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Some time series considerations in disaggregation 
 

By Gudmundur Gudmundsson1 
 
Discrete values of flow variables can be regarded as the integrals of unobserved flow functions. 
The estimated flows are defined as the product of two functions. One is predetermined and 
selected to eliminate or reduce trend in mean and variance. The other is approximately 
stationary, selected by smoothness criteria and the requirement that integrals of the flow 
reproduce the observed discrete values. Disaggregated values are obtained by integration over 
shorter intervals. The discrete observations contain good information about low-frequency 
variations of the flow. Joint analysis with related series, observed at shorter intervals, has been 
employed to introduce high frequency variations of disaggregated values. A fundamental 
weakness of this approach is that the high-frequency variations of the original series were 
eliminated by the integration. The relationship with the related series in the relevant frequency 
range cannot therefore be estimated from the data. Actual examples and comparison with other 
methods are presented. 
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1  Introduction 
 
Time series analysis has become an important factor in econometric research.  Disaggregation is 
concerned with economic time series, but it has hardly been much influenced by econometric 
methodology. 
 
Disaggregation has been an aspect of economic research at the Central Bank of Iceland for a long 
time. The main reason for our interest in this subject was that until 1997 only annual 
measurements were made of investment and consumption in the national income statistics. When 
I first came across it in economic research I had some experience of hydrology, where 
continuous records of river-flow were collected and subsequently converted into daily 
aggregates. Here the problem was reversed and it seemed normal to approach it by estimating a 
continuous flow which integrated reproduced the observed aggregates. Disaggregated values can 
then be obtained by integration over shorter intervals. Estimates of the flow at a given point in 
time can be relevant in joint analysis with stock data.  
 
Before 1990 inflation in Iceland was very high. Without some arrangements to deal with this, the 
usual requirement of constant variance in statistical analysis of time series would be badly 
violated in series measured at current prices. Stationarity has not been a prominent concept in the 
literature on disaggregation. In econometric analysis of time series the first step in dealing with 
trend in mean and variance is usually to take logarithms. But this transformation is 
computationally inconvenient in combination with the requirement that the integral of the flow 
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reproduces the observed values. This applies also to disaggregation in discrete intervals where 
the estimated values sum up to the observed aggregates.  
 
Our approach to this was to define the flow as a product of two functions. One is  selected to deal 
with the trend and possibly auxiliary information. The other is approximately stationary and 
determined by smoothness criteria and the requirement that the flow reproduces the observed 
aggregates.  
 
Some examples of this are given below and compared with results from widely applied 
procedures, available in the user-friendly ECOTRIM programs. (Barcelland and Buono, 2002). 
A more detailed description of  the method and other examples were presented by Gudmundsson 
(2001a and 2001b).  

 
 
2  Continuous flows 

 
The flow is defined as a product of two functions. Let us write it   
 

η(t) = w(t)f(t). 
 
The function w(t) is predetermined and selected to represent the trend so that f(t) will be 
approximately stationary. In our applied work w(t) is usually an exponential function where the 
exponent can be determined by regression of the logarithms of the observed values or simply as 
the average annual growth from the first to the last year. The function f(t) must be selected so 
that the integrated values 
 

                                                           y(t) = ∫
−

t

1t

η(s)ds                                                                 (1) 

 
coincide with the observed values yi at the end of year i. For a given w(t) there is an infinite set 
of functions f(t) which fulfil the requirement to reproduce the observed values. 
 
The aggregation is a filtering operation and in order to assess the limits and possibilities of 
disaggregation it is illuminating to consider the how the filter affects the power spectrum. (The 
power spectrum represents the distribution of the variance of a stationary series on frequency). 
The reduction in power is proportional to the squared modulus of the frequency response of the 
aggregation, presented in Figure 1 for integration over one year.  
 
The filtering effect is weak in the lowest frequencies, but at half cycle per year only 40% of the 
power is left. The effects that have been filtered out by the integration cannot be recovered by 
numerical operations on the aggregated values alone. Seasonal effects are completely wiped out 
by integration over one year. 
 
For continuous recording of y(t) in equation (1) the squared frequency response represents the 
information left after the integration. But y(t) is only observed for consecutive non-overlapping 
intervals which entails further loss of information. Annual values can be reproduced exactly by a 
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Fourier series in the frequency range from zero to half cycle per year. Actual variations at higher 
frequencies, which were not completely filtered out by the integration, will therefore appear as 
variations at lower frequencies. This phenomenon is called aliasing and described in textbooks in 
time series (e.g. Priestley, 1981). The upper limit, called the Nyquist frequency, for quarterly 
values is two cycles per year and six for monthly intervals.  
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Figure 1:  Squared modulus of the frequency response of integration over one year. 
 
As the high frequency effects that were filtered out by the integration cannot be recovered, it is 
sensible to select, from the infinite set of functions f(t) which reproduce the observed aggregated 
values, a function with little high frequency variations, i.e. a smooth function. An obvious way to 
achieve this is to represent f(t) by a Fourier series. By this means no variations at frequencies 
above the Nyquist frequency are included. But through aliasing those that were present in the 
actual flow and not filtered out appear as distortions of the estimated low frequency effects. 
Calculation of  flow functions by Fourier series and numerical examples were presented by 
Gudmundsson (2001a), but the examples in this paper are based on a different method. 
 
Squared derivatives are widely applied smoothness criteria. We have used the functions obtained 
by minimizing 

 

∫ dt)t(f 2)n( , 

 
subject to the requirement that the integration in equation (1) reproduces the observed aggregated 
values. The order of derivation is denoted by n. Calculus of variation provides spline functions as 
solutions to this problem. With local co-ordinates so that each interval is in [0, 1] it has the form 
 

∑ ∫
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=

−
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−+=

1n2
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j
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)!1n2(

)st(
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in interval j. The functions f(ν)(t) are continuous for ν= 0,1,…,2n-1  with derivatives of the order 
from n to 2n-1 equal to zero at the beginning of the first- and the end of the last interval. The 
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necessary equations for calculating the coefficients ajk and bj are obtained by inserting the 
observed values yi in equation (1) and from the continuity requirements and end-conditions. 
 
The relative merits of different smoothness criteria depend upon the properties of the actual 
process. Fourier series are best for very smooth flows, but in my experience with economic 
series, spline solutions, obtained by minimizing squared first derivatives, are preferable. These 
splines produce continuous functions and first derivatives. Splines obtained by minimizing 
squared second derivatives are continuous up to third derivatives and perform markedly worse.   
 
The end conditions are important in determining the disaggregated values in the first and last 
period. If the time interval included in the analysis starts at t = 0 and ends at t = T, the end 
conditions of the spline solution with κ =1  imply that  
 

η
(1)(0) = f(0)w(1)(0)  and   η(1)(T) = f(T)w(1)(T), 

 
i.e. the first derivatives at the ends are determined by the slope of the trend. This is sensible if we 
know nothing about the series except the observed aggregates, but in practice we often know 
more and this should be taken into account, formally or by some ad hoc arrangements. Simple 
means for this purpose are including one observed disaggregated value before the first period 
where disaggregated values are needed, and extending the disaggregated series by prediction. 
These arrangements are not implemented in the examples in this paper. 
 
Various methods have been suggested to disaggregate series by means of related series, observed 
at shorter intervals, maintaining the requirement that the estimated disaggregated values 
reproduce the observed aggregates. Linear relationships are assumed in these methods. This 
implies that variations at each frequency are only determined by variations at the same frequency 
in the other series. The low frequency components of the estimated series are already largely 
determined by the observed aggregates. In some cases the relationship between the series in the 
higher frequency range may be known. Another possibility is that both series have been observed 
at shorter intervals for a period of time so that the relationship can be estimated and assumed to 
hold for the period when only aggregated values are observed of one of the series  (Harvey and 
Pierse, 1984). But in the absence of other knowledge than the observations of the two series, 
there are no means of estimating the relationship in the relevant frequency range from the data; 
the necessary information in the aggregated series has been filtered and aliased out. 
 
In view of the filtering effect of the aggregation process I have not tried to implement any 
estimation of the weight to give to auxiliary series. But it is possible to include an observed 
series, x(t), in the trend function, 
 
                                                                   w(t) = x(t)γ v(t).                                                          (2) 
 
In this formulation of w(t) the parameter γ is predetermined to give desired weight to the 
information in x(t), and v(t) is a new trend function, selected so that w(t) accounts for the main 
trend in the observed series. The only form of this implemented in our present programs is to let 
x(t) be a step function, equal to the observed value in respective interval, and v(t) an exponential 
function, representing the difference in the trend of y(t) and x(t)γ.  This implies that the flow is 
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not continuous. However, with the present capacity of  desk computers there would be little 
practical problems in converting x(t) into a continuous function, representing the observed 
values, if a continuous flow of y(t) is of interest. 
 
Stram and Wei (1986) performed disaggregation by time series modelling. State space time 
series models, emphasizing the introduction of auxiliary series for disaggregation, were 
presented by Moauro and Savio (2005). Gudmundsson (1999) included multiplicative trends in 
state space models for disaggregation, but we have not used this much, mainly because the 
available data tend to be inadequate for good estimation of the time series models. 
 
3  Examples 
 
In the following examples we use data from the International Financial Statistics to demonstrate 
some of the effects described above. Quarterly values are estimated from annual totals, with or 
without auxiliary series, and compared with observed quarterly values by the root mean square 
error of logarithmic values. The estimates with continuous flows were based on an exponential 
trend function and spline functions where squared first derivatives were minimized. This 
criterion was also employed when other series were taken into account according to equation (2). 
The results are compared with methods from the ECOTRIM programs where squared first 
differences were minimized when only annual totals were included and methods by Litterman 
(1983) and Fernandez (1980) employed for including auxiliary series.  
 
3.1  Consumption in Turkey  
 
Consumption in Turkey from 1987-2003 at nominal prices is an example of a series with a strong 
trend. The average annual increase is about 70%. The observed values were seasonally adjusted 
for comparison with values estimated from the annual aggregates. The spline solution with 
exponential trend function in the last five years is presented in Figure 2, together with the 
observed annual values and the quarterly values (multiplied by 4). Results from comparison of 
observed and estimated quarterly values are presented in Table 1. The root mean square error 
(rmse.) of the logarithms of the quarterly values, obtained by integrating the spline functions, 
was 0.0345. The rmse. of quarterly values, obtained by minimizing squared first differences, was 
0.0316. (In this example, where the last observed quarterly value was in fact lower than the 
previous one, the end condition spoilt the spline estimates).   
 
When inflation is much higher than growth in production and population, variations in 
consumption at current prices will presumably be positively related with prices. (In low inflation 
the negative relationship between prices and quantity might dominate). When quarterly averages 
of the consumer price index are included as x(t) in  equation (2) a small reduction in rmse. is 
observed, but estimates by Litterman’s and Fernandez methods are less accurate than results 
obtained without auxiliary series. The reason for this is that the linear relationships, assumed 
between the aggregated- and the related series in these procedures, are inappropriate for series, 
dominated by trends that are exponential rather than linear. Considering the prevalence of the 
logarithmic transformation in econometric work it seems likely that such procedures are often 
inappropriate or sub-optimal. 
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The ECOTRIM programs provide various common tests from regression analysis with the 
Litterman and Fernandez estimates. These provide no serious indications of bad fit or 
misspecification. But the programs also present confidence bands. I don’t know the details of 
how they are calculated, but they are of similar size for the whole interval and orders of 
magnitude to wide in the first years and much too narrow in the last years. 
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Figure 2:  Observed values and estimated flow function of private consumption at current prices 
in Turkey. (Units: trillions of Liras and trillions of Liras/year, multiplied by 10-9).  
  

Table 1: Consumption in Turkey at current prices 1987-
2003. Root mean square errors of log-values of quarterly 
values, estimated from annual totals, compared with 
observed values. “Discrete” estimates minimize squared 
first differences, “Splines” minimize squared first 
derivatives. CPI is the consumer price index. 

 
Estimates without CPI Rmse. 
Discrete* 0.0316 
Splines (γ=0) 0.0345 
Estimates including CPI  
Litterman*  0.0396 
Fernandez* 0.0352 
Splines, γ=0.25 0.0309 
Splines, γ=0.50 0.0290 
Splines, γ=0.75 0.0293 
Splines, γ=1.0 0.0318 

 
                            * Calculated with ECOTRIM. 
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3.2  US GDP 
 
The fit of estimates of quarterly values of US GDP from 1958-2003 at constant and current 
prices is presented in Tables 2 and 3. The average trend is about 3.3% per year for the constant 
price series and 7.1% with current prices. The index of industrial production is employed as 
auxiliary information with both GDP series and the GDP deflator also for GDP at current prices.  
 
The relationship between the GDP at constant prices and the index of industrial production, 
estimated by the Litterman procedure, greatly improves the estimates of quarterly values, 
compared with estimates where only the annual aggregates are employed. A similar 
improvement is attained in the multiplicative model by inserting the index as x(t) in equation (2), 
provided a suitable value of γ is selected.  
 

Table 2:  US GDP at constant prices 1957-2003. Root 
mean square errors of  quarterly log-values, estimated 
from annual totals, compared with observed values. 
“Discrete” estimates minimize squared first differences, 
“Splines” minimize squared first derivatives. I is the 
index of industrial production.  

 
Estimates without I                 Rmse 
Discrete* 0.00519 
Splines (γ=0) 0.00508 
Estimates including I  
Litterman*  0.00332 
Fernandez* 0.00425 
Splines, γ=0.25 0.00358 
Splines, γ=0.50 0.00361 
Splines, γ=0.75 0.00518 
Splines, γ=1.0 0.00737 

 
                             * Calculated with ECOTRIM. 

 
 
 
 
 
 
 
Table 3:  US GDP at current prices 1957-2003. Rmse. 
of  quarterly log-values, estimated from annual totals, 
compared with observed values. “Discrete” estimates 
minimize squared first differences, “Splines” minimize 
squared first derivatives. I is the index of industrial 
production, P is the DGP deflator.  
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Estimates without I or P                          Rmse. 
Discrete* 0.00527 
Splines (γ=0) 0.00513 
Estimates including I and P  
Litterman, I* 0.00635 
Litterman, P* 0.00508 
Litterman , I and P* 0.00790 
Litterman, I*P* 0.00320 
Litterman, I*eλt * 0.00332 
Splines, I, γ=0.25 0.00352 
Splines, I, γ=0.5 0.00345 
Splines, P, γ=0.25 0.00507 
Splines, P, γ=0.5 0.00505 
Splines, I*P, γ=0.5 0.00345 

  
                             * Calculated with ECOTRIM. 
 
                             
When no auxiliary information is introduced, the multiplicative model and the discrete model 
produce estimates of similar accuracy for the GDP at current prices. Introduction of the 
production index as x(t) leads to a similar improvement as for the constant price values in the 
multiplicative model. But the Litterman procedure for discrete values produces worse estimates 
than estimation without auxiliary information. Introduction of the GDP deflator has negligible 
effect upon the fit in both the discrete- and the multiplicative method. When it is introduced 
together with the production index with the Litterman procedure the fit is even worse than with 
the index alone. However, by introducing the product of the index and the deflator as an 
auxiliary series, great improvement in fit is obtained. A similar effect is produced by adjusting 
the trend of the production index by an exponential trend as in equation (2) to match the trend in 
GDP at current prices. 
 
The various t- and χ2 tests provided by the ECOTRIM programs are not of much use in judging 
whether an auxiliary series actually produces an improved fit. This is not surprising in view of 
the filtering effect of the aggregation. 
 
4.  Conclusions 
 
Apart from the end values there is little difference between disaggregation, based on minimizing 
squared first differences, and estimates based on a continuous flow with multiplicative trend and 
minimizing the squared first derivative of the stationary factor of the flow.  
 
One reason why minimizing squared first derivatives produces better estimates than Fourier 
series or minimizing squared higher derivatives is probably that the effects of variations or 
measurement errors in one year have less effect upon the values in other years because the flow 
is only continuous up to the first derivative. The rapidly diminishing influence of the observed 
aggregated value in one year upon the disaggregated values in other years may also be an 
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important factor in producing good results from minimizing squared first differences, even in 
series with strong exponential trends. 
 
It is not possible to decide by numerical analysis of an aggregated series, y, and a  disaggregated 
series, x, whether series x contains useful information about the disaggregated values of series y. 
The linear models that have been used for this purpose are obviously inappropriate when the 
series contain an exponential trend. Adjusting the trend of x to match approximately the trend of 
y would often be an advantage, but does not guarantee that the estimation of the disaggregated 
values will be improved by including x. In my opinion disaggregation should not be based on 
auxiliary series unless the relationship, estimated or otherwise determined, is supported by strong 
economic arguments. The aggregated values provide us with good information about the low 
frequency variations and it may be best to stay content with this. 
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