disease diagnosed by laparoscopy. The second control group (II) comprised 21 age-matched fertile women undergoing laparoscopic sterilisation. The endometriosis cases had a significantly higher concentration of DBP (mean 0.44 µg/ml, SD 0.41), BBP (0.66, 0.61), di-n-octyl phthalate (DOP) (3.32, 2.17) and DEHP (2.44, 2.17) compared with both the first (DBP 0.08, 0.14; BBP 0.12, 0.20; DOP 0; DEHP 0.50, 0.80) and second control group (DBP 0.15, 0.21; BBP 0.11, 0.22; DOP 0; DEHP 0.45, 0.68). These studies indicate a correlation between the phthalate ester concentrations and the severity of endometriosis for all compounds.

Gonadal hormones and semen quality

Phthalate monoesters including MEHP, the initial metabolite of DEHP, and MBP are known testicular toxicant in rodents. The balance of gonadotropin and gonadal hormones is an important indicator of male fertility (see 3.4.5.2).

Main and colleagues (2006) studied 62 cryptorchid boys and 68 healthy boys from a prospective cohort of Danish and Finnish boys. As biomarkers of exposure, they analysed breast milk samples collected 1-3 months postnatally for phthalate monoesters including MMP, MEP, MBP, MBzP, MEHP, and MINP. Serum samples were analysed for gonadotropins,
sex-hormone binding globulin (SHBG), testosterone, and inhibin B. No association was found between phthalate monoesters and cryptorchidism. MEP and MBP were positively, but weakly correlated with SHBG (Spearman correlation coefficient \(r = 0.323, p = 0.002 \) and \(r = 0.272, p = 0.01 \) respectively). MMP, MBzBP, and MBP were correlated with LH: free testosterone ratio and MINP with LH (\(r = 0.243, p = 0.019 \)). MBP was negatively correlated with free testosterone (\(r = -0.22, p = 0.033 \)). These findings suggest some phthalates may have adverse effects on human Leydig cell development and function, which may be related to incomplete virilization in infant boys exposed to phthalates.

Pan et al. (2006) reported the effect of occupational exposures to high levels of the phthalate esters DBP and DEHP on the balance of gonadotropin and gonadal hormones including the circulating concentration and/or balance of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol (E2). They compared blood and urine concentrations of 74 male workers in a factory producing unfoamed polyvinyl chloride flooring and 63 men from a construction company matched for age and smoking status. The exposed workers had significantly elevated urinary concentrations of MBP (644.3 vs. 129.6 µg/g creatinine, \(p < 0.001 \)) and MEHP (565.7 vs. 5.7 µg/g creatinine, \(p < 0.001 \)). The fT concentration was significantly lower (8.4 vs. 9.7 µg/g creatinine, \(p = 0.019 \)) in the exposed workers compared with the unexposed. Among the exposed, fT had a negative correlation with MBP (\(r = -0.25, p = 0.03 \)) and MEHP (\(r = -0.19, p = 0.095 \)). In the regression analysis fT decreased significantly with increasing total phthalate ester score.

Duty et al. (2003a, 2003b, 2004, 2005) and Hauser et al. (2006) conducted a series of studies in male partners of subfertile couples recruited at an infertility clinic (US). They estimated associations between blood and urinary biomarkers of exposure to phthalates and various measures of semen quality and morphology. Sperm concentration, motility and motion parameters were measured using computing aided sperm analysis. Sperm DNA damage was measured using neutral comet assay. In an analysis of 168 males (Duty et al. 2003b), there was an exposure-response relation between MBP levels and sperm motility and concentration. Monobutyl benzyl phthalate (MBBP) levels were inversely associated with sperm concentration.

Hauser et al. (2006) studied 463 male partners of subfertile couples (including the 168 men in the previous study) who presented semen analysis at the infertility clinic. They compared urine concentrations of phthalates esters between 76 men with compromised sperm concentrations (<20 million/mL), 221 men with compromised sperm motility (<50% motile) and 114 with compromised morphology (<4% normal) with 210 subjects whose sperm concentration, motility and morphology was normal (above the three cut points). There was a dose-response relation between MBP and low sperm concentration (adjusted odds ratios per quartile: 1.00; 3.1; 2.5; 3.3, \(P \) for trend = 0.04) and suggestive evidence for a dose-response relation between MBzP and low sperm concentration (adjusted odds ratios per quartile: 1.00; 1.1; 1.1; 1.9, \(P \) for trend = 0.13). No association was found between monoethyl phthalate, monomethyl phthalate and the DEHP metabolites and the three semen parameters.

In an analysis of 220 males, straight-line velocity (VSL), curvilinear velocity (VCL) and linearity (VCL/VCL) of sperm motion were inversely associated with levels of MBP, MBzP, and MEHP (Duty et al. 2004). The association between urinary concentration of phthalate metabolites and sperm DNA damage was reported in two analyses with partly same study subjects (Duty et al. 2005, Hauser et al. 2006). Various measures of sperm DNA damage were measured, including comet extent and tail distributed moment. The studied metabolites were MMP, MEP, MBzP, MEHP, mono(2-ethyl-5-hydroxyhexyl) phthalate, and mono(2-ethyl-5-oxohexyl) phthalate. There was an association between MEP and DNA damage. MEHP, a metabolite of DEHP, was associated with DNA damage after adjustment for the oxidative DEHP metabolites mono(2-ethyl-5-hydroxyhexyl) phthalate, and mono(2-
ethyl-5-oxohexyl) phthalate. There is an indication of altered sperm motility and sperm DNA damage (as measured in chromosomal breaks) after exposure to DEHP and several other phthalates.

Male fertility

A Swedish epidemiologic study by Modigh and colleagues (2002) assessed the association between occupational exposure to DEHP and male fertility as determined by evaluating the time to pregnancy in 227 couples and their 397 pregnancies where male partner was working in a plant producing polyvinyl chloride (PVC) plastics. Exposure assessment was based on air measurements at work place and questionnaire information on work tasks and locations. Time to pregnancy was compared between three exposure categories of no exposure, low (<0.1 mg/m3) and high (>0.1 mg/m3). There was no association between exposure and time to pregnancy.

Testicular cancer

Two epidemiologic studies of testicular cancer have used source based exposure assessment rather than measurements of specific phthalates concentrations (Hardell et al. 1997, Hansen 1999). Hardell and colleagues (1997) conducted a case-control study of the association between occupational exposure to PVC plastics and testicular cancer. They identified 148 testicular cancer cases and 315 controls from the Swedish Cancer Registry. Exposure assessment was based on questionnaire information on occupations with probable PVC exposure. There were 6 exposed cases of seminoma and 2 exposed controls resulting in an adjusted odds ratio of 5.6 (1.1-196). No other association of cancer with plastics exposures was identified. Hansen (1999) conducted a case-controls study of 3745 and 7212 controls using registry-based data on occupational history. There was no association between the risk of testicular cancer and exposure PVC plastics based on job category.

Respiratory health

Øie et al. (1997) hypothesized that di(2-ethylhexyl) phthalate (DEHP) causes airways inflammation by mimicking some prostaglandins and thromboxanes with a similar chemical structure. Some monophthalates have been shown to promote cytokine IL-6 and IL-8 production in the human epithelial cell line A549, indicating a potential role in inflammatory processes (Larsen et al. 2001b).

Jaakkola and colleagues (1999) conducted a matched case-control study of 251 cases of bronchial obstruction and controls from a prospective Oslo Birth Cohort Study. Bronchial obstruction was defined as two or more episodes with symptoms and signs of bronchial obstruction. Trained experts characterized the interior surfaces and exposure assessment was based on the type of materials. The risk of bronchial obstruction was greater in the presence of PVC in the floors (adjusted OR = 1.89, 95 percent CI: 1.14, 3.14). The risk of bronchial obstruction was also related to a plasticizer exposure index (adjusted OR 2.72, 95% CI 1.50-4.91). Further analyses showed that the relation of bronchial obstruction to a plasticizer exposure index was stronger in homes with low air change than in those with high air change (Øie et al. 1999).

In a population-based cross-sectional study of 2568 Finnish children aged 1 to 7 years, the risk of wheezing, persistent phlegm, weekly nasal congestion or excretion, and respiratory infections were related to the presence of plastic wall materials at home (Jaakkola et al. 2000).

Bornehag and colleagues (2004) conducted a case-control study of Swedish children aged 3 to 8 years. The 198 cases included subjects with persistent allergic symptoms (106 with asthma, 79 with rhinitis and 115 with eczema) and 202 controls were free of these
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Symptoms, both recruited from a population-based cohort of 10,852 children. The case status was related to the presence of PVC flooring in the bedroom with an adjusted OR (odds ratio) of 1.59 (95% CI (confidence interval) 1.05-2.41). The dust concentrations (milligram per gram dust) of six phthalates were determined: DEP, DBP, DIBP, BBzP, DEHP, and DINP. Median house dust concentrations of BBzP were higher in the bedrooms of cases than controls. The risk of allergic rhinitis and eczema was related to the house dust BBzP concentrations, whereas the risk of asthma was related to concentration of DEHP (Bornehag et al. 2004). Jaakkola and colleagues (2006) conducted a population-based incident case-control study to assess the relations between different types of interior surface materials and recent renovations at home and at work and the risk of asthma in adults. They recruited systematically all new cases of asthma during a 2.5-year study period (1997-2000) and randomly selected controls from a source population consisting of adults 21 to 63 years of age living in South Finland. The clinically diagnosed cases consisted of 521 adults with new asthma and the controls of 932 adults fulfilling eligibility criteria. In logistic regression analysis adjusting for confounding, the risk of asthma was related to the presence of plastic wall materials (adjusted odds ratio (OR) = 2.43, 95% confidence interval (CI): 1.03, 5.75) and wall-to-wall carpet at work (adjusted OR = 1.73, 95% CI: 0.74, 4.09), the latter in particular in the presence of mold problems (adjusted OR = 4.64, 95% CI: 1.11, 19.4). Use of floor levelling plaster at home during the past 12 months was also a determinant of onset of asthma (adjusted OR = 1.81, 95% CI: 1.06, 3.08).

These studies suggest correlation between PVC and/or phthalate exposure and obstructive respiratory symptoms and asthma.

3.4.15. Conclusion

The key factors influencing to the risks to individual patients arising from the use of DEHP used in medical devices are:

- Background exposure
- Exposure dose (leaching from each medical device used)
- Vulnerability of patients (including the time window of the exposure)

The general population is exposed to DEHP through a variety of routes with food being the primary source. Several metabolite excretion studies suggest a non-negligible exposure to DEHP in the whole general population. In general, DEHP exposure assessments from probabilistic calculations from DEHP measurements in environmental media and dose reconstructions from urinary metabolite levels agree within an order of magnitude. Most recent studies suggest a current median exposure of 2 to 5 μg/kg bw/day, whereas the 95th percentile is estimated to be between 6 and 17 μg/kg bw/day. Children may have somewhat higher body burden of DEHP than adults. There are indications that exposure to DEHP in the general population has decreased during the last few years.

Medical procedures using PVC medical devices can lead to DEHP exposures much higher than the background levels, although such exposure is of limited duration. Also during voluntary medical treatments such as apheresis procedure to donate blood products may result in significant exposure to DEHP. The extent of exposure largely depends upon the medical treatments given and the duration of the treatment. Premature neonates in intensive care can receive even higher DEHP exposures than adults relative to their body weight (up to 35 mg/kg bw over 10 day period). This exposure may be even higher than the doses observed to induce reproductive toxicity in animals. In effect, this means that there is no margin of exposure (MoE) for certain procedures. However, this is justified by the beneficial effects of these procedures.

Treatment categories involving a potential high exposure are:

- Multiple procedures in pre-term neonates
- Total Parenteral Nutrition (TPN) in neonates
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

- ECMO in neonates
- Exchange transfusion in neonates
- Haemodialysis patients
- Enteral nutrition in neonates and adults
- Heart transplantation or coronary artery bypass graft surgery
- Massive infusion of blood into trauma patient
- Transfusion in adult undergoing ECMO

The animal and epidemiological studies enable the likely sensitive patient groups to be identified. Animal studies have identified two lead effects liver tumours and changes in the male reproductive system. The NOAEL for the reproductive toxicity is 4.8 mg/kg bw/day. In respect to the liver tumours there is good scientific evidence from mechanistic and other studies to indicate that DEHP is unlikely to cause this effect in man. However, for the effect in the male reproductive system both mechanistic and epidemiological findings indicate a potential hazard for man. Immature young animals are more susceptible to testicular toxicity by DEHP than older mature animals. The EU risk assessment for DEHP (ECB 2006) identified the most critical effects as on the testes, fertility, development (anogenital distance), and kidney (repeated dose). The sensitivity for such endocrine effects is highest during gestation and the first month after birth when the most sensitive organs are developing. It has to be considered that there is the potential exposure for infants to other phthalates (chapter 3.5) that are toxic to reproduction, which may have via similar mechanisms of action as DEHP.

The summary of epidemiological findings on DEHP and other phthalates is as follows:
- Fetal development and adverse pregnancy outcomes: limited evidence
- Hypospadias and cryptorchism: no evidence for potential endocrine disrupting effects
- Anogenital distance: limited indications based on one study
- Birth weight and gestational age: insufficient evidence based on one study
- Pubertal development of young females: insufficient evidence based on one study
- Phthalate ester levels affect the severity of endometriosis: insufficient evidence
- Male fertility: no association between exposure and time to pregnancy
- Testicular cancer: no association between this cancer and exposure to PVC plastics
- Respiratory health: phthalate exposure correlates weakly with obstructive respiratory symptoms and asthma

Although epidemiological studies on DEHP assessed in this report by themselves do not establish cause-effect relationship for harmful effects on humans these studies give rise to concern for reproductive effects in males.

Analysing the animal and human data and mechanistics studies as a whole it can be concluded that male foetuses of pregnant women and male neonates have to be considered as the most sensitive groups.

Although, the exposure levels from the use of certain medical procedures may result in levels that could produce toxicity to male reproductive system this must be considered in the light of treatment needed and the availability of suitable alternatives for each medical treatment.

It should be noted that medical devices made from plasticized PVC provide many effective treatments and that DEHP is a particularly effective plasticizer. In addition to its beneficial effect on mechanical properties, DEHP also stabilises the membranes of red blood cells enabling blood product storage in PVC blood bags for several weeks.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

3.5. Alternative plasticizers in PVC medical devices

3.5.1. Introduction

The information available for the potential alternative plasticizers for DEHP in PVC medical devices use is presented in Annex I. Both publicly available information (published papers) and information submitted by stakeholders were considered. For each individual alternative a conclusion is presented in the Annex I.

The safety evaluation of medical devices and their composing materials including material characteristics, leaching and toxicology is described in the ISO/CEN 10993 series on Biological Evaluation of Medical Devices (ISO, Geneva, Switzerland, CEN, Brussels, Belgium).

3.5.2. Exposure to alternative plasticizers

When alternatives are used as replacement for DEHP, it can be expected that for the use in medical devices the contact of patients with these alternatives is similar to DEHP. In terms of quantitative exposure (mg/kg bw) obviously differences may occur depending on the actual amount of plasticizer present in the medical devices used and the leaching properties of these alternatives.

The patient exposure to plasticizers in medical devices depends not only on the substance used, but also on a number of other factors. The time and area of contact between the plastic device and the biological medium/tissue is important, as well as the character of the biological medium. The plasticizer concentration in the polymer may also be important and mechanical stress of tubing in peristaltic pumps and agitation of storage samples may increase the leaching of the additives in the medium. All these variables make it difficult to compare leaching measured in different studies, and comparisons of different plasticizers under identical conditions are therefore the most useful results.

A lot of data on leaching of polymer additives from food packaging materials and some data on plasticizer leaching from PVC toys have been published, and a few standardised test systems have been developed. Food simulants are used to mimic leaching of plasticizers and other additives in different types of food stored under specified temperatures and different time periods, where the concentration of the additive is analysed in the simulant. Artificial saliva and gastric juice simulants have been used to estimate leaching of chemicals from mouthing and ingestion of toys/toy materials.

These data have, however, limited use in quantification of exposure from medical devices. Thus, the leaching rates of plasticizers from food packaging materials may be useful in the quantification of leaching of these substances during storage of biological materials in plasticized PVC container under static conditions. The leaching rates obtained via toy testing may have application in quantification of plasticizers under dynamic conditions, but only in aqueous medium. However, the comparison of leaching rates from medical devices of various plasticizers measured by testing of food packaging packaging and toy testing will indicate the relative leaching of alternative plasticizers compared to that of DEHP. As exposure data on DEHP from PVC medical devices containing this plasticizer is available for most critical procedures, exposure data on alternative plasticizers can be generated/extrapolated on the basis of relative leaching rates using DEHP exposure data (see section 3.4) as benchmark. Standard test methods for measuring the leaching rates of components from medical devices (ISO 10993 series) are available, and information can be obtained from investigations where leaching of alternative plasticizers is compared under identical conditions. This kind of information for the investigated DEHP alternatives has, however, not been available to the SCENIHR.
In a comparative study of leaching of plasticizers to different feeding solutions (Welle et al. 2005) DINCH, TOTM and ATBC were compared with DEHP. The feeding solutions contained 4.4 – 10% fat, and commercially available feeding sets with 29 – 49% plasticizer were used, except for DINCH, which was in a pilot application tube containing 30% of the plasticizer. The leachings were followed with chemical analyses for 24 hours. The leaching rates of various plasticizers were relatively constant over this period, except for ATBC where the leaching decreased with time. The latter may be explained by the high leaching rate for ATBC, at least ten times higher than for DEHP. The DINCH leaching were three to ten times lower than that for DEHP, while the release of TOTM was extremely low and in one experiment almost two orders of magnitude lower than the leaching of DINCH. In the TOTM experiment the authors also measured DEHP and found 40 times more of the phthalate than of the trimellitate, which was probably due to DEHP impurity in the TOTM.

For TOTM a comparison (Senshu et al. 2004) between PVC infusion lines containing this compound and DEHP was reported. Significantly higher leaching was found for DEHP (about thirty times higher in one case). In another study (Kambia et al. 2001) PVC tubes for haemodialysis plasticized with DEHP and TOTM were compared. The leaching of DEHP was about three times higher than that of TOTM, but the latter also emitted DEHP.

PVC was blended with different plasticizers and molded thin sheets of these materials in order to compare several properties. The plasticizers included were DEHP, DEHA, ATBC and BTHC. A few of the results are presented in Table 10. The higher extraction into the oil reflects the lipophilic character of these esters. The biggest difference between the compounds was seen in the soapy water, being approximately of a factor of five between the extremes.

Table 10. Extraction of some plasticizers from PVC (48 hours at 25°C).

<table>
<thead>
<tr>
<th>Solvent</th>
<th>DEHP</th>
<th>DEHA</th>
<th>ATBC</th>
<th>BTHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.7</td>
<td>1.5</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td>Soapy water</td>
<td>2.7</td>
<td>11.0</td>
<td>9.5</td>
<td>2.2</td>
</tr>
<tr>
<td>ASTM Oil #3</td>
<td>11.4</td>
<td>34.7</td>
<td>10.9</td>
<td>15.7</td>
</tr>
</tbody>
</table>

In a comparison between leaching of BTHC and DEHP into blood in PVC bags containing these substances (Kandler 1998), a slightly lower leaching of BTHC could be found.

The leaching of COMGHA to some simulants have been tested (Kristoffersen 2005) and compared with the corresponding data for DEHP and DINP (see Table 11). The leachings to aqueous media seem to be much smaller for the COMGHA than for the phthalates tested, while in lipophilic media/substances the leaching was of the same order of magnitude.

Table 11. Leaching from PVC containing COMGHA (40%), DEHP (40%) and DINP (42%), respectively.

<table>
<thead>
<tr>
<th>Plasticiser</th>
<th>3% acetic acid</th>
<th>Leaching mg/ dm²</th>
<th>Sunflower oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMGHA</td>
<td>0.0058</td>
<td>0.0055</td>
<td>368</td>
</tr>
<tr>
<td>DEHP</td>
<td>2.83</td>
<td>1.31</td>
<td>466</td>
</tr>
</tbody>
</table>

It is not possible to draw any far reaching conclusions regarding the relative leachings of the investigated plasticizers based on the studies referred to above. A couple of them identify the leachings of TOTM to be several orders of magnitude lower than that of DEHP, and ATBC leaching were found to be higher than that of DEHP in a couple of investigations. The general impression is, however, that the leachings of the remaining plasticizers are...
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

rather similar, which is not too surprising given their similar structures and properties. For some plasticizers 5 to 10 fold lower leaching rates were observed.

3.5.3. Toxicity of the alternative plasticizers

In general the toxicity of the alternative plasticizers is less well described than for DEHP. Information on each of the alternatives considered is presented in Annex 1.

3.5.4. Conclusions on the risks of the alternative plasticizers

To compare the toxicity a short summary of the potential genotoxicity, the carcinogenicity, repeated dose toxicity and reproductive toxicity are summarised in Table 12. In the tables NOAEL is shown as the lowest effects in male or female rat.

The information of the leaching from alternative plasticizers is sparse but may be expected to be of same order of magnitude. The margin of exposure for DEHP in neonate seems to be very low. For blood transfusion peak values up to 22 mg/kg bw/day have been estimated showing a dose 4 times higher than NOAEL for DEHP.

Table 12. NOAEL of DEHP compared with some alternative plasticizers.
The critical endpoint is shown to indicate that for some of the chemicals it is different from reproductive effects.

<table>
<thead>
<tr>
<th>Plasticizer</th>
<th>NOAEL mg/kg bw</th>
<th>Reproductive Toxicity</th>
<th>Critical endpoint</th>
<th>Exposure Range (neonates) µg/kg bw/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>4.8</td>
<td>Yes</td>
<td>Reproduction</td>
<td>42-1780</td>
</tr>
<tr>
<td>ATBC</td>
<td>100</td>
<td>No</td>
<td>Decreased bw</td>
<td></td>
</tr>
<tr>
<td>COMGHA</td>
<td>5000</td>
<td>No data</td>
<td>Decreased bw</td>
<td></td>
</tr>
<tr>
<td>BTHC</td>
<td>250</td>
<td>No</td>
<td>Liver weight</td>
<td></td>
</tr>
<tr>
<td>DEHA</td>
<td>200</td>
<td>Yes</td>
<td>Foetotoxicity</td>
<td></td>
</tr>
<tr>
<td>DINCH</td>
<td>107</td>
<td>No</td>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td>DINP</td>
<td>15 (88)</td>
<td>No/Yes</td>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td>DOTP</td>
<td>500-700</td>
<td>No</td>
<td>Developmental</td>
<td></td>
</tr>
<tr>
<td>TOTM</td>
<td>100</td>
<td>Yes</td>
<td>Reproduction</td>
<td></td>
</tr>
</tbody>
</table>

Bw body weight

Considering similar leaching rates, the margin of safety of other plasticizers will be least 20 times higher for most alternatives. Thus differences in leaching rates even at one order of magnitude higher than DEHP may be acceptable.

The toxicity of alternative plasticizers are shown for cancer and mutagenicity effects in Table 13.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Table 13. The cancer and mutagenicity effects and maternal toxicity of plasticizers

<table>
<thead>
<tr>
<th>Plasticizer</th>
<th>Repeated dose Toxicity, NOAEL mg/kg bw/day</th>
<th>Genotoxicity</th>
<th>Carcinogenicity</th>
<th>Maternal toxicity mg/kg bw/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>29 (male rat)</td>
<td>Negative</td>
<td>LOAEL 320 (male rat)</td>
<td>LOAEL 750 (rat)</td>
</tr>
<tr>
<td>COMGHA</td>
<td>5000</td>
<td>Negative</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>ATBC</td>
<td>100</td>
<td>Negative</td>
<td>Negative</td>
<td>NOAEL 100 (rat)</td>
</tr>
<tr>
<td>BTHC</td>
<td>250</td>
<td>Negative</td>
<td>Negative</td>
<td>NOAEL</td>
</tr>
<tr>
<td>DEHA</td>
<td>200</td>
<td>Negative</td>
<td>NOAEL 1250</td>
<td>NOAEL 400 (rat)</td>
</tr>
<tr>
<td>DINCH</td>
<td>107</td>
<td>Negative</td>
<td>Negative</td>
<td>NOAEL 1000 (rat)</td>
</tr>
<tr>
<td>DINP</td>
<td>15 (88)</td>
<td>Negative</td>
<td>kidney</td>
<td>LOAEL 750 (rat)</td>
</tr>
<tr>
<td>DOTP</td>
<td>500-700</td>
<td>Negative</td>
<td>Negative</td>
<td>NOAEL 458 (rat)</td>
</tr>
<tr>
<td>TOTM</td>
<td>100</td>
<td>Negative</td>
<td>No Data</td>
<td>NOAEL</td>
</tr>
</tbody>
</table>

It can be concluded that DEHP is causing the most severe reproductive effects in animal studies evaluating toxicity. DEHA, DINP, and TOTM are also causing reproductive toxicity, but in doses more than 20 times higher. COMGHA and TOTM could not be evaluated for all endpoint due to lack of data.

Regarding the alternatives, for some compounds sufficient toxicological data is available to indicate a lower hazard compared to DEHP. However, a risk assessment of these alternative plasticizers could not be performed due to a lack of human exposure data. For others, information on the toxicological profile is inadequate to identify the hazard. This limits the proper evaluation of the potential to replace DEHP by alternative plasticizers. The risk and benefit should be carefully evaluated for each individual medical device and each medical procedure in which the alternative needs to be used.

3.6. Combined exposure to plasticizers

Combined exposure of different population and subpopulation is possible and may occur at different times or together. Due to the wide use of DEHP in the society humans may be exposed from many different sources and exposed to other phthalates as well. It is obvious that combined exposure to DEHP, DBP, BBP, DIBP, and DINP having the same mechanism of action may potentially cause at least an additive effect. Combined exposure to DEHP and DINP had showed an additive effect (Borch et al. 2004). In general a common mechanism might exist if two compounds:

- Cause the same critical effect
- Act on the same molecular target at the same target tissue, and
- Act by the same toxicological mechanism of action and may share a common toxic intermediate.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

This will probably be the case for combined exposure to the five mentioned phthalates. The potency of the different phthalates should be considered. DEHP and DBP are almost equal in potency. DIBP and BBP are less potent and DINP seems to have the smallest effect considering their effect on steroidogenesis in foetal male rats.

The chemical structures of some alternative plasticizers show that some of them have a possibility to form the same metabolite 2-ethylhexanol; this is the case for DEHA, DOTP, DINCH, TOTM and DEHP.

3.7. Potential alternative polymer plasticizers in PVC medical devices

In addition to the potential alternative plasticizers discussed above, another alternative to phthalates is represented by the use of "polymeric plasticizers", that is, by high molecular weight solid polymers soluble in PVC in large proportions. These polymers, when blended with PVC by conventional processing, give polymeric alloys, that is, homogeneous blends constituted by a single thermodynamically stable phase. Their macromolecular dimensions lead to segment-segment entanglements with PVC matrix, thus strengthening interactions, reducing diffusion, and hindering leaching outside the blend. Polymeric plasticizers of PVC are typically aliphatic polyesters. Many of these are structurally related with polyesters commonly employed as components of drug delivery systems, and are biodegradable and biocompatible. Their low solubility in water further prevents extraction by aqueous media.

Extensive literature reports on polyester/PVC blends show that a number of homopolymeric and co-polymeric structures are in principle eligible as constituents of soft PVC formulations, and that even different class of polymers, as for instance polypropylene glycols, might be used to this purpose. However, a number of basic requirements must be fulfilled in order to fully exploit polyesters for their potential as PVC plasticizers. Besides being miscible in all proportions with PVC, their glass transition temperature must be lower than 0°C, their molecular weight must be medium-high (> 50000), and, in addition, they must show no tendency to crystallise with time within the alloy. In fact, after crystallisation, they separate into crystalline domains, which impart opacity and decrease plasticizing effect.

3.8. Conclusion

The general population is exposed to DEHP through a variety of routes with food being the primary source. Median exposure is estimated to be 2 to 5 µg/kg bw/day. Children may have somewhat higher body burden of DEHP than adults.

Medical procedures using PVC medical devices can lead to DEHP exposures much higher than the background levels. However, the extent of exposure largely depends upon the medical treatments given and the duration of the treatment. In adults, highest doses of DEHP may result by transfusions of blood components reaching up to several mg/kg bw/day. It has been shown that also voluntary medical treatments such as apheresis procedure to donate blood products can cause significant exposure to DEHP. Premature neonates in intensive care can receive even higher DEHP exposures than adults relative to their body weight.

This is of concern in view of animal studies showing that immature young animals are more susceptible to testicular toxicity by DEHP than older mature animals. Neonates may therefore be considered to be at risk for the adverse reproductive and developmental effects of DEHP. As for adults the extent of exposure varies depending on medical procedures conducted, and in some cases exposure in the mg/kg bw/day range may easily be reached. For blood transfusion procedures peak values up to 22 mg/kg bw/day have been estimated.
Although epidemiological studies on DEHP assessed in this report did not establish a clear cause-effect relationship for harmful effects on man these studies give rise to concern for reproductive effects in man, especially so in view of the potentially occurring high exposures. However, these exposure levels from the use of certain medical procedures should be considered in the light of treatment needed. It is also noted that DEHP has beneficial properties in stabilising the membranes of red blood cells enabling blood storage for several weeks.

Regarding the alternatives, for some compounds sufficient toxicological data is available to indicate a lower hazard compared to DEHP. However, a risk assessment of these alternative plasticizers could not be performed due to a lack of human exposure data. For others, information on the toxicological profile is inadequate to identify the hazard. This limits the proper evaluation of the potential to replace DEHP by alternative plasticizers. The risk and benefit should be carefully evaluated for each individual medical device and each medical procedure in which the alternative needs to be used.
4. OPINION

Whilst recognising that there are several non-PVC based materials that could provide effective alternatives for medical devices, this opinion does not address these materials. Although the published Call for Information included both alternative plasticizers and alternative materials, only the former was submitted.

There have been concerns over possible health effect of DEHP for many years. Several times CSTE, CSTEE and SCMPMD have expressed their opinions on different aspects of the reproductive toxicity of phthalates and more specifically on DEHP. Since the last opinion on medical devices from September 2002 expressed by SCMPMD new information on the exposure and possible reproductive effects of DEHP has appeared in the literature. A better understanding of the mechanism of the antiandrogenic effects in animal models has evolved after 2002.

Recent information on the exposure of the general population and especially of the vulnerable groups raised a concern on the potential toxicity of DEHP. Vulnerable groups are male infants, male offspring of pregnant and breastfeeding women undergoing certain medical procedures that may result in general in short-term exposure to relatively high levels of DEHP.

The exposure of the general population to DEHP is already significant. The main source of DEHP for the general population is dietary, followed by inhalation of air. The exposure in adults ranges from a few µg up to 25-30 µg /kg bw/d. There are important differences among populations and individuals associated with various dietary habits and lifestyle. Infants and children are exposed to higher levels than adults, on a body weight basis.

Certain medical procedures involving plasticized PVC are already known to cause considerable exposure to phthalates. These procedures include:

- Multiple procedures in pre-term neonates
- Total Parenteral Nutrition (TPN) in neonates
- ECMO in neonates
- Exchange transfusion in neonates
- Enteral nutrition in neonates and adults
- Haemodialysis
- Heart transplantation or coronary artery bypass graft surgery
- Massive infusion of blood into trauma patients
- Transfusion in adults undergoing ECMO

However, for many of these procedures the actual extent of exposure is still unknown or spans several orders of magnitude. Research is needed to determine (i) the multiple sources and pathways of human exposure to phthalates; (ii) whether exposure to phthalates at the levels found in the general population is a cause for health concern; and (iii) to what extent human exposure to phthalates may impair human health.

Data available on the exposure to DEHP show that DEHP exposure levels of neonates during certain medical procedures are in the same order of magnitude or even higher than doses inducing reproductive toxicity in animal studies. This is of concern in view of animal studies showing that immature young animals are more susceptible to testicular toxicity by DEHP than older mature animals. Neonates may therefore be considered to be at risk for the adverse reproductive and developmental effects of DEHP. In addition, they may be exposed to other phthalates especially DBP and DIBP, and these phthalates may act additively with DEHP.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

There is limited evidence indicating a relation between DEHP exposures and specific effects in humans. It is recognised that especially the potentially high exposure during medical treatments raises concern, even in the absence of clinical or epidemiological evidence for harmful effects in humans. However, irrespective of the potential risk, one has to realise that especially in neonatal intensive care units, these neonates depend for their survival on a multitude of medicines and medical procedures including the use of medical devices.

Some alternatives may be suitable to replace DEHP in certain medical devices, while for other devices it may be difficult to obtain the same functionalities as PVC plasticized with DEHP. A risk assessment for the alternatives could not be performed due to a lack of exposure data. For other possible alternatives, adequate toxicity data is also lacking. The risk and benefit of using alternative plasticizers should be evaluated case by case. In addition, it is known that DEHP containing PVC can contribute to the stability of blood cells. However, this has not been evaluated for most alternative plasticizers.

Responses to the questions in the Terms of Reference

Question 1.

Update of the scientific opinion adopted in September 2002 on DEHP plasticized medical devices. Taking into consideration recent scientific developments, the SCENIHR is requested to review and update, if appropriate, the scientific opinion adopted in September 2002 on “Medical Devices containing DEHP Plasticized PVC; neonates and other groups possibly at risk from DEHP toxicity”.

In particular, the Scientific Committee is requested to evaluate:

- If DEHP in PVC plasticized medical devices is a cause for concern to neonates and children in paediatric care, in particular in relation to male fertility and tissue development,
- If there are other patient groups at risk, in particular in view of clinical procedures resulting in high exposure,
- If it is possible to establish Tolerable Intake Values of DEHP leaching from soft PVC as a basis for risk assessment for high risk patient groups, taking into account the route of exposure.

Compared to the previous opinion of the SCMPMD, the new information indicates that there is reason for concern for prematurely born male neonates. This concern was instigated by the human exposure data and limited epidemiological evidence suggesting an adverse effect on the male reproductive system. Especially during certain medical procedures the exposure to DEHP may be transiently above the dose inducing reproductive toxicity in animal studies.

Other population groups at risk are those requiring repeated medical procedures and male infants and male foetuses of pregnant women.

Recently a Tolerable Daily Intake (TDI) value of DEHP has been established and published in the EU Risk Assessment Report (RAR 2006). The TDI for DEHP is 48 µg per kg body weight per day, which was based on a No Observed Adverse Effect Level for reproductive effects in rats. In view of the potential high exposure to DEHP during certain medical procedures and a very special group of patients involved, the use of TDI is not considered appropriate in these procedures.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Question 2.

Medical devices containing alternative plasticizers: possible risk for certain uses or to certain patient groups. Since alternative DEHP free medical devices have been developed and are used to treat patients, the Scientific Committee is requested to evaluate the potential risks of currently available alternatives in relation to patient health, when used in medical devices.

The non-PVC alternative materials were not evaluated.

There are alternative plasticizers to PVC and also non-PVC alternative materials available. For the alternative plasticizers a generic exposure assessment could not be performed due to a lack of relevant use and human exposure data. For other possible alternatives, information on the toxicological profile was lacking. The risk and benefit should be carefully evaluated according to established protocols, for each individual medical device and each medical procedure in which the alternatives are intended to be used. For some alternative plasticizers, sufficient toxicological data is available to indicate a lower hazard compared to DEHP. The functionality of these plasticizers should be assessed before they can be used as an alternative for DEHP in PVC medical devices.

5. MINORITY OPINION

None.

6. LIST OF ABBREVIATIONS

2cx-MMHP Mono-[2-(carboxymethyl)hexyl] phthalate
2-EH 2-Ethylhexanol
5OH-MEHP Mono-(2-ethyl-5-hydroxyhexyl) phthalate
5cx-MEPP Mono-(2-ethyl-5-carboxypentyl) phthalate
5oxo-MEHP Mono-(2-ethyl-5-oxohexyl) phthalate
AGD Anogenital distance
AGI Anogenital distance (mm/kg bw)
COMGHA Glycerides, Castor-oil-mono-, hydrogenated, acetates
ASTM American Society for Testing and Materials
ATBC Acetyl-tri-n-butyl citrate
AUC Area under curve
BBP Butyl benzyl phthalate
BTHC Buturyl-tri-n-hexyl citrate
CAPD Continuous ambulatory peritoneal dialysis
CI Confidence interval
CAS Chemical Abstracts Service
CERHR Center for the Evaluation of Risks to Human Reproduction
CPs Chlorinated paraffins
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cx-MINP</td>
<td>Carboxylated MINP</td>
</tr>
<tr>
<td>DBP</td>
<td>Di-n-butyl phthalate</td>
</tr>
<tr>
<td>DEHA</td>
<td>Di(2-ethylhexyl) adipate</td>
</tr>
<tr>
<td>DEHP</td>
<td>Di(2-ethylhexyl) phthalate</td>
</tr>
<tr>
<td>DEHS</td>
<td>Di(2-ethylhexyl) sebacate</td>
</tr>
<tr>
<td>DEP</td>
<td>Diethyl phthalate</td>
</tr>
<tr>
<td>DG</td>
<td>Directorate General</td>
</tr>
<tr>
<td>DIBP</td>
<td>Di-iso-butyl phthalate</td>
</tr>
<tr>
<td>DIDP</td>
<td>Di-iso-decyl phthalate</td>
</tr>
<tr>
<td>DINCH</td>
<td>Di-iso-nonyl 1,2-cyclohexanedicarboxylate</td>
</tr>
<tr>
<td>DINP</td>
<td>Di-iso-nonyl phthalate</td>
</tr>
<tr>
<td>DMP</td>
<td>Dimethyl phthalate</td>
</tr>
<tr>
<td>DOP</td>
<td>Di-n-octyl phthalate</td>
</tr>
<tr>
<td>DOTM</td>
<td>Dioctyl trimellitate</td>
</tr>
<tr>
<td>DOTP</td>
<td>Dioctyl terephthalate</td>
</tr>
<tr>
<td>E2</td>
<td>Estradiol</td>
</tr>
<tr>
<td>ECB</td>
<td>European Chemical Bureau</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease prevention and Control</td>
</tr>
<tr>
<td>ECHA</td>
<td>European Chemicals Agency</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extracorporeal membrane oxygenation</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>ELO</td>
<td>Epoxidised linseed oil</td>
</tr>
<tr>
<td>EMEA</td>
<td>European Medicines Evaluation Agency</td>
</tr>
<tr>
<td>ESBO</td>
<td>Epoxidised soya bean oil</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle-stimulating hormone</td>
</tr>
<tr>
<td>FDA</td>
<td>US Food and Drug Administration</td>
</tr>
<tr>
<td>ft</td>
<td>Free testosterone</td>
</tr>
<tr>
<td>GLP</td>
<td>Good laboratory practice</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>JEM</td>
<td>Job-exposure matrix</td>
</tr>
<tr>
<td>PVC</td>
<td>Epoxidised linseed oil</td>
</tr>
<tr>
<td>LH</td>
<td>Luteunizing hormone</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest observed adverse effect level</td>
</tr>
<tr>
<td>MBP</td>
<td>Mono-n-butyl phthalate</td>
</tr>
<tr>
<td>MBzP</td>
<td>Monobenzyl phthalate</td>
</tr>
<tr>
<td>MBBP</td>
<td>Monobutylbenzylphthalate</td>
</tr>
<tr>
<td>MEHP</td>
<td>Mono(-2-ethylhexyl) phthalate</td>
</tr>
</tbody>
</table>
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP</td>
<td>Monoethyl phthalate</td>
</tr>
<tr>
<td>MIBP</td>
<td>Mono-iso-butyl phthalate</td>
</tr>
<tr>
<td>MINP</td>
<td>Mono-iso-nonyl phthalate</td>
</tr>
<tr>
<td>MMP</td>
<td>Monomethyl phthalate</td>
</tr>
<tr>
<td>MOTM</td>
<td>Monooctyl trimellitate</td>
</tr>
<tr>
<td>MOTP</td>
<td>Monooctyl terephthalate</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No observed adverse effect level</td>
</tr>
<tr>
<td>NOEL</td>
<td>No observed effect level</td>
</tr>
<tr>
<td>NICU</td>
<td>Neonate intensive care unit</td>
</tr>
<tr>
<td>NTP</td>
<td>US National Toxicology Programme</td>
</tr>
<tr>
<td>OH-MINP</td>
<td>Hydroxylated MINP</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>oxo-MINP</td>
<td>Oxygenated MINP</td>
</tr>
<tr>
<td>PPAR(\alpha)</td>
<td>Peroxisome-proliferator activated receptor</td>
</tr>
<tr>
<td>PVC</td>
<td>Polivinylchloride</td>
</tr>
<tr>
<td>RAR</td>
<td>Risk Assessment Report</td>
</tr>
<tr>
<td>SANCO</td>
<td>Directorate General for Health and Consumer Protection</td>
</tr>
<tr>
<td>SAP</td>
<td>Stearic acid, 2,3-bis(acetoxy)propyl ester</td>
</tr>
<tr>
<td>SCCP</td>
<td>Scientific Committee on Consumer Products</td>
</tr>
<tr>
<td>SCHER</td>
<td>Scientific Committee on Health and Environmental Risks</td>
</tr>
<tr>
<td>SCENIHR</td>
<td>Scientific Committee on Emerging and Newly-Identified Health Risks</td>
</tr>
<tr>
<td>SCMPMD</td>
<td>Scientific Committee on Medical Products and Medical Devices Opinion</td>
</tr>
<tr>
<td>SHBG</td>
<td>Sex-hormone binding globulin</td>
</tr>
<tr>
<td>SF-1</td>
<td>Steroidogenic factor-1</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable Daily Intake</td>
</tr>
<tr>
<td>Tg</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting Temperature</td>
</tr>
<tr>
<td>TOTM</td>
<td>Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate</td>
</tr>
<tr>
<td>TPA</td>
<td>Terephthalic acid</td>
</tr>
<tr>
<td>TPN</td>
<td>Total parental nutrition</td>
</tr>
<tr>
<td>TOTM</td>
<td>Trioctyl trimellitates</td>
</tr>
</tbody>
</table>
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

7. REFERENCES

Barlow NJ, Foster PMD. Pathogenesis of male reproductive tract lesions from gestation through adulthood following in utero exposure to Di(n-butyl) Phthalate. Toxicologic Pathology 2003; 31:397-410.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

CSTEE . Opinion on the toxicological characteristics and risk of certain citrates and adipates used as substitute for phthalates as plasticiseres in certain soft PVC products. Adopted 28th of September 1999.

CSTEE. Opinion on the result of a second Risk Assessment of bis(2-ethylhexyl)phthalate (DEHP), Human Health Part, Adopted 8 of January 2004.

Dickerson RN. Di(2-ethylhexyl)phthalate as a plasticizer for intravenous bags and tubing: A toxicological quandary Nutrition 1997;13:1010-1012.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Dirven HA, van den Broek PH and Jongeneelen FJ. Determination of four metabolites of the plasticizer di(2-ethylhexyl)phthalate in human urine samples. Int Arch Occup Environ Health 1993; 64:555-60.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Hodgson J. Results of peroxisome induction studies on tri(2-ethylhexyl)trimellitate and 2-ethylhexanol. Toxicology and Industrial Health 1987; 1:49-61.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Kaiser J. Toxicology - Panel finds no proof that phthalates harm infant reproductive systems. Science 2005: 310(5747): 422-422

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

KEMI Swedish Product Register.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Melnick RL, Morrissey RE, Tomaszewski KE. Studies by the National Toxicology Program on di(2-ethylhexyl)phthalate. Toxicol Ind Health 1987; 3:99-118.

Moore, MR: Oncogenicity study in mice with Di(2-ethylhexyl)phthalate including ancillary hepatocellular proliferation and biochemical analyses, Corning Hazleton Incorporate (CHV), 9200 Leesburg Pike, Vienna, Virginia 22182-1699. Laboratory study identification: CHV 663-134 and 663-135; Sponsor: Eastman Chemical Compny, First America Center, P.O. Box 1994, Kingsport, Tennessee 37662-5394.

Morflex Inc. 1998: CHECK IN ATBC/BTHC Submission by Morflex INC

Müller AK, Nielsen E, Ladefoget O. Human exposure to selected phthalates in Denmark. Institute of Food Safety and Nutrition, Søborg, Denmark. 2003.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Nikiforov AI, Risk assessment for n-butyryl-tri-n-hexyl citrate (BTHC) used in blood bags. Toxicology Regulatory Services, Charlottesville, VA, USA. 5 May 2006. © Morflex Inc.

Opinion of the Scientific Committee on Food on a survey on dietary intake of the food contact material di(2-ethylhexyl) adipate. Expressed on 19 October 2000, (SCF/CS/PM/3276 final 3120).

Parmar D, Srivastava SP, Seth PK. Hepatic mixed function oxidases and cytochrome P-450 contents in rat pups exposed to di-(2-ethylhexyl)phthalate through mother's milk. Drug Metab Dispos 1985; 13: 368-70.

Peck CC, Odom DG, Friedman HI, Albro PW, Hass JR, Brady JT, Jess DA. Di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) accumulation in whole blood and red cell concentrates. Transfusion 1979, 19, 137-46.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

SCMPMD (Scientific Committee on Medicinal Products and Medical Devices), 26 September 2002. Medical devices containing DEHP Plasticised PVC; Neonates and other groups possibly at risk from DEHP toxicity.

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Wolfe GW, Layton KA. Multigeneration reproduction toxicity study in rats (unaudited draft): Diethylhexylphthalate: Multigenerational reproductive assessment when administered to Sprague-Dawley rats in the diet. TherImmune Research Corporation (Gaithersburg, Maryland), TRC Study n° 7244-200, 2003

ANNEX I EVALUATION OF INDIVIDUAL PLASTICIZERS

No information was submitted on the DINP, DEHA and DEHS plasticizers, but they have been included in this assessment as they are already being used to substitute DEHP in a number of applications.

1. ATBC (Acetyl tri-n-butyl citrate)

1.1. Physico-chemical properties

CAS Reg. No.:77-90-7
Synonyms: Citroflex A-4; 2-(acetyloxy)-1,2,3-propanetricarboxylic acid, tributyl ester; 1,2,3-propanetricarboxylic acid, 2(acetyloxy)-, tributyl ester; acetylcitric acid, tributyl ester; citric acid, tributyl ester, acetate; tributyl acetylcitrate; tributyl O-acetylctrate; tributyl-2-(acetyloxy)-1,2,3-propanetricarboxylate; tributyl citrate Acetate.

Empirical formula: C_{20}H_{34}O_{8}
Structure:

```
O
O
O
O
```

Molecular weight: 402.5
Melting point: -80°C
Boiling point: 173°C (1 mm Hg)
 200°C (4 mm Hg)
 326°C (160 mm Hg)
Vapour pressure: 0.052 mm Hg (20°C)
Solubility in water: 20 mg/L
Log Kow: 4.3 (estimated)
Purity: >99%
Impurities: Water, volatiles.

1.2. Use

ATBC is used as a plasticizer in cosmetics, in concentration of 0.7 to 7%. The substance is also used as a plasticizer in PVC, adhesives and coatings. For medical devices Johnson (2002) says that the major compound being used is acetyltrihexyl citrate. ATBC has been approved for many food applications, including the use as a flavouring substance, in the USA. The use of ATBC in medical devices is mainly in blood bags, but also about 350 tons are used for the production of medical tubing (Reilly Chemicals, 2006). According to latest information ATBC is mainly used in medical tubings,

1.3. Exposure

No information has been found describing human exposure. Higher leaching rate was found for ATBC as compared to DEHP (Welle et al 2005):

1.4. Metabolism

ATBC is well absorbed after oral administration with peak blood levels being found between 2 and 4 hours. It undergoes rapid and extensive metabolism to 10 or more polar metabolites. The principal mode of metabolism is hydrolysis of the ester bonds.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Blood clearance of C14 labelled ATBC has been shown to be biphasic with corresponding half lives of 3.9 hours and 39 hours. The slow second phase may be an artefact due to some of the radiolabel entering intermediary metabolism pathways. The main route of clearance is through the urine with monobutyl citrate being the principle metabolite found. However some metabolites are also found in the faeces. Whether this indicates that some ATBC is biliary excreted or not absorbed is uncertain. ATBC is also extensively metabolised in human serum and by rat liver samples. The kinetic data indicate that ATBC is very unlikely to accumulate in body tissues even if frequent exposure occurs.

1.5. Toxicity

Acute toxicity
After a single oral dose of 10-30 grams per kg bw/ per day, administered by gavage, no systemic toxicity has been observed. ATBC can therefore be regarded as virtually nontoxic by the oral route when its administration is acute. In view of its prompt metabolism and excretion and the likelihood that it is metabolised at multiple sites to more polar metabolites it appears unlikely that ATBC will cause significant toxicity at other sites of exposure.

Irritation and sensitisation
ATBC applied dermally to rats produces moderate irritation but has been shown to be a non-irritant following topical application to rabbits. ATBC is not a sensitiser in the guinea pig maximisation test. This finding is supported by the results of studies in which ATBC was applied to the skin of human volunteers.

Repeat dose toxicity
Three relevant studies can be identified. The first was a four week range finding study in rats. At the highest dose (equivalent to about 2700 mg/kg bw/day) there was a small decrease in both body and organ weight. However no effects were observed in a second group of rats exposed to the lower dose of around 1000 mg/kg bw/day. The second study was a 90 day gavage study in male and female rats. Some haematological and biochemical changes in the blood were observed at 300 mg/kg kg bw/day and at 1000 mg/kg kg bw/day there was an increase in liver weight. However no histopathological changes were seen in either test group. At 100 mg/kg bw/day no changes of any kind were seen and therefore this dose may be regarded as the NOEL. A third study involving the in utero exposure of rats is discussed below (in the section on reproductive effects).

Mutagenicity and genotoxicity
A range of in vitro genotoxicity tests have been conducted. In bacterial tests ATBC gave consistently negative results both with and without the presence of a metabolising system. ATBC also gave negative results in two chromosomal aberration studies with rat lymphocytes both in the presence and absence of a metabolising system. However in mouse lymphoma cells a dose dependent increase in mutations at the HK locus was identified in two separate experiments.

An in vivo test has also been conducted using unscheduled DNA synthesis as the endpoint. In rats treated by gavage at either 800 mg or 2000 mg /kg bw/day no increase in UDS could be observed. This finding indicates a low or zero potential of ATBC to cause genotoxic effects in vivo. This conclusion is supported by consideration of the structure of both ATBC and its metabolites for which there are no structural alerts.

Carcinogenicity
A two year oral feeding study has been carried out in rats in which no significant toxic effects relating to ATBC were identified. However this study was not to modern standards and therefore caution should be used in accepting this conclusion. The study does however show that ATBC is not a potent carcinogen and this is in line with the other findings discussed above.

Reproductive studies
Two relevant studies are available. In the first, a two generation study in rats, ATBC was administered in the diet at levels equivalent to 0, 100, 300 and 1000 mg/kg bw/day. The 300mg and 1000 mg doses produced a decrease in kg bw/ in F1 male rats. In the female rats a decrease in mg/kg bw/ was only observed at the top dose (1000 mg/kg w/day). Thus the NOEL was identified as 100 mg/kg bw/day.

In a second study rats were exposed to ATBC in the diet at doses of 0, 100, 300 and 1000 mg/kg bw/day for four weeks before mating and then throughout the mating period. The offspring (i.e. the F1 generation) were then exposed to ATBC in utero, at birth and for the following 13 weeks. No effects of ATBC could be identified in any of a number of reproductive endpoints. Litter size, survival and growth rates were comparable in the control animals and all the test groups. No adverse effects were identified in any of the offspring examined and no adverse endocrine effects could be detected.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

In line with the rat studies summarized above, there were some subtle liver changes (increase in weight, hypertrophy and mild peroxisome proliferation) and renal changes (some changes in urinary composition) in both sexes at the top (1000 mg/kg bw/day) dose. Minor changes were also observed in male animals at the 300 mg/kg bw/day. A NOEL of 100 mg/kg bw/day can therefore be accepted.

1.6. Human data

No information available on toxicity in humans.

1.7. Conclusion

ATBC is well absorbed following its oral administration. It is rapidly metabolised and excreted from the body. It is unlikely to accumulate in the body following frequent exposure. It has a low toxicity following acute oral administration. In repeat dose studies only non specific effects were found. The oral NOEL was 100mg/kg bw/day.

ATBC was found to be non genotoxic and was a very mild hepatic peroxisome proliferator in rats. Moreover in a lifetime bioassay study in rats no dose related tumours were found.

References:
Submission from Reilly Chemicals.
2. BTHC (n-Butyryl-tri-n-hexyl citrate)

2.1. Physico-chemical properties

CAS Reg. No.: 82469-79-2
Synonyms: Citroflex B-6
Emperical Formula: C28H50O8
Structure:

Molecular weight: 514.7
Melting point: -55°C (pour point)
Boiling point:
Vapour pressure:
Solubility in water: < 1g/L at 25°C
Log Kow: 8.2 (estimated)
Purity: >99%
Impurities: Volatiles 1.3%, water max 0.15%, heavy metals max. 10 ppm

2.2. Use

The use pattern for BTHC is similar to that of ATBC. According to latest information BTHC is mainly used in the production of blood bags.

2.3. Exposure

No information has been found describing human exposure. Slightly lower leaching rate was found as compared to DEHP.

2.4. Metabolism

BTHC is well absorbed after oral administration. It is rapidly metabolised by hydrolysis of the ester bonds to a number of metabolites. The principal metabolite is n-hexanol. There are no structural alerts for any of the metabolites. Radiolabelled BTHC is cleared rapidly from the body following iv administration through a combination of urinary and biliary excretion and expired air. BTHC related material does not accumulate in any of the body tissues. The clearance is biphasic with half lives of <15 minutes and >24hours. The latter half life indicates that the radiolabel is widely incorporated into intermediary metabolism pathways. The findings indicate that BTHC is unlikely to accumulate in the body even after a prolonged period of exposure.

2.5. Toxicity

Acute toxicity

No mortality was observed by the oral route in rats for BTHC up to 5000 mg/kg bw. Acute iv injection studies with doses of up to 462 mg/kg bw did not produce any significant adverse effects. In dogs at the same iv dose level the only changes of note observed were in serum glutamate pyruvate transaminase and alkaline phosphatase. It can be concluded that BTHC has a low acute toxicity.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Irritation and sensitisation

One acute study in rabbits indicates that BTHC is a very mild irritant to the skin. In a second study in rabbits Undiluted BTHC (0.1ml) produced a mild and transient reaction when instilled into the eye.

Findings from the maximisation test method in guinea pigs using undiluted BTHC show a slight patchy erythema in one male and one female animal only. A further study using the Buehler method did not show any indication of sensitisation. It can be concluded that under the conditions of these experiments BTHC has a low irritation and sensitisation potential.

Repeated dose toxicity

The toxicological properties of BTHC have been investigated by both the oral and iv routes of administration. In an oral dosing study rats were given BTHC by gavage at 0, 250, 500 or 1000 mg/kg kg bw/day for 28 days. No clinical signs of toxicity were observed during the study. Statistically significant increases in the relative liver weight of males were noted at 500 and 1000mg/kg kg bw/ per day but no absolute changes in liver weight were found. Statistically significant changes in urinary pH, aspartate aminotransferase, blood albumin, creatinine and blood calcium were found at the higher dose levels. These findings did not show a clear dose dependency nor were the changes consistent between the sexes. It is difficult to identify a precise NOEL from these findings but a value of 250mg/kg kg bw/ per day is reasonable.

In one study BTHC was administered intravenously to adult rats at dose levels of 5, 50, and 500 mg/kg bw/day for 28 days. At 500 mg/kg bw/day no changes were observed in kg body weight, but there were moderate increases in both liver and spleen weight. These changes were associated with an accumulation of pigment laden macrophages in both organs. This dose group also showed statistically significant changes in some blood parameters. Namely, a decrease in haemoglobin, MCV and platelet levels and an increase in fibrinogen and reticulocyte levels. No other adverse histopathological changes were observed in any organs. No adverse effects were observed at the two lower dose groups. Thus an NOEL by the iv route of 50mg/kg bw/day can be identified.

A study was conducted in neonatal rats. BTHC was administered daily either iv or ip to male and female neonatal rats at 5, 50, and 500 mg/kg kg bw/ per day for eighteen days. At the top dose of BTHC following ip administration an increase in liver weight was noted but without evidence of adverse histopathological changes. After iv administration some histopathological changes were also observed in the lungs (macro granulomas and foreign body infiltration) at each dose. These effects following iv administration are probably due to the route of administration rather than to BTHC itself. By either administration route some tissue damage was noted around the injection sites. The study supports a NOEL by the iv and ip routes of 50mg/kg bw/day.

A specific study was also conducted to investigate the potential of BTHC to cause peroxisome proliferation. Rats were given 3% BTHC in the diet for six weeks. No increase in hepatic peroxisome proliferation was found.

Mutagenicity and genotoxicity

No mutagenic effects were observed for BTHC in several bacterial tests either with or without the presence of a metabolic activation system. In one study the urine, from mice given oral doses of BTHC of up to 1000 mg/kg bw/day, was assessed in various Ames strains of salmonella. No mutagenic effects were observed.

In mouse lymphoma cells BTHC produced different findings in two experiments. In the first there was a slight but statistically significant increase in mutations whereas in a second comparable experiment no significant changes were observed. Using human peripheral lymphocytes no significant alteration in the incidence of either chromosomal breaks or mitotic frequency was found.

One in vivo study was also carried out in a bone marrow cytogenetic assay. Mice were given an oral dose of 1000 mg/kg bw/day either as an acute dose or daily for five days. In neither study was there any indication of BTHC genotoxicity.

It can be concluded that BTHC is not genotoxic. This conclusion is supported by the lack of structural alerts for both BTHC and its metabolites.

Carcinogenicity

A lifetime bioassay test has not been conducted. However it is noted that BTHC is neither genotoxic nor is it a peroxisome proliferating agent.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Reproductive studies.
A fertility study was carried out in albino rats at dietary levels of 0, 0.6 or 1.2% BTHC. Males were exposed to BTHC continuously to BTHC for ten weeks prior to mating and during the mating period. Females were exposed for two weeks before mating, during mating, gestation and lactation. No effects on fertility and other reproductive indices, or on litter weights and pup weights were observed. The kg bw of the lactating females exposed to the top dose was slightly lower. No increase in abnormalities in the F1 pups was found.

Developmental toxicity was also examined in rats following the iv administration of BTHC (0, 5, 50, 500 mg/kg kg bw/ /day) on days 6-15 of gestation. No deaths or dose dependent changes in kg bw/ or uterine weight were identified. Nor were any dose related changes observed in resorptions, or embryo or foetal development or foetal toxicity. However in line with the findings from repeat dose studies changes were observed in liver, lung and spleen weight in the mothers. An NOEL for foetal/embryo toxicity of 500 mg/kg kg bw/day can be estimated in this study.

2.6. Human data

No information available on toxicity in humans.

2.7. Conclusion

BTHC well absorbed following its oral administration. It is rapidly metabolised and excreted from the body. It is unlikely to accumulate in the body following frequent exposure. It has a low toxicity following acute administration by either the oral or iv routes. In repeat dose studies only non specific effects were found. The po NOEL was 250 mg/kg kg bw/day and the iv NOEL was 50 mg/kg kg bw/day.

BTHC was found to be non genotoxic and did not initiate hepatic peroxisome proliferation in rats. No effects of BHTC could be found in rats on reproductive efficiency nor were dose dependent foetal abnormalities or foetal deaths identified.

References:
Submission from Reilly Chemicals.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

3. COMGHA (Glycerides, Castor-oil-mono-, hydrogenated, acetates)

3.1. Physico-chemical data

COMGHA is a mixture of two components A (Ca. 84%: 12-(Acetoxy)-stearic acid, 2,3-bis(acetoxy)propyl ester), and a minor component B (Ca. 10%: Octadecanoic acid, 2,3-bis(acetoxy)propyl ester).

- **CAS Reg No:** 736150-63-3 (COMGHA); Reg. No.: 330198-91-9 (component A); 33599-07-4 (component B)
- **Synonyms:** Acetylated monoglycerides of fully hydrogenated castor oil. Acetic acid esters of monoglycerides of fully hydrogenated castor oil. Octadecanoic acid, 12-(acetox)-, 2,3-bis(acetoxy)propyl ester (main component)
- **Empirical formula:** \(C_{27}H_{48}O_8\) (A) and \(C_{25}H_{46}O_6\) (B)
- **Chemical structure:**

![Chemical structure of COMGHA components A and B]

- **Molecular weight:** 500.7 (A), 442.6 (B)
- **Melting point:** -21.5°C
- **Boiling point:** 300°C at 1 atm (decomposition)
- **Vapour pressure:** < 2.8 x 10^-4 Pa at 100°C
- **Solubility in water:** 0.007 g/L
- **Log Kow:** 6.4 (measured)
- **Purity:** About 94% (84% and 10% of the A and B components, respectively)
- **Impurities:**
 - Octadecanoic acid, 12-acetox, 2-hydroxy, 3-acetoxypropyl ester (2%)
 - Octadecanoic acid, 12-oxy, 2,3-bis(acetoxy)propyl ester (1.5%)
 - Octadecanoic acid, 12-actyloxy, 2(acetoxy)-1,3-propanediyl ester (1.1%)
 - Octadecanoic acid, 3-(acetoxy)-2-hydroxypropyl ester (1.0%)
 - As (max 3 ppm), Pb (max 5 ppm), Hg (max 1 ppm), Cd (max 1 ppm)

3.2. Use

This plasticizer exhibits a performance similar to that of DEHP. It is approved in EU for use in food contact material. The intended primary use is in PVC (films, tubes, bottles, sealings, etc.), and the product may also find use in other polymers like polyolefins, styrenics, PET, etc. The product is recognised as a food packing material and evaluated by opinion of European Food Safety Authority (EFSA) 2004, 109, 1-26. Classified list 3. This product is notified as “new substances” in the context of 6th Amendment of Directive 67/548/EEC and listed in the European List of Notified Substances (ELINCS) as no. 451-530-8.

3.3. Exposure

No information has been found describing human exposure. Slightly lower leaching rate (368 mg/dm3) was found as compared to DEHP (Kristofferson 2005).
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

3.4. Metabolism

Quite detailed studies have been performed on absorption, distribution, biotransformation and excretion. Main conclusion suggests that hydrolysis of the compound is incomplete and that a proportion of the administered dose passes through the gastrointestinal tract and is excreted unchanged.

3.5. Toxicity

Repeated dose toxicity

Similar effect as administering corn oil. The NOAEL is 3 ml/kg bw/day. 90 day oral toxicity. A 13 week toxicity in SD rats fed by gavage at 3, 8.5, and 20 ml/kg bw/day. The NOAEL was less than 3 ml/kg bw/day. An increased incidence of thymus atrophy was recorded in the highest dosed group but similar effects were seen in corn oil fed control group.

A second 13-week toxicity study in SD rats, where each group received diets containing 0, 500 mg, 1600 mg or 5000 mg/kg bw/day. The NOAEL was 5000/mg/kg/day. A chronic toxicity/carcinogenicity study was not submitted.

The treatment of male rats with 8.5 ml/kg bw had no effect on palmitoyl-CoA activity whereas small but statistically significant increases in specific and total palmitoyl-CoA were observed in male rats given 20 mg/kg bw.

Induction on peroxisome proliferation: No marked effects on peroxisomal enzyme in the livers of male and female rats were observed after 13 weeks feeding study.

Mutagenicity and genotoxicity

Negative. Non-mutagenic in gene mutation study with or without S9 mix. In vitro mammalian chromosome aberration test was negative. Non-clastogenic in the chromosome aberration test.

Reproduction/developmental toxicity

No studies submitted. A review of the toxicity of 12-hydroxy-octadecanoic acid, 12-acetoxyoctadecanoic acid and the systemic toxicity of acetic acid concluded no adverse effect have been reported of the two compounds but no data was available on the toxicity of 12-acetoxy-octadecanoic acid.

3.6. Human data

No information available on toxicity in humans.

3.7. Conclusion

Good information on fully functional replacement of DEHP is available. The compound migrates less than DEHP. Replaced 1:1 with DEHP.

No original toxicity data were available. Based on the summary data it seems that the product is rather non-toxic. However basal toxicity on reproduction and immunotoxicity, sensitisation and chronic toxicity and cancer studies are missing.

References:

Submission from Danisco S/A.
4. DEHA (Di(2-ethylhexyl)adipate)

4.1. Physico-chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS Reg. No</td>
<td>103-23-1</td>
</tr>
<tr>
<td>Synonyms</td>
<td>DEHA, di(2-ethylhexyl) adipate, DOA, dioctyl adipate</td>
</tr>
<tr>
<td>Empirical Formula</td>
<td>C_{22}H_{42}O_{4}</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>370.57</td>
</tr>
<tr>
<td>Melting point</td>
<td>-67.8°C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>214°C (0.67 kPa), 417°C (SIDS)</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>8.5 \times 10^{-7} \text{mm Hg at 25°C}, 0.11 kPa (20°C), 0.32 kPa (200°C), 1.1 \times 10^{-4} \text{Pa at 20°C (SIDS)}</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>0.78 mg/L (22°C)</td>
</tr>
<tr>
<td>Log Kow</td>
<td>>6.11 (calculated), 8.0 (calculated)</td>
</tr>
<tr>
<td>Purity</td>
<td>0.01-0.02% adipic acid (purity >99%)</td>
</tr>
</tbody>
</table>

Leaching of plasticizers from food packing materials into especially fatty food has been studied a lot. In a Danish survey, plastic film on the market was tested for DEHA leaching to olive oil. Of the 49 investigated samples, 42 exceeded the action limit set at 4 mg (Breidendahl and Petersen 1998), cited in CSTEE opinion (1999).

4.2. Use

DEHA is a high production volume chemical that have an annual production and/or importation volumes above 1 million pounds in the U.S. DINP is used as a plasticizer in toys, vinyl flooring, wire and cable, stationery, wood veneer, coated fabrics, gloves, tubing, artificial leather, shoes, sealants and carpet backing.

4.3. Exposure

There has been uncertainty about the exposure of the general population. A survey covering 112 individuals established an intake of 2.7 mg/day (medium value). SCF evaluated the intake of DEHA in 2000 and concluded that the data showed DEHA intakes to be below the TDI of DEHA 0.3 mg/kg kg bw/ (SCF 2000, CSTEE 1999). No information has been found describing the exposure of children from PVC articles.

4.4. Metabolism

DEHA is rapidly and completely absorbed from the gastrointestinal tract. After oral administration, DEHA is hydrolysed in the gastrointestinal tract to 2-ethylhexanol, mono(2-ethylhexyl) adipate and adipic acid. 2-ethylhexanol is also one of the metabolites of DEHP. Further details can be found in BUA, 1996.

4.5. Toxicity

Acute toxicity (Short term effects).

DEHA has very low acute toxicity. LD_{50} 7.4-45.0 g/kg bw.

Irritation

DEHA has been reported to be non-irritating or slightly irritating to the skin of rabbits. It fails to produce symptoms of a sensitising potential.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Repeated dose toxicity

A number of studies have shown DEHA to induce changes indicative of peroxisome proliferation in the liver. The peroxisomal effects of DEHA are moderate compared to those of DEHP. The metabolites appear to be the active compounds for the peroxisomal effects. 2-ethylhexanoic acid being the most active metabolite. There are no adequate performed studies, which allow a precise determination of a NOAEL for DEHA from subchronic or chronic studies. A recent study based on the draft protocol for the “Enhanced OECD Test guideline no 407” using oral administration of 0, 40, 200, and 1000 mg/day for 28 days showed a reduction in relative kidney weights at 200 and 1000 mg/kg/day (Miyata et al. 2006).

Genotoxicity

DEHA has not induced point mutation in Salmonella typhimurium or mouse lymphoma cells, sister chromatide exchanges in primary hepatocytes or Chinese hamster ovary cells, nor unscheduled DNA synthesis in primary rat hepatocytes. DEHA did not cause chromosomal aberrations or micronuclei in primary rat hepatocytes. In one test on Chinese hamster ovary cells, an increase rate of chromosomal aberration was seen in the absence of a metabolic activation system; however, this study did not address cytotoxicity. DEHA has not induced micronuclei in mouse bone marrow cells or sex-linked recessive lethals in Drosophila melanogaster. In a dominant-lethal test in mice using intraperitoneal administration, a slight positive effect was seen. At the same time there was a reduction in the fertility index (not seen in orally studies), suggestion cytotoxicity rather than mutagenicity being the underlying cause for the dominant lethality (BUA, 1996). In an overall assessment of the test result, the CSTEE arrived at the conclusion that DEHA does not have a genotoxic potential (CSTEE 1999).

Carcinogenicity

Chronic toxicity and carcinogenicity study of several phthalic acid esters and compounds containing a 2-ethylhexyl moiety was conducted in Fischer 334 rats and B6C3F1 mice (Kluwe 1986). In general, the toxic manifestation of the phthalic acid ester was closely correlated with their ester substituents. Although many of the phthalic esters possessed some carcinogenic activity, target sites for such effects were dissimilar, suggesting the absence of a common mode of action. In contrast, all of the 2-ethylhexyl-containing compounds studied possessed some hepatocarcinogenic activity, indicating that this moiety may have a propensity for causing hepatocarcinogenesis in mice. The 2-ethylhexyl compound that caused the greatest hepatocarcinogenic response in mice (DEHP), was also hepatocarcinogenic in rats.

Reproductive toxicity

Several studies show foetotoxic effect of DEHA (CSTEE 1999). A new detailed study using gavage administration of 0, 200, 400, or 800 mg/kg/day to pregnant rats, confirmed the foetotoxic effect. Maternal toxicity was seen at 800 mg/kg bw/day. The NOAEL for maternal toxicity was 400 mg/kg bw/day. The NOAEL was 200 mg/kg. DEHA induced a prolonged gestation period at 800 mg/kg. No antiandrogenic endpoints were affected. DEHA did not induce antiandrogenic effects similar to those of DEHP (Borch et al. 2002, Dalgaard et al. 2003, Borch et al. 2006). A recent study showed that combined perinatal exposure to a mixture of DEHA and DEHP did not exhibit more pronounced effects in the reproductive system than those observed in males receiving DEHP alone (Jarfelt et al. 2005). In the study of Miyata et al. (2006) a disturbance of the estrous cycle and increased ovarian follicle atresia were detected in the 1000 mg/kg group.

4.6. Human data

No information available on toxicity in humans.

4.7. Conclusion.

DEHA does not show the specific toxicity on reproductive organs of DEHP on male pups after in utero exposure. A NOAEL of 200 mg/kg/bw for developmental toxicity and foetotoxicity can be established.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

5. DINCH (1,2-Cyclohexanedicarboxylic acid, diisononyl ester)

5.1. Physico-chemical properties

CAS Reg. No.: EU 166412-78-8, USA and Canada 474919-59-0,
EC (ELINCS) number 431-890-2
Synonyms: Hexamoll DINCH
Empirical formula: C_{26}H_{48}O_{4}
Structure:

\[\text{O} \quad \text{O} \quad \text{R}_1 \quad \text{R}_2 \]

R\text{\textsubscript{1}} and R\text{\textsubscript{2}} (not necessary identical) either mainly C_{8}H_{17} to C_{10}H_{21} or C_{9}H_{19} isomers. In the case where R\text{\textsubscript{1}} and R\text{\textsubscript{2}} is C_{9}H_{19} isomers it is 10 % n-nonyl, 35-40 % methyloctyl, 40-45 % dimethylheptyl, 5-10 % methylethylhexyl

Molecular weight: 424.6
Melting point: (liquid)
Boiling point: 240-250°C at 4 hPa
Vapour pressure: < 2.8 \times 10^{-4} \text{ Pa at 100°C}
Solubility in water: <0.02 mg/L at 25°C
Log K\text{\textsubscript{ow}}: 10.0 (calculated)
Purity: >99.5%
Impurities: < 0.05 % 1,2-Benzedicarboxylic acid, dinonyl ester, branched and linear; < 0.5 % Dinonyl ether; < 0.1 % Nonanol, branched and linear derived from Oxo-process; < 0.5 % sum of Cyclohexanecarboxylic acid, nonylester, branched and linear and 2-Methylcyclohexanecarboxylic acid, nonylester, branched and linear

5.2. Use

DINCH was introduced recently and it is suggested as an alternative to DEHP "for sensitive applications". These include medical devices, such as blood tubes and packaging for nutrient solutions. The European producer has a capacity of 25,000 tpa but that is now going to be extended to 100,000 tpa.

5.3. Exposure

No information has been found describing human exposure. Using nutrition fluids for DINCH a 8-fold lower leaching into the fluids was found as compared to DEHP. Leaching of plasticizers from food packing materials into especially fatty food has been studied a lot.

5.4. Metabolism

After oral administration DINCH showed rapid but saturable absorption and extensive elimination 24 hours after dosing approximately 80% of the radioactivity is excreted, after 48 hours more than 90 % is excreted via urine and mainly via feces. Based on the amounts of radioactivity excreted in the bile and urine, the bioavailability of ^{14}\text{C}-1,2-Cyclohexanedicarboxylic acid di(isononyl)ester is estimated to be 5-6% at the high dose and 40-49 % at the low dose.

There is no indication of bioaccumulation. The characterisation of metabolites after oral and intravenous administration of DINCH indicates two main pathways: the partial hydrolysis of DINCH to the mono-isonyl ester followed by conjugation to glucuronic acid, which is the most ab Undant metabolite in bile, or the hydrolysis of the remaining ester bond to yield free cyclohexane dicarboxylic acid, the predominant urinary metabolite.

5.5. Toxicity
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

All toxicity studies presented were performed under GLP conditions according to OECD guidelines.

Irritation/sensitization
DINCH was demonstrated to be a non-irritant in both the rabbit skin test and rabbit eye test, and a non sensitizer in the Guinea pig maximization test.

Acute toxicity
DINCH has very low acute toxicity, the LD$_{50}$ dose for DINCH in the rat is >5000 mg/kg bw after oral, and > 2000 mg/kg bw after dermal administration.

Repeated dose toxicity

28 day study
The 28 day toxicity study (dosing 0-600-3000-15,000 ppm or 0-64/66-318/342-1585/1670 mg/kg bw for males/females, respectively) was followed by a 14 days recovery period. The highest dose induced gamma-glutamyltransferase serum level and degenerated epithelial cells in the urine.

The NOAEL was 3000 ppm which relates to 318 mg/kg bw for males and 342 mg/kg bw for females.

90 day study
The 90 repeated dose toxicity study was performed with the doses 1500-4500-15000 ppm which relates to 107/128, 325/389, and 1102/1311 mg/kg bw for male/female animals, respectively.

There was no effect on mortality, clinical signs or haematology. Alterations were observed for clinical pathology including an increase in serum gamma-glutamyl transferase and TSH increase, in addition in urine blood and transitional epithelium cells were observed. The following pathological effects were present: an increase in liver weight, an increase thyroid weight, which was in line with the histology of showing hyperplasia/hyper trophy of the thyroid follicles. In the kidney alpha 2- microglobulin accumulation in the tubules was observed.

(NOTE the alpha 2-macroglobulin is considered specific for the rat and the mechanism thought not relevant for man). In the liver enzyme induction of phase I and phase II enzymes was observed. The increased gamma-glutamyltransferase and TSH value, increases in liver and thyroid gland, as well as the thyroid hypertrophy/hyperplasia suggest a common pathogenesis of enzyme induction process. This is not considered an adverse effect.

In the testes there was a significant increased mean relative weights in all 3 dose groups with no dose-response relationships. Histopathologically there was no obstructive proces present in the male rete testis or other areas of the male reproductive system.

Based on kidney effects the NOAEL was 1,500 ppm (107.1 mg/kg/day) in male and 4,500 ppm (389.4 mg/kg/day) in females. Also in the two generation study thyroid hyperplasia/trophy was observed with a NOAEL of 100 mg/kg/day.

Mutagenity and genotoxicity
DINCH has been evaluated for mutagenicity, both in bacterial (Salmonella typhymurium/Escherichia coli reverse mutation assay) and mammalian cell tests (In vitro mutation test in CHO cells), with negative results. It was non-clastogenic in tests conducted in vitro (chromosome aberration assay in Chinese hamster V79 cells) and in vivo (Micronucleus assay bone marrow cells mouse). DINCH is considered as non-genotoxic.

Carcinogenicity
In a two year combined chronic toxicity/carcinogenicity study (doses 40, 200, 1,000 mg/kg bw/day) also the thyroid was identified as target organ. Thyroid weight was increased in both sexes with follicular cell hyperplasia and the presence of follicular adenomas. The effect was considered due to secondary mechanisms via liver enzyme induction which is considered not relevant for humans. The NOAEL was 40 mg/kg in males and 200 mg/kg in females. Similar to the short term study transitional epithelial cells of the urinary tract were present in the urine. These were temporarily present and considered as adaptive as no histopathological lesions were observed in the kidneys at 12 and 24 moths.

Reproductive toxicity
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Prenatal development studies
In prenatal toxicity study in rabbits DINCH was orally administered from day 6 to day 29 of gestation with doses of 100, 300, and 1,000 mg/kg bw/day. There were no signs for maternal toxicity, no influence on gestation parameters, no signs for developmental effects in pups or teratogenic effects. Soft tissue malformations were equal to control values. The NOAEL was determined at the highest dose investigated, 1,000 mg/kg bw/day.

In the prenatal development study in rats no effects were observed. The dosing of the mothers was from day 6 - 19 post coitum. The NOAEL was equal to the highest dose administered being 1,200 mg/kg bw/day

In a pre- and postnatal developmental study DINCH was administered orally to the mother animals from day 3 post coitum to day 20 post partum (750 and 1,000 mg/kg bw/day). Exposure of the offspring was via the mother animals during gestation and the lactation period until day 20 post partum. The offspring (all males and 3 females) was raised to days 100-105 post partum and then evaluated. Anogenital distance (AGD) and anogenital index (AGI, AGD divided by kg bw/) was measured at day 1 after birth., and sexual maturation was determined (testes descendence, balanopreputional separation, penis evaluation/inspection, sperm evaluation, and vaginal opening for females). Gross pathology was performed, and testes and epididymus were collected for histology.

The results indicated that there was no toxicity in F1 progeny with a NOAEL of 1,000 mg/kg/day. The AGD (p<0.05) and AGI (p<0.01) were significantly decreased in the male high dose group (1,000 mg/kg bw/day), respectively AGD 7% and AGI 8% below the control group. Also in females of the high dose group the AGI was significantly reduced by 8%. The AGI was also in females significantly (p<0.05) decreased.

The limited (7-8% change compared to controls), although significant alterations in the AGD and AGI are not considered of biological significance as other corresponding parameters were not affected like testes descendence, preputial separation, vaginal opening, testes weight and histology, and sperm parameters. Also in females the AGI was decreased to the same extent, contradicting the AGI to be an effect of impaired androgen dependent development. In addition, in the two generation study no effects were noted (but AGD and AGI not determined).

Two generation study
The two generation study was performed with continuous dietary administration (doses 0-100-300-1000 mg/kg bw/day). The animals remained in the same dosing group as their parents. Evaluated were sexual maturation of the F1 generation, and sperm parameters of the F0 and F1 generation. There were no effects on fertility and reproductive performance, and no substance related effects on the evaluated F1 and F2 generation. In the F0 parents an increase in gamma glutamyltransferase in females, decreased total bilirubin in females, and increased liver, kidney and thyroid weight in both males and females was observed. At the highest dose investigated (1000 mg/kg bw) For the F1 parents similar effects were noted including thyroid weight increase with thyroid hypertrophy/hyperplasia. The NOAEL for fertility and reproductive performance was 1000 mg/kg bw for both F0 and F1 parents, and 1000 mg/kg bw for developmental toxicity in F1 and F2 pups

5.6. Human data
No information available on toxicity in humans.

5.7. Conclusion
The toxicity of DINCH is lower than that of DEHP. DINCH also shows a different “hazard profile” from DEHP for reproductive toxicity and peroxisome proliferation. The magnitude of exposure resulting from differences in leaching of DEHP and DINCH from the plastics of interest, is less for DINCH. In addition, effects of DINCH are observed at higher exposure doses than DEHP.

References:
Submission from BASF.

6. DINP (di-iso-nonyl phthalate)

6.1. Physico-chemical properties
CAS Reg. No: 68515-48-0 and 28553-12-0 (different alcohol chains depending on production method)
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Synonyms: 1,2-Benzenedicarboxylic acid, di-C8-10 branched alkylesters,
Empirical Formula: \(\text{C}_{26}\text{H}_{42}\text{O}_4 \) (average)
Structure:

\[
\begin{align*}
\text{O} & \quad \text{R}_1 \\
\text{O} & \quad \text{R}_2
\end{align*}
\]

\(\text{R}_1 \) and \(\text{R}_2 \) (not necessary identical) either mainly \(\text{C}_8\text{H}_{17} \) to \(\text{C}_{10}\text{H}_{21} \) or \(\text{C}_9\text{H}_{19} \) isomers. In the case where \(\text{R}_1 \) and \(\text{R}_2 \) is \(\text{C}_9\text{H}_{19} \) isomers it is 10 % n-nonyl, 35-40 % methyloctyl, 40-45 % dimethylethyl, 5-10 % methylethylhexyl

Molecular weight: 420.6 (average)
Melting point: -40 to -54°C
Boiling point: 424°C
Vapour pressure: \(6 \times 10^{-5} \text{ Pa at 20°C} \)
Solubility in water: 0.6 µg/L
Log Kow: 8.8
Purity: These products are mixtures of different composition and can contain up to at least 40 different substances
Impurities: DINP is not a pure substance, but a complex mixture containing mainly C9-branched isomers: iso-Nonanol ca. 0.04%, iso-nonylbenzoate ca. 0.03%, n-butyl-iso-nonyl phthalate ca. 0.1%, water 0.02-0.03%.

6.2. Use

There are currently four producers of DINP in EU. Approximately 95% of DINP are used in PVC as a plasticizer. (RAR EU 2003). It has limited use in food packing material and is not used in medical products (CSTEE 2001). DINP is used as a plasticizer in toys, vinyl flooring, wire and cable, stationery, wood veneer, coated fabrics, gloves, tubing, artificial leather, shoes, sealants and carpet backing.

6.3. Exposure

The estimated maximum combined total daily intake for an occupationally exposed adult is 1.12 mg/kg bw/d. For non-occupational exposed adults and children a maximum exposure of 20 µg/kg bw/d is estimated. These estimates are based on DINP measurements in several environmental media and consumer products (ECB 2003). From urinary DINP metabolite concentrations median daily intakes of approx. 0.2 µg/kg bw/d have been calculated for the general population with maximal values of 20 µg/kg/d (David 2000; Kohn 2000; Wittassek submitted).

Infants (0-5-3 years old)
Based on probabilistic estimation the maximum total daily intake from consumer sources is 0.25 mg/kg bw/d and via the environment 0.16 mg/kg bw/d. (combined exposure 0.41 mg/kg bw/d) (ECB 2003).

6.4. Metabolism

In rats DINP is readily absorbed and approximately 50% of an oral DINP dose is excreted renally, mainly as oxidised metabolites of the monoester mono-iso-nonyl phthalate (MINP) (ECB 2003; McKee 2002; Silva 2006a). These oxidised metabolites have also been identified in humans (Koch in press b; Silva et al. 2006a, 2006b). More than 40% of an applied DINP dose to a male volunteer was recovered in urine in form of oxidised MINP-isomers with hydroxy (20%), oxo (11%) and carboxy (11%) functional groups (Koch in press a). The simple monoester MINP urinary excreted accounted only for 2% of the dose. Elimination was at least bi-phasic and elimination half-lives in the second phase (beginning 24h post dose) were 12 hours for OH-MINP and oxo-MINP and 18 hours for carboxy-MINP. Further metabolites may be breakdown products through \(\alpha \)- and \(\beta \)-oxidation of the alkyl side chain and those with more than one functional groups through oxidation (Koch in press a; Silva 2006a).

6.5. Toxicity
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Acute toxicity

Upon single exposure, DINP has a low acute toxicity by all routes of administration.

Repeated dose toxicity

The liver is a target for chronic toxicity and a NOAEL of 88 mg/kg bw/d can be assumed on hepatic biochemical and histopathological findings. In 2001 CSTEE expressed an opinion on DINP-RAR and disagreed with a use of a NOAEL of 88 mg/kg/d. CSTEE support the use of spongiosis hepatis in rat as the critical effect for DINP, applying a benchmark dose of 12 mg/kg/d. Two studies show spongiosis hepatica with a benchmark dose 12-15 mg/kg/d (Aristech, 1994; Moor, 1998 cited from CSTEE 2001).

For kidney effects, a NOAEL of 88 mg/kg bw/d based on increase kidney weights can be assumed.

Mutagenity and Genotoxicity

DINP is not mutagenic in vitro in bacterial mutation assays or mammalian gene mutation assays (with or without metabolic activation) and is not clastogenic in one cytogenic assay on CHO cells and in one in vivo assay on bone marrow cell of Fisher rats. This suggests that DINP is not genotoxic.

Carcinogenicity

In chronic/carcinogenicity studies, DINP was found to induce significant excess of liver neoplasia in rats and mice. This is explained by peroxisome proliferation mode of action. DINP in two studies increased the mononuclear cell leukaemia in Fisher rat. IARC has classified this leukaemia of no relevance for human.

DINP induce kidney tumours in male rats but this 2u globulin induced tumours is not considered as relevant to humans.

Reproductive/developmental toxicity

In mice, a very high dose (>5g/kg bw/d lead to a decrease in testicular weight with abnormal/immature sperm forms and uterus/ovaries atrophy in a 13-week study. A NOAEL of 276 mg/kg bw/d for testicular effects can be assumed in a 104-week chronic rat study based on a reduced testicular weight at 742 mg/kg.

In the developmental studies, visceral and skeletal variations increased on litter basis at 1,000 mg/kg/d, leading to a NOAEL of 500 mg/kg bw/d. A decrease of mean offspring kg bw/ was observed following parenteral administration of DINP in the one and two-generation study from the lowest dose tested (LOAEL of 159/mg/kg bw/d).

DINP is not estrogenic in vitro but recent studies after perinatal exposure indicated that that male displayed female like areolas/nipple retention and that incidence of reproductive malformation was slightly but significantly increased (7.7% versus 91% with DEHP) Gray et al. (2000). (The reproductive effect of DINP is similar to the profile shown for DEHP but DINP is only half or less potent as DEHP. There is an increasing use of DINP but the reproductive toxicity of all the isomers is not well investigated (CSTEE 2001).

6.6. Human data

No information available on toxicity in humans.

6.7. Conclusion

The reproductive seffect of DINP indicate a similar hazard profile (except age) as shown for DEHP, but DINP is only half or less potent as DEHP. The mechanism of action is an effect on steroidogenesis of testosterone in the fetal male rat like shown by DEHP. CSTEE (2001) has previously recommended that the NOAEL effect is lower than the one reported in the RAR if using the spongiosis hepatis as the critical endpoint. This is seen in doses of 12-15 mg/kg/d.
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

References:

Koch HM and Angerer J. Di-isononylphthalate (DINP) metabolites in human urine after a single dose of deuterium-labelled DINP. Int J Hyg Environ Health in press a

The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

7. DEHT (Di(2-ethylhexyl) terephthalate)

7.1. Physico-chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS Reg. No:</td>
<td>6422-86-2</td>
</tr>
<tr>
<td>Synonyms:</td>
<td>1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester; dioclyltetraphthalate (DOTP); Eastman Plasticizer 168.</td>
</tr>
<tr>
<td>Empirical formula:</td>
<td>C_{24}H_{38}O_{4}</td>
</tr>
<tr>
<td>Molecular weight:</td>
<td>390.56</td>
</tr>
<tr>
<td>Melting point:</td>
<td>-48°C</td>
</tr>
<tr>
<td>Boiling point:</td>
<td>363°C (383 enI IUCLID)</td>
</tr>
<tr>
<td>Vapour pressure:</td>
<td>28.5 hPa at 25°C, 1013 hPa at 398°C</td>
</tr>
<tr>
<td>Solubility in water:</td>
<td>0.4 µg/L (well water), 0.35-1.5 mg/L (sea water)</td>
</tr>
<tr>
<td>Log Kow:</td>
<td>5.72 (well water), 5.26 (sea water)</td>
</tr>
<tr>
<td>Purity:</td>
<td>99.5%</td>
</tr>
<tr>
<td>Impurities:</td>
<td><2% w/w 2-ethylhexyl methyl terephthalate</td>
</tr>
</tbody>
</table>

Information on stability in water is given (in section 3.2.1 of IUCLID set) and the calculated rate constants for hydrolysis. GC-ECD method for parent compound determination (e.g. page 50 of IUCLID)

7.2. Use

DEHT is a high production volume chemical and is annually produced in volumes above 50 million pounds in the U.S.

DEHT is used as a general purpose, low-volatility plasticizer for polyvinyl chloride and other polymeric materials. It is used in a wide range of applications including toys, childcare articles and other consumer products, transportation and beverage closures. According to IUCLID Data Set, the production volume in 1998 was 25000 – 50000 tonnes in the US.

7.3. Exposure

DEHT production uses a closed system. Occupational exposure could occur when the chemical is put into drums or during quality control. It is said that minimal consumer exposure is expected based on limited use in consumer products and low leaching of the compound out of the polymer matrix in its major use as plasticizer.

7.4. Metabolism

In vitro: The metabolic hydrolysis rate of DEHT; determined by the formation of free 2-ethylhexanol (2-EH) was studied with rat intestinal homogenate (t\(_{1/2}\) was 53 min; and stoichiometry at termination showed about 2 mol of 2-EH per mol DEHT, indicating complete hydrolysis to terephthalic acid (TPA). This was in contrast to DEHP (with t\(_{1/2}\) of 13 min and a yield of 1.2 mol of 2-EH per mol DEHP) indicating it forms a stable monoester.

Oral study: Absorption and metabolism were studied for DEHT (\(^{14}\)C labelled) mixed with corn oil and administered by gavage in a single dose of 100 mg/kg of kg bw to 10 adult male SD rats. About 93 % of the total radioactivity was recovered, most of it in the faeces (56.5%), and urine (31.9%), and 3.6% was expired as CO\(_2\). The mean amount of unchanged radioactive DEHT recovered in the faeces was 36.6% and the percentage of the total DEHP dose recovered in the urine, as unlabeled TPA, was 50.5%. In total 91.7 % of the dose can be accounted for as either unchanged DEHT (in faeces), unlabeled TPA (in urine) or exhaled CO\(_2\). This balance sheet thus limits the amount of mono(2-ethylhexyl) terephthalate (MEHT), and its metabolites to a maximum of 9.3 % of orally administered dose: After 24 hours more than 95% of the radioactivity was excreted [Barber et al. 1994].
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Apparently; DEHT is not readily absorbed from the GI tract upon oral exposure; and extensively hydrolyzed to TPA and 2-EH (before and after absorption) and it is rapidly excreted. This contrasts to the metabolite profile of the ortho-phthalate DEHP which primarily undergoes hydrolysis to form the monoester (MEHP).

7.5. Toxicity

Acute toxicity

Acute toxicity data are mainly reported for rats and, mice. LD50 was >5000 mg/kg and 3200 mg/kg bw in oral studies and >20 ml/kg for dermal toxicity in guinea pigs

Repeated dose toxicity

4-5 studies conducted; some according to GLP. Groups of male and female rats were fed diets containing DEHT at 0.1 up to 1% and 2.5% w/w for up to 90 days:

[a] SD rats 90 day (GLP) study: NOEL was 0.5% or 277 and 309 mg/kg bw for males and females, respectively; the NOAEL was 1% or 584 and 617 mg/kg bw for males and females, respectively. Slight increases in relative liver weight (max about 11%) were seen at the 1% dose level. No adverse effects on the testes were found at any dose [Barber & Topping 1995].

[b] Fisher 344 rats 21 day (GLP) study: NOEL was 0.5% or 487 and 505 mg/kg bw for females and males respectively; the NOAEL was 1.2% or approx: 1000 and 1100 mg/kg bw for males and females, respectively. DEHT caused only slight peroxisome proliferation at 2.5%, whilst DEHP caused a moderate increase at 1.2% and a marked increase at 2.5% in this study [Topping et al. 1987]. The effect seen at the 2.5% exposure level was believed to be secondary to significant decreases in food intake and body weight reduction.

Two other repeated dose studies, one in SD rats with oral feeding at levels of 0.1 and 1% for 2 weeks, the other with inhalation (6h per d for 10 days) of 46.3 mg/m³ revealed no signs of toxicity; the NOEL for these studies were the highest tested doses.

Mutagenicity and Genotoxicity

No evidence for genotoxicity was found in assays assessing mutagenicity, i.e. gene mutation in bacterial (Ames test) or mammalian (CHO / hgprt) system. DEHT did not induce chromosomal aberrations in mammalian cultured cells with or without an exogenous metabolic activation system. The results for mono(ethyl hexyl)terephthalate (MEHT) in the Ames assay were also negative [Barber 1994].

Carcinogenicity

Data from a chronic 104 weeks oral study indicate a NOEL for carcinogenicity of 12000 ppm (highest dose tested), equivalent to 666 mg/kg/day in males and 901 mg/kg/day in females.

The NOEL for chronic toxicity in the study was 1500 ppm equivalent to 79 mg/kg/day in males and 102 mg/kg/day in females.

Reproduction/developmental toxicity

In a two generation reproductive toxicity study following OECD guideline 416, DEHT was given to 30 male and 30 female SD rats at doses of 0, 0.3, 0.6 and 1% in the diet (approx. 0, 150-200; 300-400; 500-700 mg/kg/day for males, and 0, 250-300, 500-600, 800-1000 mg/kg/day for females). The F0 animals received DEHT for at least 70 days before mating and until termination; the F1 generation received diets following weaning (following PND 22) and for at least 70 days before mating. Reproductive parameters were unaffected by DEHT. Mean maternal kg bw/s were reduced in the 1% group throughout gestation and lactation and throughout the F1 generation. No critical histopathological changes observed: The NOAEL for reproductive toxicity was concluded to be 1% in the diet.

Oral developmental toxicity

Study 1 following OECD guideline 414: Groups of 25 pregnant SD rats received DEHT doses of 0, 0.3, 0.6 and 1% in the diet (approx. 0, 226, 458, or 747 mg/kg/day) from GD 0 to GD 20. Uteri and contents were excised by caeserean section and examined (fetuses, implantation sites): No evidence of embryotoxicity, fetotoxicity and no effect of treatment on the number of viable foetuses. No visceral or skeletal anomalies attributed to treatment. Changes in maternal kg bw/ were seen at the highest exposure level and the NOAEL for maternal toxicity was 0.6 % (458 mg/kg/day); the NOAEL for developmental tox was 1% (747 mg/kg/day).
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Study 2: 10 Controls and 8 pregnant SD rats received DEHT from GD14 to PND3 by gavage at 0 and 750 mg/kg bw (dose adjusted based on individual maternal weight changes throughout dosing period), and their male offspring were examined for several parameters of demasculinization: No changes in AGD, testes weight, testes descent, testes lesions, presence of areolas/nipples or vaginal pouches, reproductive organs weights, reproductive malformations or mating behaviour were noted. In contrast, DEHP also assessed in the same study, yielded adverse effects at this dose (750 mg/kg bw) [Gray et al. 2000].

Study 3 following OECD guideline 414: Groups of pregnant CD mice received DEHT doses of 0, 0.1, 0.3 and 0.7% in the diet (approx. 0, 197, 592, or 1,382 mg/kg/day) from GD0 to GD18. Changes in maternal weights were seen in the mid and high exposure animals, and the NOEL for maternal toxicity was 0.1% (197 mg/kg bw); the NOEL for developmental toxicity was 0.7% (1,382 mg/kg).

7.6. Human data

There are two small human studies reported, both with dermal application of DEHT, one to test primary dermal irritation, the other on skin sensitization. Under the conditions of the study DEHT was found to be non-irritating and did not elicit evidence of sensitization. No other human studies.

7.7. Conclusion

DEHT is not genotoxic (like its isomeric relative DEHP), DEHT is less active in the induction of peroxisome-proliferation in rats than DEHP, and this is explained by the smaller amounts of monoester produced during DEHT metabolism. At doses where DEHP, BBP and DINP all altered sexual differentiation, DEHT was inactive. (DEHP, BBP were of equivalent potency, DINP was about an order of magnitude less active).

References:
Submission from Eastman Chemical Company.
8. TOTM (Triocyltrimellitate)

8.1. Physico-chemical properties

CAS Reg. No: 3319-31-1
Synonyms: Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate, triocyl trimellitate; tri(2-ethylhexyl) trimellitate (TEHTM); triocyl benzene-1,2,4-tricarboxylate; 1,2,4-bezenetricarboxylic acid, triocyl ester.
Empirical Formula: C_{33}H_{54}O_{6}
Structure:

Molecular weight: 546.8
Melting point: -50°C (-35 in IUCLID)
Boiling point: 283°C at 4 hPa
Vapour pressure: 5.6 Pa at 20°C
Solubility in water: 0.13 (0.00039) mg/L at 25°C
Log Kow: 5.94 (4.35) at 25°C

In the dossiers no method of determination of substance and metabolites were presented. The open literature gave two papers in which HPLC methodology were applied for TOTM analysis (Christenson et.al. 1991, Kambia et.al. 2001). No methods for the metabolites are available, however most probably DEHP methods are applicable.

8.2. Use

The production volume in Japan is about 20,000 tonnes/year and there are 5 manufacturers in Japan. Estimated global production is 40,000-100,000 tonnes/year. TOTM is mainly used as a plasticizer for PVC electrical cables and wire. In medical devices TOTM is used as a PVC plasticizer in various infusion equipments. Trimellitate plasticizers are the alternative for phthalate plasticizers when high temperature applications and low volatility are of importance. The end products include oil resistance products, gasoline hoses, rain shoes, gasketing, and vehicle engine wires. TOTM has unique low leaching properties and extraction resistance properties that are required for dishwasher gaskets, medical tubing and photograph storage.

8.3. Exposure

TOTM is produced and used in closed systems and therefore the occupational exposure is limited in the case of sampling and maintenance at the production facilities. Moreover, the exposure time is very short. The major route of occupational exposure is inhalation and dermal. TOTM is relatively difficult to extract from the polymeric matrix which lowers the consumer (patient) exposure.

8.4. Metabolism

Absorption and metabolism were studied for TOTM (14C labelled) mixed with corn oil and administered by gavage in a single dose of 100 mg/kg of kg bw/ in 4 male SD rats. About 75% of the dose was excreted unchanged in the faeces, 16% in the urine as metabolites and 1.9% was expired as CO2. Radioactivity was excreted in the faeces as unchanged TOTM (85% of the faecal radioactivity) mono and di(2-ethylhexyl)trimellitate (MOTM and DOTM), and as unidentified polar metabolites. Metabolites in the urine were identified as MOTM nabo metabolites of 2-ethylhexanol. Less than 0.6% of the dose remained in the tissues (SIDS Initial Assessment Report for 13th SIAM, 2001).

8.5. Toxicity

Acute toxicity
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

Acute toxicity data are mainly reported for rat, mice and rabbits. LD50 was >2000 mg/kg and 3200 mg/kg bw in oral or IP administration in rats (Ministry of Health and Welfare, Japan 1996).

Repeated dose toxicity

Oral administration of TOTM in the diet to groups of 5 male and 5 female Fisher 344 rats at the level of 0, 184, 650, 1826 mg/kg bw/day for 28 days. There were no statistical significant differences in kg bw/ between the control and the exposed groups. There was a significant difference in between the control and exposed groups in the following absolute and relative liver weights, serum albumin and cholesterol levels. Liver biochemistry (palmitoyl CoA oxidation and catalase activity were induced) revealed statistically significant differences between treated and control groups. The NOAEL was 184 mg/kg (CMA 1985)/day. In the second study the NOAEL was 1000 mg/kg/day; not all the informations are available (Ministry of Health and Welfare, Japan 1996).

The third study was the OECD preliminary reproduction study. Administration was by gavage at the doses of 100, 300 and 1000 mg/kg/day. The decrease of spermatocytes and spermatids in males was observed at 300 and 1000 mg/kg/day doses by histopatohological examinations. The NOAEL was 100 mg/kg for males and 1000 mg/kg/day in females (Ministry of Health and Welfare, Japan 1998).

In a non GLP compliance study rats were exposed to TOTM and DEHP (28 days, 0.2%; 0.67%; 2.00%). The data demonstrated the same spectrum of morphological and biochemical changes in the livers of rats exposed to TOTM as did DEHP. TOTM, however, was much less potent in its action, with a dietary level of 2%, causing less peroxisome proliferation and enzyme induction than 0.67% DEHP (Hodgson J. Toxicology and Industrial Health 1987).

Adult male rats receiving TOTM intraperitoneally for seven days exhibited no significant changes in the activities of hepatic aminopyrine-N-demethylase, aryl hydrocarbon hydroxylase or glutathione-S-transferase or in glutathione contents. However, except for the glutathione level, the DEHP shoved significant increases in the activities of these particular enzymes (Rathinam K. et.al.1990).

Mutagenity and genotoxicity

One GLP level study for Ames test was carried out and several (4 to 5) non GLP compliant studies exist. In the GLP compliant study TOTM did not induce gene mutation in bacterial system and chromosomal aberration in mammalian cultured cells with or without an exogenous metabolic activation system (Ministry of Health and Welfare, Japan 1996).

Reverse gene mutation assay was conducted by OECD TG 471 and 472 using preincubation method TOTM was not mutagenic in Salmonella TA100, TA1535, TA 98, TA1537 and E.coli WP2 uvrA at concentration of up to 5000 µg/plate, with or without tan exogenous metabolic activation (Ministry of Health and Welfare, Japan 1996).

Chromosomal aberration test by OECD TG 473 was conducted in cultured Chinese hamster lung cells. Structural chromosomal aberrations and polyploidy were not induced to a max conc. of 5,0mg/ml on continuous treatment (Ministry of Health and Welfare, Japan 1996).

Carcinogenicity

No data available.

Reproduction/developmental toxicity

Gavage study in SD rats conducted at doses of 100, 300 and 1000 mg/kg/day (male 46 days, females from 14 days before mating to day 3 of lactation) of TOTM. Histopathological examination of testes revealed decreased spermatocytes and spermatids in males of the 300 and 1000 mg/kg/day groups. No effects of TOTM were detected general appearance, kg bw/, food consumption autopsy findings and weight of repro organs of both sexes or on histopathological examination of the ovary. On the basis of this observation the NOAEL for males is 100 mg/kg/day and 1000 mg/kg/day in females (Ministry of Health and Welfare, Japan 1998).

No influence of TOTM was detected regarding reproduction ability, organ weights or histopathological appearance of the ovaries, delivery or maternal behaviours of dams. No effects were seen on viability, general appearance, of weight or autopsy findings of
The safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk

offspring. The NOAEL for repro/developmental toxicity is considered to be 100 mg/kg/day for males, 1000 mg/kg/day for females and 1000 mg/kg/day for offspring (Ministry of Health and Welfare, Japan 1996).

8.6. Human data

The leaching of plasticizers from blood line was studied in 11 patients. During the treatment the plasma level of DEHP rose from 0.1 microg/ml (=<0.05-0.17, n=11) to 0.7 microg/ml (0.30-1.6, n=11). When patients were changed to tubing containing TOTM, the concentration of DEHP was below or close to the detection limit (LOD 0.5 microg/ml) and TOTM could not be detected (LOD 0.5 microg/ml) (Christersson et.al. 1991).

The circulating concentrations of DEHP and TOTM resulting from the release from dialyzer tubes were estimated using an HPLC. A DEHP quantity of 122.95+/- 33.98 mg (n=10) was extracted from tubing during a single dialysis session (4h). By using TOTM-DEHP 1:1 mixture, 41.80+/- 4.47 mg of DEHP and 75.11+/-25.72 mg of TOTM were extracted (Kambia et.K. et al. 2001). (1-2) 139-146.)

Two hundred and three human volunteers were tested for evidence of sensitization to several plasticizers following 3 weeks of dermal application three times a week. Slight erythema was observed in four individuals exposed to TOTM, two of which resolved within 96 h and one that occurred only after 96 h (David et.al.2003).

8.7. Conclusion

TOTM has a low acute toxic potential. Based on the data available TOTM seem to have low metabolic transformation capacity and no major single water soluble metabolite can be identified. This may partially explain the low liver toxicity of the compound. No clear toxicological mode of action can be identified. However, the spectrum of some morphological and biochemical changes in rat liver were the same in TOTM and DEHP but the degree of damage was by far lower in TOTM exposed animals than in DEHP. The overall NOAEL can be set to 100 mg/kg in male based on the damage reported in testes in animals.

References:
Hodgson J. Results of peroxisome induction studies on tri(2-ethylhexyl)trimellitate and 2-ethylhexanol. Toxicology and Industrial Health 1987 (1) 49-61.
Kambia K., Dine T., Azar R., Gressier B., Luyckx M., Brunet C. Comparative study of the leachability of di(2-ethylhexyl)phthalate and tri(2-ethylhexyl)trimellitate from haemodialysis tubing. Int J. Pharm. 2001 (1-2) 139-146.
Rathinam K., Srivastava S., Seth P. Hepatic studies of intraperitoneally administered tris(2-ethylhexyl)trimellitate (TOTM) and di(2-ethylhexyl)phthalate in rats. J. App. Toxicology 1990 (10) 39-41.
Submission from Polynt S.p.A