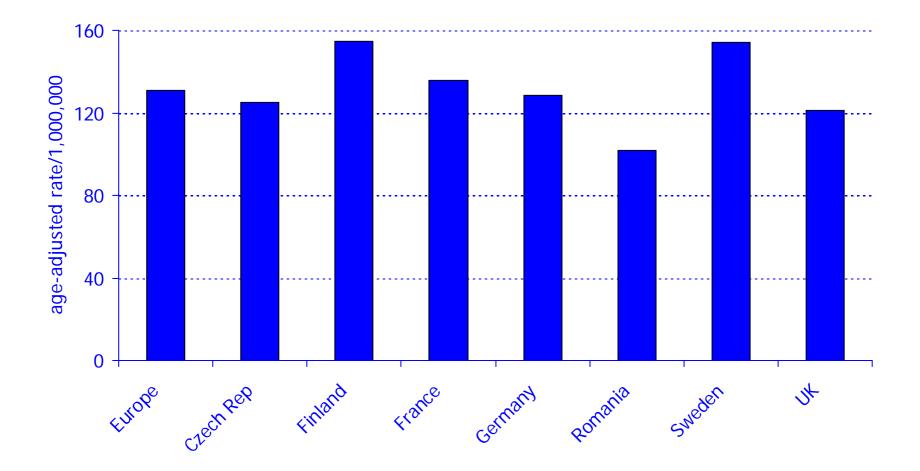
Challenges in epidemiological research of childhood cancer

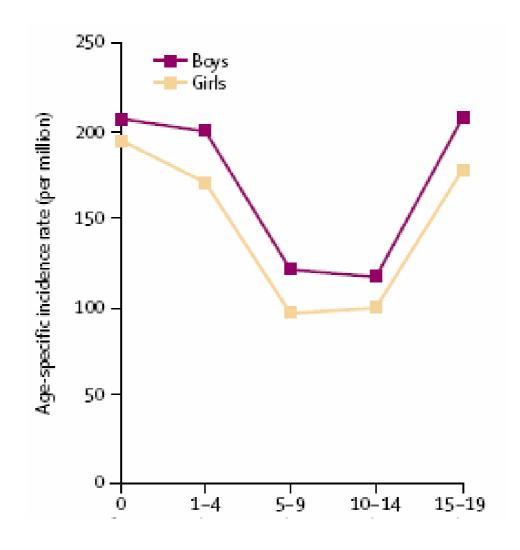
Paolo Boffetta

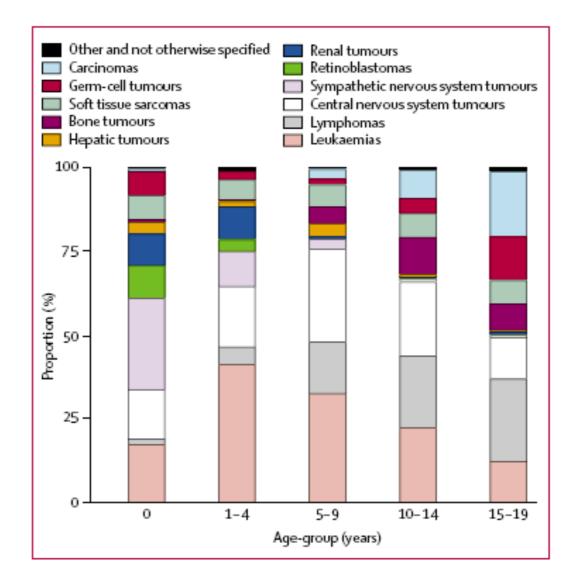
International Agency for Research on Cancer Lyon, France


Automated Childhood Cancer Information System (ACCIS)

- Collection, presentation, and interpretation of data for cancer incidence and survival in children (aged 0–14) and adolescents (aged 15–19) in 35 European countries
- Data from 80 population-based cancer registries covering about half the population aged 0–14 years
- It includes 160 000 cases of childhood and adolescent cancer diagnosed from 1970 to 2001 (1.3 billion person-years)
- Funded by DG-SANCO, IARC, Scotland MoH

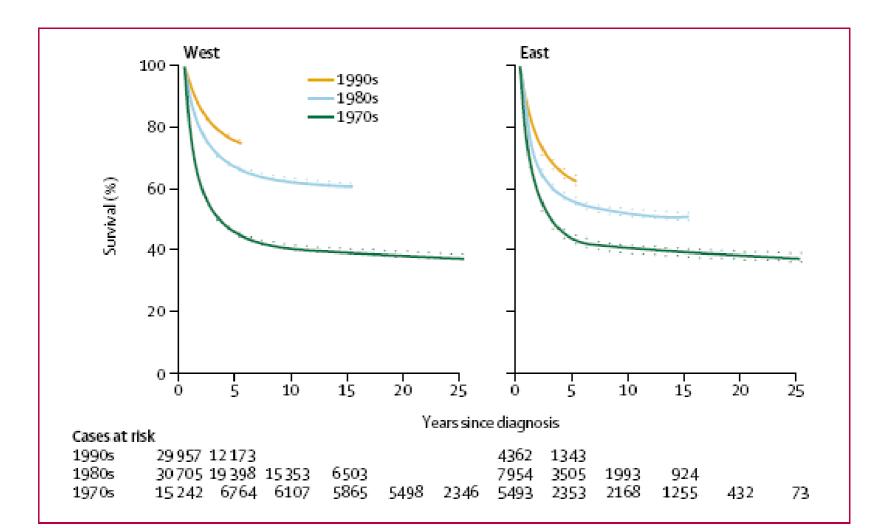

ACCIS coverage


Incidence rate of childhood cancer (0-14) in selected European countries - 1990s


Percentage of groups of childhood cancer (0-14) in selected European countries - 1990s


Age- and sex-specific incidence rates of groups of childhood cancer in Europe - 1990s

Age-specific percentage of groups of childhood cancer in Europe - 1990s

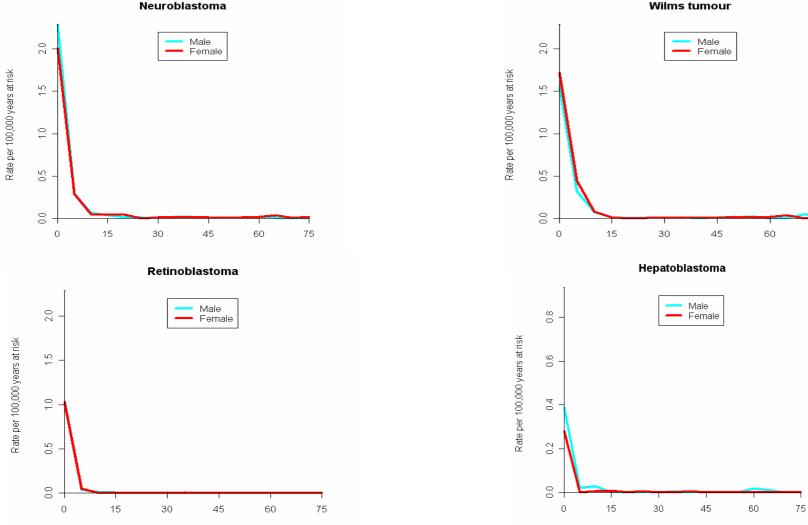

Decade- and age-specific incidence rate of childhood cancer in Europe

Annual percentage change in the incidence of groups of childhood cancer in Europe – 1970-2000

Survival from childhood cancer by European region – 1970-2000

Issues in descriptive epidemiology of childhood cancer

• Completeness of diagnosis, registration and histologic characterization


 Geographic and temporal patterns in incidence may reflect differences and trends in exposure to environmental agents, diagnostic procedures, survival of high-risk individuals

Embryonal tumours

 Embryonal tumours are a group of specialised neoplasms characteristically seen in very young children

 The microscopic appearance of these neoplasms resembles the structures seen in developing tissues and organs in the embryo and fetus

Age-specific incidence of selected embryonal tumours

Age (years)

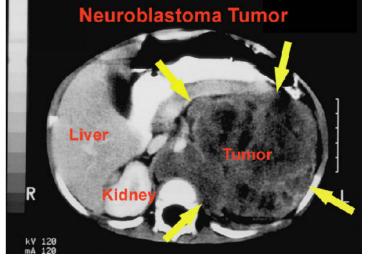
75

Age (years)

Etiological implication of these patterns

- The very young ages of diagnosis and the embryonal histology of these tumours implies a pre-natal origin
- Most if not all events leading to tumour development are likely to have occurred before birth
- Any post-natal exposures / influences of aetiological importance probably act soon after birth or in infancy

Etiological implication of these patterns


- Probably fewer steps involved in pathway from normal to malignant cell than adult cancers
- Consistent with undifferentiated nature of cells of origin and genetic factors may be important
- Effect is to reduce the number of steps in the carcinogenic pathway and/or speed up the process

Some features common to embryonal tumours

- Abnormal birthweight patterns
- Associations with congenital anomalies and syndromes
- Associations with germline mutations that also
 predispose to adult-onset cancers
- Heterogeneity within tumour types

Origin of neuroblastoma

- Malignant tumor of the cells of the neural crest
- Neural crest cells migrate to create the sympathetic nervous system, tissue of heart, jaw, head

Sites of Neuroblastoma

Cervical vertebra

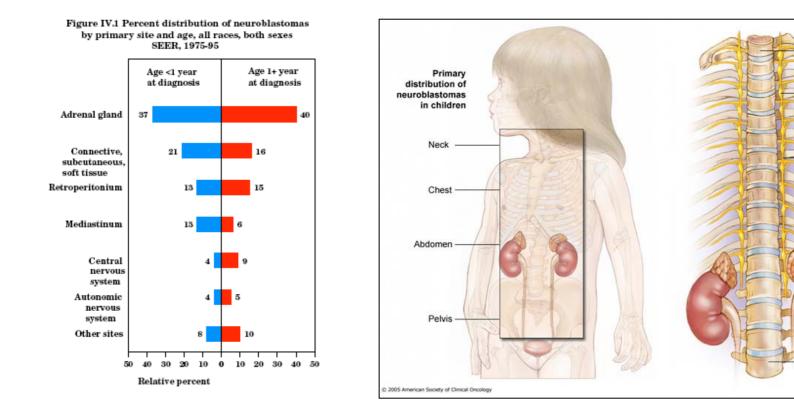
Sympathetic

Sympathetic

trunk

Rib

Adrenal


Kidney

Lumbar

vertebra

gland

ganglion

Genetic syndromes associated with NB

- Beckwith-Wiedemann syndrome
- Rubenstein-Taybi syndrome
- von Recklinghausen syndrome
- Hirschsprung's disease
- They explain a minority of cases
- Family history of disease occurs in <5% of cases

Maternal factors - 1

Younger Maternal Age

Study name		<u>Statisti</u>	ics for e	each study	y	Odds ratio and 95% Cl
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	
N Carolina (<20 years)	1.645	0.932	2.903	1.715	0.086	│ │ │ │ ■ ┼─ │ │
Minnesota (21 years)	1.090	0.657	1.809	0.333	0.739	
US/Canada (<20 years)	1.400	0.676	2.898	0.906	0.365	│ │ │ │ │
New York (<18 years)	0.690	0.408	1.166	-1.387	0.165	│ │ ┼╋┼ │ │ │
California (<20 years)	0.959	0.669	1.375	-0.227	0.820	
Washington (<20 years)	0.720	0.433	1.198	-1.265	0.206	│ │ ┼╋┼ │ │ │
	0.982	0.801	1.204	-0.171	0.864	
						0.1 0.2 0.5 1 2 5 10

Maternal factors - 2

Older Maternal Age

Study name		Statist	ics for e	each study	/	Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	
N Carolina (> 30 years)	0.762	0.324	1.794	-0.622	0.534	│ │ │ <mark>- </mark>
Minnesota (>35 years)	0.880	0.329	2.357	-0.254	0.799	
New York (>35 years)	1.600	0.669	3.825	1.057	0.290	│ │ │ │ <mark>→</mark> ■ │ │ │
Germany (>35 years)	0.900	0.498	1.625	-0.349	0.727	│ │ ├─╋─│ │ │
US/Canada (>40 years)	3.500	0.714	17.146	1.545	0.122	│ │ │ │ ┤ -
New York (31-40 yrs)	1.270	1.005	1.604	2.003	0.045	
Washington (>35 years)	1.030	0.659	1.609	0.130	0.897	
California (>35 years)	0.816	0.574	1.159	-1.137	0.256	
	1.086	0.924	1.276	1.006	0.314	
						0.1 0.2 0.5 1 2 5 10

Exposures in pregnancy - 1

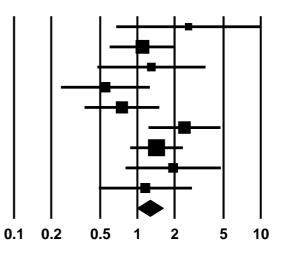
Tobacco Use in Pregnancy

Study name		<u>Statisti</u>	cs for e	ach study	y	Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	
Pennsylvania 198	371.260	0.690	2.302	0.752	0.452	++++
Tennessee 1992	1.700	0.866	3.339	1.541	0.123	│ │ │ │ ∎ ┼─ │ │
UK 1995	1.040	0.842	1.284	0.365	0.715	🖶
New York 1996	1.190	0.669	2.117	0.592	0.554	
US/Canada 2001	1.100	0.832	1.455	0.668	0.504	
New York 2001	1.600	0.907	2.822	1.623	0.105	│ │ │ │ ∎│ │ │
UK 2003	0.910	0.619	1.338	-0.480	0.631	┤││─╉─│││
New York 2005	1.090	0.629	1.888	0.307	0.758	
Washington 2006	0.840	0.562	1.255	-0.851	0.395	┤││→╋┤│││
-	1.074	0.946	1.218	1.103	0.270	
						0.1 0.2 0.5 1 2 5 10

Exposures in pregnancy - 2

Alcohol Use in Pregnancy

Study name	Statist	ics for e	ach study	,		Q	dds rat	io an	d 95%	<u>C</u> I
	ds Lower tio limit		Z-Value j	o-Value						
Pennsylvania (>= 1 drink/day) 9.0	000 1.642	49.338	2.531	0.011					+	
Pennsylvania (>= 3 drink/occasion) 6.0	000 0.935	38.503	1.889	0.059				+	_	┉┤╸
Pennsylvania (either daily or binge) 12.0	000 2.430	59.259	3.050	0.002					-	_
Tennessee (Daily) 0.7	700 0.422	1.161	-1.382	0.167				┝┿		
Germany (Daily) 3.0	040 0.754	12.261	1.563	0.118					╺┤╴╸	
US/Canada - 1st trimester (any/none)1.2	200 0.873	1.649	1.124	0.261				╶┤═╋	-	
US/Canada - 2nd trimester (any/none).6	500 1.033	2.479	2.104	0.035					■┼─	
US/Canada - 3rd trimester (any/none)1.4	400 0.917	2.139	1.557	0.120				-+-∎	┣┥	
1.3	336 1.098	1.624	2.899	0.004						
					0.1	0.2	0.5	1	2	5


10

Pregnancy-related factors - 1

Low Birthweight

Study name		Statist	ics for e	ach stud	у
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
US/Canada - Very low	2.600	0.679	9.956	1.395	0.163
US/Canada - Low	1.100	0.601	2.013	0.309	0.757
N Carolina - Hospital controls	1.300	0.477	3.540	0.513	0.608
N Carolina - BC controls	0.550	0.242	1.250	-1.427	0.154
Washington	0.750	0.376	1.495	-0.817	0.414
Germany	2.410	1.239	4.687	2.592	0.010
New York State	1.430	0.883	2.317	1.453	0.146
Texas	1.950	0.808	4.707	1.485	0.137
California	1.160	0.491	2.743	0.338	0.735
	1.275	1.001	1.624	1.967	0.049

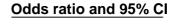
Odds ratio and 95% CI

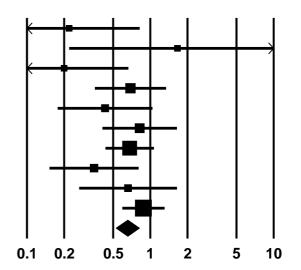
Pregnancy-related factors - 2

High Birthweight

Study name		Statisti	cs for e	ach study	y	Odds ratio and 95% CI
	Odds ratio	Lower limit		Z-Value	p-Value	
Minnesota	0.960	0.500	1.842	-0.123	0.902	
Tennessee	0.870	0.523	1.448	-0.536	0.592	│ │ │—■── │ │ │
N Carolina, Hosp controls	1.140	0.653	1.990	0.461	0.645	│ │ │ ↓ ∎→┤ │ │
N Carolina, BC controls	1.380	0.738	2.582	1.008	0.314	↓ ∎∔
Washington State	1.250	0.871	1.793	1.212	0.225	│ │ │ ┼┳─│ │ │
Germany	1.350	0.831	2.193	1.212	0.225	│ │ │ │ │
US/Canada, High	1.100	0.706	1.714	0.421	0.674	│ │ │ →₽─│ │ │
US/Canada, Very High	1.400	0.606	3.233	0.788	0.431	
NY State	1.340	1.050	1.710	2.352	0.019	
Texas	0.610	0.322	1.156	-1.515	0.130	
California	1.240	0.850	1.809	1.116	0.265	│ │ │ ┼┳─│ │ │
	1.188	1.041	1.357	2.547	0.011	
						0.1 0.2 0.5 1 2 5 10

Exposures in childhood - 1


Breastfeeding


Study name		Statisti	cs for e	ach stud	у	Odds ratio and 95% Cl					
	Odds ratio	Lower limit		Z-Value	p-Value						
US/Canada - > 13 months	0.500	0.289	0.866	-2.473	0.013						
Russia - >12 months	0.133	0.018	1.009	-1.951	0.051	k ∎ -					
Sweden - > 6 months	0.500	0.098	2.550	-0.834	0.404	(—		
Germany - > 6 months	1.100	0.686	1.764	0.396	0.692				-		
	0.732	0.519	1.034	-1.772	0.076						
						0.1 0.1	2 0.5	1	2		ļ

Exposures in childhood - 2

Child or Familial History of Allergic Diseases

Study name		Statist	ics for e	ach stud	У
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
N Carolina - Allergies	0.220	0.060	0.813	-2.270	0.023
N Carolina - Asthma	1.660	0.222	12.432	0.493	0.622
Germany - Allergies	0.200	0.061	0.658	-2.648	0.008
US/Canada - Asthma	0.690	0.358	1.331	-1.107	0.268
US/Canada - Hay Fever	0.430	0.179	1.034	-1.886	0.059
US/Canada - Eczema	0.820	0.413	1.630	-0.566	0.571
US/Canada - Any allergic disease	0.680	0.436	1.060	-1.701	0.089
N Carolina - Maternal asthma	0.350	0.153	0.798	-2.496	0.013
N Carolina - Maternal allergies	0.660	0.267	1.632	-0.900	0.368
Germany - Maternal allergies	0.880	0.598	1.295	-0.648	0.517
	0.657	0.530	0.814	-3.841	0.000

Challenges in epidemiological research of childhood cancer

- Need to think about what the birthweights and anomalies are pointing to regarding critical stages of gestation at which risk factors may act
- Need to relate knowledge of biology and evolution of tumours to pre-natal and post-natal growth and development and descriptive epidemiology
- Need to think about what sorts of aetiological agents might produce these biological and epidemiological patterns
- Need to consider the role of genetic variability in susceptibility (of the child and the mother)

Timing of exposures

• Pre-conception

 parental germ cells, de novo/inherited mutations and polymorphisms

- parental exposures
- Pre-natal

– tissue and organ development in embryo and fetus: what are the targets and critical periods?

- growth factors and imprinting
- transplacental factors, maternal exposures (including via father/partner etc)

Post-natal

–neonatal care, nutrition, infections etc.: what are the vulnerable organs/tissues and critical periods of growth and development?

Conclusions

- Incidence rates of childhood cancer have been increasing in the last decades in most countries
- It is unclear whether this reflects a real phenomenon or an artifact due to better diagnosis and reporting
- Current knowledge on etiological factors of childhood cancer remains limited
- Future studies should integrate epidemiology, clinical research, genetics and molecular biology

The ISET study

- Case-control study of non-CNS solid tumours in childhood
- Large-scale collaboration
 - epidemiologists; clinicians (SIOP); geneticists
- Emphasis on gene-environment interactions
- NB, RMS as pilot projects

ISET participants

France

 INSERM: Florence Menegaux, Jacqueline Clavel

Italy

- Ospedale Pediatrico Bambino Gesù: Marina Cuttini
- U. Turin: Corrado Magnani, Franco Merletti

Germany

U. Mainz: Maria Blettner

<u>The Netherlands</u>

 Radboud U. Nijmegen Medical Centre: Nel Roeleveld

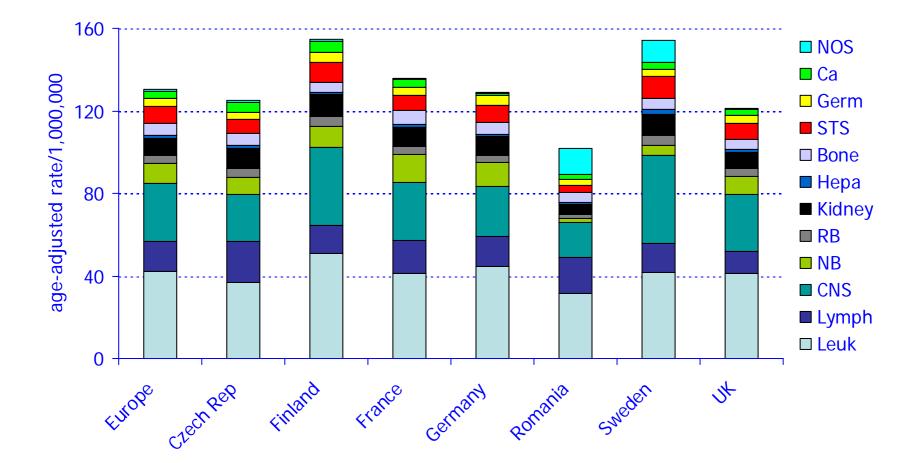
• <u>UK</u>

- University of Manchester: Jillian Birch
- ICR: Kathy Pritchard-Jones
- U. Leeds: Patricia McKinney
- U. Oxford: Michael Murphy

<u>Czech Republic</u>

Vladimir Bencko

Serbia and Slovenia

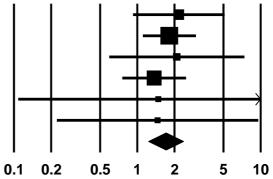

- Simona Ognjanovic
- Switzerland
 - U. Bern: Claudia Kuehni

- <u>USA</u>
 - U. Berkeley: Patria Buffler
- Canada
 - SLRI / U. Toronto : Rayjean Hung

Brazil

- A C Camargo Cancer Hospital: Beatriz de Camargo, Karina Braga Ribeiro
- NIC, Rio de Janeiro: Maria S. Pombo de Oliveira
- India
 - Tata Memorial Centre : PA Kurkure
- Japan
 - National Research Institute for Child Health and Development : Tomohiro Saito
- <u>Australia</u>
 - Institute for Child Health Research: Liz Milne

Incidence rate of groups of childhood cancer (0-14) in selected European countries - 1990s

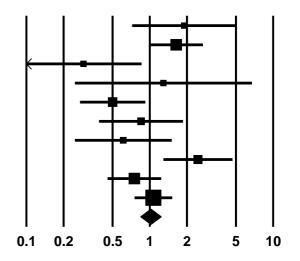

ACCIS Project (DG-SANCO, IARC, Scotland MoH)

Exposures in pregnancy - 3

Recreational Drug Use in Pregnancy

Study name						
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	
New York (Any drug use)	2.170	0.930	5.062	1.793	0.073	
US/Canada (Any recreational)	1.820	1.117	2.965	2.404	0.016	
US/Canada - Cocaine	2.090	0.596	7.328	1.152	0.249	
US/Canada - Marijuana	1.370	0.762	2.464	1.051	0.293	
US/Canada - Hallucinogens	1.480	0.109	20.063	0.295	0.768	
US/Canada - Stimulants	1.460	0.224	9.501	0.396	0.692	
	1.712	1.239	2.366	3.258	0.001	

Odds ratio and 95% Cl



Pregnancy-related factors - 3

Preterm Birth

Study name		Statist	ics for e	ach stud	У
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
US/Canada (<32 weeks)	1.900	0.726	4.975	1.307	0.191
New York (<35 weeks)	1.640	1.007	2.671	1.987	0.047
Texas (< 36 weeks)	0.290	0.099	0.850	-2.255	0.024
Minnesota (< 37 weeks)	1.290	0.249	6.677	0.304	0.761
US/Canada (33-36 weeks)	0.500	0.274	0.913	-2.257	0.024
N Carolina (<36 weeks) - HC	0.850	0.391	1.846	-0.411	0.681
N Carolina (<36 weeks)- BC cont	rol 6 .610	0.249	1.494	-1.081	0.280
Germany (< 36 weeks)	2.460	1.302	4.648	2.773	0.006
California (<36 weeks)	0.750	0.459	1.226	-1.147	0.252
New York (<37 weeks)	1.070	0.759	1.508	0.386	0.699
	1.022	0.844	1.238	0.227	0.820

Odds ratio and 95% CI

Exposures in childhood - 1

Birth Order or Family Size

	Study name		Statisti	cs for e	ach study	!	Odds ratio and 95% Cl						
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value							
	Minnesota	1.190	0.713	1.985	0.666	0.505				╤	-		-
orn	N Carolina - Hosp Controls	1.310	0.657	2.610	0.768	0.443			-	╶┼╼			
Firstborn	N Carolina - BC controls	2.260	1.000	5.109	1.959	0.050					=		
Ē	Germany	1.140	0.819	1.587	0.776	0.438					-		
	New York	1.150	0.931	1.421	1.294	0.196				⊨			
	Pennsylvania	1.520	0.803	2.879	1.285	0.199				+	╺┼─		
Later born	Tennessee	0.990	0.633	1.548	-0.044	0.965			-		-		
م ت	Sweden	1.440	0.857	2.421	1.376	0.169				-	╺╾┿╸		
	New York - 2 or more	0.670	0.442	1.015	-1.889	0.059			-∔-∎	\mathbf{H}			
^ی انار	New York - 3 or more children	0.780	0.429	1.417	-0.815	0.415			-+				
Family size	California - 3+ prior pregnancies	0.630	0.438	0.906	-2.492	0.013			_+=	-1			
	Washington - 2+ prior births	1.120	0.797	1.574	0.653	0.514				-₽-	-		
							0.1	0.2	0.5	1	2	5	10

This paper was produced for a meeting organized by Health & Consumer Protection DG and represents the views of its author on the subject. These views have not been adopted or in any way approved by the Commission and should not be relied upon as a statement of the Commission's or Health & Consumer Protection DG's views. The European Commission does not guarantee the accuracy of the data included in this paper, nor does it accept responsibility for any use made thereof.