Healthcare resource statistics - technical resources and medical technology

Data extracted in October 2015. Most recent data: Further Eurostat information, Main tables and Database. Planned article update: October 2016.

This article presents an overview of European Union (EU) statistics related to the availability of technical facilities as well as the availability and use of medical technology. The technical facilities presented concern operating theatres and day care places, while the medical technology concerns a variety of equipment used for diagnostic imaging (for example, magnetic resonance imaging (MRI) units) and treatment (for example, radiation therapy equipment).

This article is one of a set of statistical articles concerning healthcare resources in the EU which forms part of an online publication on health statistics.

Table 1: Availability of technical resources in hospitals, 2013
Source: Eurostat (hlth_rs_tech)
Figure 1: Technical resources — hospital operating theatres, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_tech)
Table 2: Availability of medical technology — imaging equipment, 2013
Source: Eurostat (hlth_rs_equip)
Figure 2: Availability of imaging equipment — computer tomography
(CT) scanners, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Figure 3: Availability of imaging equipment — magnetic resonance imaging
(MRI) units, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Figure 4: Availability of imaging equipment — gamma cameras, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Figure 5: Availability of imaging equipment — angiography units, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Figure 6: Availability of imaging equipment — mammography units, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Figure 7: Availability of imaging equipment — PET scanners, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Table 3: Availability of medical technology — treatment equipment, 2013
Source: Eurostat (hlth_rs_equip)
Figure 8: Availability of treatment equipment — lithotriptors, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)

Figure 9: Availability of treatment equipment — radiation therapy equipment, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_rs_equip)
Table 4: Use of imaging equipment, 2013
Source: Eurostat (hlth_co_exam) and (hlth_rs_equip)
Figure 10: Use of imaging equipment — number of computed tomography
(CT) scans, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_co_exam)
Figure 11: Use of imaging equipment — number of magnetic resonance imaging
(MRI) scans, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_co_exam)
Figure 12: Use of imaging equipment — number of PET scans, 2008 and 2013 (1)
(per 100 000 inhabitants)
Source: Eurostat (hlth_co_exam)

Main statistical findings

Availability of technical resources in hospitals

Table 1 provides information concerning the number of day care places in hospitals for 17 of the 28 EU Member States. It should be noted that not all day care services are provided in hospitals and some may also be offered in other health care facilities, such as independent day-care centres or ambulatory premises, but these are not covered by the data presented here.

Relative to population size, France had the highest number of day care places among the EU Member States

Relative to population size, the number of day care places in hospitals was highest in France, with 130 places per 100 000 inhabitants in 2013. Four other EU Member States reported more than 50 day care places in hospitals per 100 000 inhabitants: Slovakia, Latvia, Croatia and Belgium (2011 data).

Table 1 provides further information on four specialisations for day care places in hospitals: note that the sum of the number of day care places for these specialisations may not equal the total if the specialisation of all places cannot be determined. In Belgium, Germany, Slovakia and France, most day care places in hospitals were for surgical or psychiatric care, while in Slovakia and Italy day care in hospitals was mainly focused on surgery (among the four specialisations shown). In Spain, around half of the day care places in hospitals were oncological, in other words for the care of cancer patients.

For 18 EU Member States, Table 1 provides information on the number of operating theatres in hospitals. Relative to population size, in 2013 the number of operating theatres in hospitals ranged among the Member States from 4.9 per 100 000 inhabitants in Ireland to 11.2 per 100 000 inhabitants in Belgium (2011 data), with Austria and Cyprus below this range and Latvia above it.

Figure 1 shows this same ratio with a comparison between 2008 and 2013. The availability of operating theatres in hospitals relative to population size decreased in Luxembourg (2010–13), Cyprus, Slovenia (2010–13), Austria and the Czech Republic, remained stable in Hungary (2009–12) and the United Kingdom, and increased in eight EU Member States, most notably in Latvia and to a lesser extent Romania.

Availability of medical technology

Eurostat collects data concerning eight types of medical technology, six of which are imaging equipment used for diagnosis, while two are for treatment. The data for imaging equipment are presented in Table 2 and Figures 2–7, while the data for treatment equipment are presented in Table 3 and Figures 8 and 9.

Widespread increase in the availability of imaging equipment over several decades

The availability of equipment for diagnosis increased rapidly in most EU Member States over recent decades. For example, in Finland the number of computed tomography (CT) scanners in 2013 was 118, compared with just 13 some 30 years earlier, while in Hungary the number increased from 3 to 78 over the same period. In the 20 years between 1993 and 2013 the number of MRI units increased in the Czech Republic from 6 to 78, in Finland from 14 to 120 and in the Netherlands from 38 to 193. Over the most recent decade, between 2003 and 2013, the most notable increases were for PET scanners, for example, their number increased in France from 9 to 94.

Relative to population size and subject to data availability (see Table 2), Greece, Cyprus, Italy (2012 data) and Finland reported the most imaging equipment among the EU Member States in 2013; note that no data are available for Sweden and data are not available for all six types of imaging equipment in several Member States.

Denmark, Greece, Latvia, Bulgaria, Italy (2012 data), Cyprus and Austria reported at least 3.0 CT scanners per 100 000 inhabitants in 2013, with fewer than 1.0 per 100 000 inhabitants in the United Kingdom and Hungary. Between 2008 and 2013, the availability of CT scanners increased by at least 1.1 units per 100 000 inhabitants in Lithuania, Latvia, Bulgaria and Denmark; only in Malta, Luxembourg and Cyprus did this ratio fall over the period under consideration (see Figure 2), in part due to increases in the population but also due to a reduction in the absolute number of scanners in the cases of Malta and Luxembourg and also a break in the series for Malta.

Italy (2012 data), Greece, Finland, Cyprus and Austria reported at least 1.9 MRI units per 100 000 inhabitants in 2013, with fewer than 0.5 units per 100 000 inhabitants in Romania and Hungary. Between 2008 and 2013, the largest increases in the availability of MRI units were in Finland and Lithuania (see Figure 3 for data availability), increasing by 0.6 MRI units per 100 000 inhabitants. None of the EU Member States reported a decrease over this period for this ratio.   Among the EU Member States, the highest number of gamma cameras relative to population size in 2013 was recorded in Belgium (in hospitals only), 2.4 per 100 000 inhabitants, more than double the ratio in all of the other Member States except for Denmark (2013 data), Luxembourg and Greece — all between 1.4 and 1.7 per 100 000 inhabitants. A small majority of Member States for which data are available (see Figure 4) reported an upturn in this ratio between 2008 and 2013, the largest increase being in Greece.

Finland recorded a higher number of angiography units relative to population size in 2013 than any other EU Member State, 1.9 units per 100 000 inhabitants, followed by Luxembourg (1.5 per 100 000 inhabitants) and Italy (1.3 per 100 000 inhabitants; 2012 data). The lowest ratio for angiography units was recorded by Romania (0.3 per 100 000 inhabitants). Between 2008 and 2013, the availability of angiography units increased in most Member States (for which data are available), only decreasing in four Member States.

Greece and Cyprus reported the most mammography units relative to population size in 2013. The lowest availability of mammography units was in Luxembourg, the United Kingdom (2011 data), Estonia and Romania. The largest increase in availability between 2008 and 2013 was in Greece, while the largest decrease was in Luxembourg; a larger decrease was observed for Portugal but this in part reflects a change in coverage as the 2013 data only cover hospitals.

PET scanners are generally the least widely available of the six types of imaging equipment presented in this article. In absolute terms, Italy had the most PET scanners (subject to data availability — see Table 2), with 162 units in 2012. Denmark and Malta reported 0.6 and 0.5 PET scanners per 100 000 inhabitants respectively in2013, while all of the other EU Member States for which data are available (see Figure 7) reported ratios of 0.3 per 100 000 inhabitants or fewer. Between 2008 and 2013, the availability of PET scanners increased most in Malta as the number of such scanners increased from 0 to 2, moving Malta from the equal lowest availability (with none) to the second highest number relative to population size.

The final two pieces of medical technology presented in this article concern lithotriptors and radiation therapy equipment, as shown in Table 3. These two types of treatment equipment were generally less commonly available than the previously discussed imaging equipment.

Among the EU Member States, Bulgaria and Belgium reported the highest number of lithotriptors per 100 000 inhabitants in 2013 as can be seen from Figure 8. The lowest values for this ratio were recorded in Latvia, Finland and Ireland. Excluding Member States for which there was a break in series, between 2008 and 2013, the availability of lithotriptors increased by 0.2 units per 100 000 inhabitants in Cyprus, Hungary and Malta and by 0.3 per 100 000 inhabitants in Croatia and Belgium (hospitals only). Lithuania recorded the only notable decrease between 2008 and 2013 in the number of lithotriptors per 100 000 inhabitants.

Belgium (hospitals only), Denmark and Slovakia were the only EU Member States (see Figure 9 for data availability) to report more than 1.0 radiation therapy units per 100 000 inhabitants in 2013, while the lowest rates for this type of equipment were recorded in Latvia, Romania and Estonia, all with 0.40 or fewer units per 100 000 inhabitants. More than half of the Member States reported an increase in their respective number of radiation therapy units relative to population size between 2008 and 2013, with small decreases reported for several Member States, most notably Romania; Portugal also reported a considerable decrease between 2008 and 2013 but this may be influenced by a narrowing of the coverage since 2011 to include only equipment in hospitals.

Use of medical technology

Table 4 presents data on the use of a selection of three types of imaging equipment. For each of the three types of equipment, the largest number of scans in absolute terms in 2013 was performed in France.

The number of CT scans relative to population size increased across the EU

Relative to the size of population, by far the largest number of CT scans among the EU Member States was reported for Estonia, 49 thousand per 100 000 inhabitants in 2013, although it should be noted that a non-standard definition for CT scans is used in Estonia. For the remaining Member States (see Figure 10 for data availability) this ratio for CT scans ranged from 4.7 thousand per 100 000 inhabitants in Bulgaria to 19.3 thousand per 100 000 inhabitants in France, with Finland and Romania below this range. Nearly all Member States for which data are available reported an increase between 2008 and 2013 in the number of CT scans relative to the size of their respective populations, with increases in excess of five thousand scans per 100 000 inhabitants in Latvia, Denmark, France and Estonia (the large increase noted for Estonia may result at least in part from a break in series). The largest decrease in the number of scans was recorded by Greece (between 2008 and 2012).

Leaving aside the data for Estonia, the most intensive use of CT scanners in 2013 was in France and Hungary, where an average of more than 11 thousand scans was performed per CT scanner (see Table 4). The least intensive use was in Romania, Finland and Bulgaria where less than 2.5 thousand scans were made on average per CT scanner.

Among the EU Member States, the largest number of MRI scans relative to the size of population in 2013 were made in France, Belgium (2011 data) and Luxembourg, all in excess of 7.5 thousand scans per 100 000 inhabitants (see Figure 11 for data availability). The lowest ratios were recorded for Bulgaria, Romania and Cyprus, all below 1.0 thousand per 100 000 inhabitants. Nearly all Member States for which data are available reported an increase between 2008 and 2013 in the number of MRI scans relative to the size of population; among the Member States without a break in series, increases in excess of two thousand scans per 100 000 inhabitants were reported for Slovakia, Belgium (2008–11), Lithuania and France. Again the largest decrease in the number of scans was recorded by Greece between 2008 and 2012.

The most intensive use of MRI scanners was in Hungary, with 11 thousand scans performed per MRI unit on average

The most intensive use of MRI units was in Hungary, where an average of 11 thousand scans was performed per MRI unit, followed by France with an average of 10 thousand scans per unit (see Table 4). The least intensive use was in Cyprus where just 349 scans were made on average per MRI unit.

Relative to population size the most PET scans were performed in Denmark

In 2013, Denmark recorded by far the largest number of PET scans per 100 000 inhabitants of any EU Member State (see Figure 12 for data availability), an average of 627 scans per 100 000 inhabitants, while the next highest ratio was 390 per 100 000 inhabitants in Luxembourg. The use of PET scans was particularly low in Germany (hospitals only), Finland, Lithuania, Romania and Slovenia, where there were fewer than 50 scans per 100 000 inhabitants. Denmark also recorded a particularly large increase in the number of PET scans relative to population size, increasing by more than 300 per 100 000 inhabitants between 2008 and 2013. All Member States for which data are available reported an increase between 2008 and 2013 in their respective number of PET scans relative to the size of population.

The most intensive use of PET scanners was in Hungary and the Czech Republic, where an average of 3.6 thousand and 3.4 thousand scans were performed per PET scanner respectively, at least double the average of all other Member States for which this ratio is available (see Table 4) with the exceptions of France (hospitals only), Luxembourg and Austria (hospitals only). The least intensive use was in Germany (hospitals only), Finland and Poland (hospitals only), where there were fewer than 300 scans on average per PET scanner, and in Slovenia where there were no scans made from two PET scanners.

Data sources and availability

Key concepts

Operating theatres (also known as operating rooms or suites) are hospital facilities for conducting surgical procedures in a sterile environment.

Day care does not involve an overnight stay. By contrast to in-patient and out-patient care, day care comprises planned medical and paramedical services delivered to patients who have been formally admitted for diagnosis, treatment or other types of health care but with the intention to discharge the patient on the same day. While day care patients are formally admitted, out-patients are not formally admitted.

Day care places in hospitals include the number of day care beds and seats in hospitals.

Four types of specialisation of day care places are presented: surgical day care places; oncological day care places; psychiatric day care places and geriatric day care places. The sum of the number of day care places for these specialisations may not equal the total if the specialisation of all places cannot be determined.

Computed tomography scanners (CT or CAT units) are machines which combine many X-ray images with the aid of a computer to generate cross-sectional views and, if needed, three-dimensional images of the internal organs and structures of the body.

Magnetic resonance imaging units (MRI units) visualise internal structures of the body using magnetic and electromagnetic fields which induce a resonance effect of hydrogen atoms from which images of the body structures can be produced.

Positron emission tomography scanner units (PET scanners) use short-lived radioactive substances for highly specialised imaging. This produces three dimensional images which are used mainly for the assessment of cancer spread in a patient’s body.

Gamma cameras (including single photon emission computed tomography, SPECT) are used for a nuclear medicine procedure in which a camera rotates around the patient to register gamma ray emissions from an isotope injected to the patient’s body. The gathered data are processed to form a cross-sectional (tomographic) image.

Digital subtraction angiography units (DSA units) combine pictures obtained before and after a contrast injection to create an accurate image of the cardiovascular system.

Mammography units include only dedicated mammography machines, in other words those designed exclusively for taking mammograms.

Lithotriptors (or shock-wave lithotripsy units; LSI units) are units that provide an extracorporeal shock wave to shatter kidney stones and gallstones.

Radiation therapy equipment includes machines providing medical treatment through the use of X-rays or radionuclides, for example linear accelerators, Cobalt-60 units, high dose and low dose rate brachytherapy units.

Healthcare resources and activities

Statistics on healthcare resources (such as technical resources and medical technology) are documented in this background article which provides information on the scope of the data, its legal basis, the methodology employed, as well as related concepts and definitions.

The data on the availability of medical technology concern equipment in hospitals and in ambulatory health care facilities. For some EU Member States, notably Belgium, Germany and Portugal, the data only cover the availability of this equipment in hospitals; for particular types of equipment this is also the case for France and Switzerland.

Data on the use of imaging equipment also concern units available in hospitals and in ambulatory health care facilities. Again, for some EU Member States (Germany, Ireland, Austria, Portugal and the United Kingdom) the data only cover hospitals, as is also the case for France for the use of PET scanners.

More detailed country specific notes on this data collection, please refer to these background information documents:

Note on tables: the symbol ':' is used to show where data are not available.

Context

Developments in medical techniques and technologies impact on medical diagnosis and treatment. The data on medical technology presented in this article concern equipment for diagnosis or treatment. In 1895, Wilhelm Roentgen discovered X-rays and in the first decades of the 20th century these started to be common for medical diagnosis of internal organs and body structures. Since then technological advances have led to the introduction of various other diagnostic devices. In the 1950s the first gamma cameras were developed to detect tumours while ultrasound images were also developed for medical use. These were followed in the 1960s by PET scanners and in the 1970s by medical MRI equipment and CT scanners.

Within the medical field, X-rays were initially used for diagnosis, but later developed for treatment using radiation therapy equipment. This treatment is mainly employed for cancer treatment and involves the use of higher radiation doses than those used for imaging. The second type of equipment used for treatment presented in this article is a lithotriptor. These were developed at the beginning of the 1980s and use repeated acoustic shocks as a non-invasive procedure to break up kidney stones and gallstones.

One issue associated with the X-rays (and gamma rays) used in several of these types of equipment is exposure to ionising radiation, as this carries a risk of developmental problems and cancer. By contrast, MRI scans use magnetic and electromagnetic fields to interact with hydrogen atoms, rather than using X-rays, and so avoid these risks.

The European core health indicators (ECHI) shortlist includes indicators on medical technologies for MRI and CT units in the chapter on health services.

See also

Online publications

Healthcare resources

Methodology

General health statistics articles

Further Eurostat information

Main tables

Database

Health care resources (hlth_res)
Health care facilities (hlth_facil)
Technical resources in hospital (hlth_rs_tech)
Medical technology (hlth_rs_equip)

Dedicated section

Methodology / Metadata

Source data for tables and figures (MS Excel)

External links