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Some time series consider ations in disaggr egation
By Gudmundur Gudmundssbn

Discrete values of flow variables can be regardetha integrals of unobserved flow functions.
The estimated flows are defined as the productwaf tunctions. One is predetermined and
selected to eliminate or reduce trend in mean aadawnce. The other is approximately
stationary, selected by smoothness criteria andréogirement that integrals of the flow
reproduce the observed discrete values. Disagg@gatiues are obtained by integration over
shorter intervals. The discrete observations congod information about low-frequency
variations of the flow. Joint analysis with relateeries, observed at shorter intervals, has been
employed to introduce high frequency variations didaggregated values. A fundamental
weakness of this approach is that the high-frequerariations of the original series were
eliminated by the integration. The relationshifhathe related series in the relevant frequency
range cannot therefore be estimated from the data. Actual examples and comparison with other
methods are presented.

Keywords. Disaggregation, Flow variables, Splines, Spectra analysis.
JEL classification: C13, C22, C32.
1 Introduction

Time series analysis has become an important factor in econometric research. Disaggregation is
concerned with economic time series, but it has hardly been much influenced by econometric
methodology.

Disaggregation has been an aspect of economic research at the Central Bank of Iceland for along
time. The man reason for our interest in this subject was that until 1997 only annual
measurements were made of investment and consumption in the national income statistics. When
| first came across it in economic research | had some experience of hydrology, where
continuous records of river-flow were collected and subsequently converted into daily
aggregates. Here the problem was reversed and it seemed normal to approach it by estimating a
continuous flow which integrated reproduced the observed aggregates. Disaggregated values can
then be obtained by integration over shorter intervals. Estimates of the flow at a given point in
time can berelevant in joint analysis with stock data.

Before 1990 inflation in Iceland was very high. Without some arrangements to deal with this, the
usual requirement of constant variance in statistical analysis of time series would be badly
violated in series measured at current prices. Stationarity has not been a prominent concept in the
literature on disaggregation. In econometric analysis of time series the first step in dealing with
trend in mean and variance is usuadly to take logarithms. But this transformation is
computationally inconvenient in combination with the requirement that the integral of the flow
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reproduces the observed values. This applies alslisaggregation in discrete intervals where
the estimated values sum up to the observed aggsega

Our approach to this was to define the flow asoalpet of two functions. One is selected to deal
with the trend and possibly auxiliary informatiofihe other is approximately stationary and
determined by smoothness criteria and the requimenmat the flow reproduces the observed
aggregates.

Some examples of this are given below and comparita results from widely applied
procedures, available in the user-friendly ECOTRIMgrams. (Barcelland and Buono, 2002).
A more detailed description of the method and ogxamples were presented by Gudmundsson
(2001a and 2001b).

2 Continuousflows

The flow is defined as a product of two functiobet us write it

n(t) = wi).

The functionw(t) is predetermined and selected to represent thwl tse thatf(t) will be
approximately stationary. In our applied wawrkt) is usually an exponential function where the
exponent can be determined by regression of theritbgns of the observed values or simply as
the average annual growth from the first to the yasr. The functiori(t) must be selected so
that the integrated values

t

yt) = [ n(s)ds (1)

t-1

coincide with the observed valugsat the end of yedr For a giverw(t) there is an infinite set
of functionsf(t) which fulfil the requirement to reproduce the absd values.

The aggregation is a filtering operation and ineortb assess the limits and possibilities of
disaggregation it is illuminating to consider th@ahthe filter affects the power spectrum. (The
power spectrum represents the distribution of thweawnce of a stationary series on frequency).
The reduction in power is proportional to the sgedamodulus of the frequency response of the
aggregation, presented in Figure 1 for integratioer one year.

The filtering effect is weak in the lowest freques; but at half cycle per year only 40% of the
power is left. The effects that have been filteoed by the integration cannot be recovered by
numerical operations on the aggregated values afeesonal effects are completely wiped out
by integration over one year.

For continuous recording of(t) in equation (1) the squared frequency responsesepts the
information left after the integration. Bu(t) is only observed for consecutive non-overlapping
intervals which entails further loss of informatiddnnual values can be reproduced exactly by a



Fourier series in the frequency range from zeroalb cycle per year. Actual variations at higher
frequencies, which were not completely filtered butthe integration, will therefore appear as
variations at lower frequencies. This phenomenaraled aliasing and described in textbooks in
time series (e.g. Priestley, 1981). The upper Jimatled the Nyquist frequency, for quarterly
values is two cycles per year and six for monthtgrvals.
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Figure 1: Squared modulus of the frequency respoh@tegration over one year.

As the high frequency effects that were filtered loyi the integration cannot be recovered, it is
sensible to select, from the infinite set of fuansf(t) which reproduce the observed aggregated
values, a function with little high frequency vdiaas, i.e. a smooth function. An obvious way to
achieve this is to represefft) by a Fourier series. By this means no variatianemuencies
above the Nyquist frequency are included. But tghoaliasing those that were present in the
actual flow and not filtered out appear as distowdi of the estimated low frequency effects.
Calculation of flow functions by Fourier seriesdanumerical examples were presented by
Gudmundsson (2001a), but the examples in this paedrased on a different method.

Squared derivatives are widely applied smoothnegsia. We have used the functions obtained
by minimizing

[ty dt,

subject to the requirement that the integratioagoation (1) reproduces the observed aggregated
values. The order of derivation is denotechbZalculus of variation provides spline functiorss a
solutions to this problem. With local co-ordinasesthat each interval is in [0, 1] it has the form

2n-1 2n-1

F(t)=Y a,t*+b j(t_s) ~w, (sHs

in intervalj. The functiond®(t) are continuous for= 0,1,...,2n-1 with derivatives of the order
from n to 2n-1 equal to zero at the beginning of the first- aimel énd of the last interval. The



necessary equations for calculating the coeffisiefnt and b; are obtained by inserting the
observed valueg in equation (1) and from the continuity requiretsesind end-conditions.

The relative merits of different smoothness cratediepend upon the properties of the actual
process. Fourier series are best for very smoathsfl but in my experience with economic

series, spline solutions, obtained by minimizingasgd first derivatives, are preferable. These
splines produce continuous functions and first \ddives. Splines obtained by minimizing

squared second derivatives are continuous uprio dierivatives and perform markedly worse.

The end conditions are important in determining disaggregated values in the first and last
period. If the time interval included in the anadystarts at = 0 and ends at = T, the end
conditions of the spline solution wiith=1 imply that

7™(0) = fO)W(0) and #™(T) = f(T)WH(T),

i.e. the first derivatives at the ends are deteeahiny the slope of the trend. This is sensibleaf w

know nothing about the series except the obserggdegates, but in practice we often know
more and this should be taken into account, foymadlby some ad hoc arrangements. Simple
means for this purpose are including one observeaydregated value before the first period
where disaggregated values are needed, and exgetitindisaggregated series by prediction.
These arrangements are not implemented in the dganmpthis paper.

Various methods have been suggested to disaggregiéds by means of related series, observed
at shorter intervals, maintaining the requirememat tthe estimated disaggregated values

reproduce the observed aggregates. Linear relaipmsare assumed in these methods. This

implies that variations at each frequency are delermined by variations at the same frequency

in the other series. The low frequency componehtth® estimated series are already largely

determined by the observed aggregates. In soms taseelationship between the series in the

higher frequency range may be known. Another pd#giis that both series have been observed

at shorter intervals for a period of time so tlne telationship can be estimated and assumed to
hold for the period when only aggregated valuesoaserved of one of the series (Harvey and

Pierse, 1984). But in the absence of other knovéettign the observations of the two series,

there are no means of estimating the relationshipe relevant frequency range from the data;

the necessary information in the aggregated skasbeen filtered and aliased out.

In view of the filtering effect of the aggregatigmocess | have not tried to implement any
estimation of the weight to give to auxiliary seridut it is possible to include an observed
seriesx(t), in the trend function,

w(t) = x(®)v(b). 2

In this formulation ofw(t) the parameteyp is predetermined to give desired weight to the
information inx(t), andv(t) is a new trend function, selected so thél) accounts for the main
trend in the observed series. The only form of imiglemented in our present programs is to let
X(t) be a step function, equal to the observed valuespective interval, ang(t) an exponential
function, representing the difference in the trefg(t) andx(ty. This implies that the flow is



not continuous. However, with the present capaeftydesk computers there would be little
practical problems in converting(t) into a continuous function, representing the olesr
values, if a continuous flow of(t) is of interest.

Stram and Wei (1986) performed disaggregation hyetseries modelling. State space time
series models, emphasizing the introduction of lauyi series for disaggregation, were
presented by Moauro and Savio (2005). Gudmundsk@®9] included multiplicative trends in

state space models for disaggregation, but we haveused this much, mainly because the
available data tend to be inadequate for good atitm of the time series models.

3 Examples

In the following examples we use data from therlm&onal Financial Statistics to demonstrate
some of the effects described above. Quarterlyegahre estimated from annual totals, with or
without auxiliary series, and compared with obsdrgearterly values by the root mean square
error of logarithmic values. The estimates withtoorous flows were based on an exponential
trend function and spline functions where squarest fderivatives were minimized. This
criterion was also employed when other series waken into account according to equation (2).
The results are compared with methods from the BERI®IT programs where squared first
differences were minimized when only annual totaése included and methods by Litterman
(1983) and Fernandez (1980) employed for includingjliary series.

3.1 Consumption in Turkey

Consumption in Turkey from 1987-2003 at nominat@siis an example of a series with a strong
trend. The average annual increase is about 70%olbkerved values were seasonally adjusted
for comparison with values estimated from the ahraggregates. The spline solution with
exponential trend function in the last five yeasspresented in Figure 2, together with the
observed annual values and the quarterly valuedtiphed by 4). Results from comparison of
observed and estimated quarterly values are pextémtTable 1. The root mean square error
(rmse.) of the logarithms of the quarterly valuelstained by integrating the spline functions,
was 0.0345. The rmse. of quarterly values, obtayenhinimizing squared first differences, was
0.0316. (In this example, where the last observeartgrly value was in fact lower than the
previous one, the end condition spoilt the splistengates).

When inflation is much higher than growth in protloie and population, variations in
consumption at current prices will presumably bsitpeely related with prices. (In low inflation
the negative relationship between prices and qgiyamight dominate). When quarterly averages
of the consumer price index are includedxé$ in equation (2) a small reduction in rmse. is
observed, but estimates by Litterman’s and Fernamdethods are less accurate than results
obtained without auxiliary series. The reason fuos fis that the linear relationships, assumed
between the aggregated- and the related seridges® tprocedures, are inappropriate for series,
dominated by trends that are exponential rathamn timear. Considering the prevalence of the
logarithmic transformation in econometric work é@esns likely that such procedures are often
inappropriate or sub-optimal.



The ECOTRIM programs provide various common testsnfregression analysis with the
Litterman and Fernandez estimates. These providesarous indications of bad fit or
misspecification. But the programs also presenfidence bands. | don’t know the details of
how they are calculated, but they are of similaesior the whole interval and orders of
maghnitude to wide in the first years and much taoaow in the last years.
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Figure 2: Observed values and estimated flow fanadf private consumption at current prices
in Turkey. (Units: trillions of Liras and trillionsf Liras/year, multiplied by 18).

Table 1: Consumption in Turkey at current price87t9
2003. Root mean square errors of log-values oftgtiar
values, estimated from annual totals, compared with
observed values. “Discrete” estimates minimize sggia
first differences, “Splines” minimize squared first
derivativesCPl is the consumer price index.

Estimates without CPI Rmse.
Discrete 0.0316
Splines {=0) 0.0345
Estimates including CPI

Litterman 0.0396
Fernandez 0.0352
Splinesy=0.25 0.0309
Splines;y=0.50 0.0290
Splinesy=0.75 0.0293
Splinesy=1.0 0.0318

" Calculated with ECOTRIM.



3.2 US GDP

The fit of estimates of quarterly values of US GB&m 1958-2003 at constant and current
prices is presented in Tables 2 and 3. The avdragd is about 3.3% per year for the constant
price series and 7.1% with current prices. Thendkindustrial production is employed as
auxiliary information with both GDP series and BBP deflator also for GDP at current prices.

The relationship between the GDP at constant praceb the index of industrial production,
estimated by the Litterman procedure, greatly impsothe estimates of quarterly values,
compared with estimates where only the annual agdes are employed. A similar
improvement is attained in the multiplicative mobdglinserting the index at) in equation (2),
provided a suitable value pfis selected.

Table 2: US GDP at constant prices 1957-2003. Root
mean square errors of quarterly log-values, estidha
from annual totals, compared with observed values.
“Discrete” estimates minimize squared first difieces,
“Splines” minimize squared first derivatives. | ike
index of industrial production.

Estimates without | Rmse
Discrete 0.00519
Splines {=0) 0.00508
Estimates including |

Litterman 0.00332
Fernandez 0.00425
Splinesy=0.25 0.00358
Splines;y=0.50 0.00361
Splinesy=0.75 0.00518
Splinesy=1.0 0.00737

" Calculated with ECOTRIM.

Table 3: US GDP at current prices 1957-2003. Rmse.
of quarterly log-values, estimated from annuahlt
compared with observed values. “Discrete” estimates
minimize squared first differences, “Splines” mire
squared first derivatives. | is the index of indiabt
production, P is the DGP deflator.



Estimates without | or P m&e.

Discrete 0.00527
Splines {=0) 0.00513
Estimates including | and P

Litterman, | 0.00635
Litterman, P 0.00508
Litterman , | and P 0.00790
Litterman, I*P 0.00320
Litterman, I*&"” 0.00332
Splines, 1,y=0.25 0.00352
Splines, I,y=0.5 0.00345
Splines, Py=0.25 0.00507
Splines, Py=0.5 0.00505
Splines, I*P,y=0.5 0.00345

" Calculated with ECOTRIM.

When no auxiliary information is introduced, the Itiplicative model and the discrete model
produce estimates of similar accuracy for the GRPcwarent prices. Introduction of the
production index ag(t) leads to a similar improvement as for the conspaite values in the
multiplicative model. But the Litterman procedure fliscrete values produces worse estimates
than estimation without auxiliary information. lattuction of the GDP deflator has negligible
effect upon the fit in both the discrete- and theltiplicative method. When it is introduced
together with the production index with the Litteimprocedure the fit is even worse than with
the index alone. However, by introducing the prdadoft the index and the deflator as an
auxiliary series, great improvement in fit is ob&d. A similar effect is produced by adjusting
the trend of the production index by an exponenitexid as in equation (2) to match the trend in
GDP at current prices.

The various t- angl’ tests provided by the ECOTRIM programs are nahoth use in judging
whether an auxiliary series actually produces aprawved fit. This is not surprising in view of
the filtering effect of the aggregation.

4. Conclusions

Apart from the end values there is little differerzetween disaggregation, based on minimizing
squared first differences, and estimates basedaomi@nuous flow with multiplicative trend and
minimizing the squared first derivative of the siaary factor of the flow.

One reason why minimizing squared first derivatiygeduces better estimates than Fourier
series or minimizing squared higher derivativegiisbably that the effects of variations or
measurement errors in one year have less effect thgovalues in other years because the flow
is only continuous up to the first derivative. Tiapidly diminishing influence of the observed
aggregated value in one year upon the disaggregatiers in other years may also be an



important factor in producing good results from mmizing squared first differences, even in
series with strong exponential trends.

It is not possible to decide by numerical analydian aggregated serigs,and a disaggregated
seriesx, whether seriex contains useful information about the disaggretjadues of serieg.
The linear models that have been used for thisqaérare obviously inappropriate when the
series contain an exponential trend. Adjustingtteed ofx to match approximately the trend of
y would often be an advantage, but does not guadhtd the estimation of the disaggregated
values will be improved by including. In my opinion disaggregation should not be based o
auxiliary series unless the relationship, estimatedtherwise determined, is supported by strong
economic arguments. The aggregated values proddeith good information about the low
frequency variations and it may be best to stayesdrwith this.
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