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1. Introduction

Potential output is defined as the maximum level of durably sustainable production,
without tensions in the economy, and more precisely without acceleration of inflation1.
The output gap is the difference between effective production and the considered level of
potential production. The potential production level is conceived as a supply indicator,
and the output gap represents the excess (or the insufficiency) of demand. In this form, a
positive number for the gap indicates excess demand and a negative number indicates
excess capacity. The output gap represents transitory movements from potential output.

The analysis of the output gap is, in many cases, considered as the starting point for
studying business cycles. The diagnosis of the economy in the cycle consists in evaluating
the potential level of sustainable production without inflationary tensions, and then to
compare it with the observed level of production.

Generally, the use of potential output and the output gap has the double ambition to point
out the position of the economy within the cycle and to evaluate medium and long term
growth. To summarise, output gap is estimated following two main approaches:

• The evaluation of the differences between the level of actual output and that of
potential output, at a particular point in time. In this sense, output gap analysis
provides information about excess capacity in the economy and it gives information
about medium and long term economic growth.

                                               

† The views expressed herein are solely those of the authors and do not necessarily reflect the views of the
European Commission. The authors would like to thank Roberto Astolfi, Gregory Czerwinski and
Gabriella Manganelli for their valuable comments and contributions.

1 Adams et Al. 1987; IMF.
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• The analysis of cyclical fluctuations of economic activity around output trend. In this
regard, output gap analysis is an instrument to evaluate the adequacy of economic
policy measures.

In practice, one may distinguish three possible main purposes for the estimation of
potential output and the analysis of output gap:

• It is useful to the fine-tuning of policies according to the adjustment of demand and
the support of supply.

• It is necessary to anticipate the inflationary risks to modulate accordingly the monetary
policy.

• It makes it possible to calculate the structural public balance (that which would be
observed if production were at its potential level) for the control of budgetary policy,
public revenues/expenditures and excessive deficits.

In spite of the apparent consensus on the definition and the importance of potential output
and output gaps the calculation of these variables is problematic, since potential output is
not directly observable and neither is the output gap.

The calculation of potential output and of output gap conditional on and are sensitive to
the model specification, the method of estimation and time horizon. Therefore the
calculation necessarily relies on various statistical and theoretical hypotheses.

1.1 Theoretical assessment

An evaluation of the potential output is meaningful only if it supported by a coherent
theoretical representation of the economy. Generally, we can consider that the potential
output corresponds to the ideal equilibrium position for all the output variables; this
particular position corresponds to the so-called “steady state”.

The importance of the steady state and its interpretation can differ considerably following
alternative economic theories. A very simple representation of such diversities can come
to the following stylised interpretations:

• In a “keynesian” world the steady state, and by consequence the potential output, is a
sort of asymptotic condition and the economy is normally fluctuating around it.
Therefore the analysis of output gap reflects business cycle fluctuations around the
long-run equilibrium.

• In a “monetary” world, the economy is supposed to be constantly at the steady state
(equilibrium), therefore at its potential output. Only shocks can produce fluctuations
around it. Therefore long-lasting shocks determine the potential output and transitory
shocks enter the output gap.

The traditional macroeconomic approach depicts the economy as being keynesian in the
short run and neo-classical in the long-term2. An extreme view of the debate would state
that the more an economist is keynesian, the more he gives importance to output gap

                                               

2 Cesse G., H Delessy(1997), “Ecarts de PIB: une grande variété de méthodes et de diagnostics”.
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analysis. On the contrary, a monetary economist would consider the divergence between
potential and effective production of less significance.

Potential output is often assimilated to the so-called “permanent” component of the
economy” which is typically non-stationary (see Nelson and Plosser 1982). At the same
time, the output gap is often assimilated to the so-called “transitory” component of the
economy”, typically stationary but not necessarily periodical. This transitory component
normally is composed of two main unobserved components: the cyclical and the irregular
components. It is anyway useful to observe that, at this stage of our discussion, we are not
considering any seasonal movement in the economic variables. If we accept that the
economic variables can also be affected by seasonal variations, our transitory component
will consist of three main components: cycle, irregular and seasonal.

We can identify two different ways of viewing economic fluctuations: the “trend
deviation” interpretation of changes in overall production, and “gap closing” view on
cyclical phenomena (Chagny and Döpke, 2001).

In this sense, when referring to the medium-term approach, the concept of potential
output tends to be assimilated to that of trend and output gap to the deviation from the
trend. Alternatively, if we focus on the short-run, the evolution of the output gap
corresponds to the economic fluctuations, mainly related to the cyclical component in the
economy.

From the cyclical point of view, the output gap analysis can identify the phase of the
business cycle (acceleration/deceleration). By contrast, from trend point of view the
output gap identifies the trend deviations and the joint analysis of potential output and the
output gap (cycle/trend components) allows to detect the points of recovery/recession.

In order to avoid confusion, it should be clearly pointed out that the concepts of business
cycle and trend are purely statistical, while the potential output and output gap derive
from the economic theory.

Even if the features of cycles can be really similar, the consequences in terms of the impact
of stabilisation policies are significant.

In the case of the “trend deviation”, stabilisation policies can only reduce the variability of
the observed data around the trend, without any possibility of influencing the growth. In
fact in this view growth is determined by other factors, sometimes assumed exogenous.
This is the typical scenario of optimal stabilisation policies and their performance is
measured in terms of a quadratic loss function computed on the variables defined as a
deviation from an equilibrium path.

In the case of “gap closing”, stabilisation policies have also an effect on the growth
component since trend and cyclical fluctuations are not independent. In this view, one
important topic is represented by the definition of which type of fluctuations should be
attributed to potential output and to the output gap. An extreme case is represented by
real business cycle theory3, which assumes that all fluctuations should be attributed to
potential output, so that the output gap is represented only by random factors.

                                               

3Boschen J. and L. Mills (1990), “Monetary Policy with a New View of Potential GNP”.
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In the determination of output gap a key aspect is the time horizon over which the
potential output is defined. In the simplest representation, growth of potential output is
endogenous and relatively regular in the lung-run, since the determinants are not fixed: the
capacity of utilisation depending on the technical progress and the labour factor on
demographic growth.

Contrary, in the short-run those factors are considered to be exogenous. The potential
output is determined in relation with the optimal combination of factors: the maximum
utilisation of each factor not inducing inflationary tensions (“normal” capacity of
utilisation) and “natural” unemployment rate.

In the following paragraphs a short description of the main issues in determining the
definition of potential output are illustrated, of course, only a few have been pointed out:
the time horizon, the relation between potential growth and unemployment (Okun’s law)
and the unemployment rate (NAIURU).

1.1.1. Time horizon

The time horizon is a crucial issue in the definition of potential output: beyond the
methodological diversity, the same approach can achieve a different evaluation of
potential output and therefore of the output gap, depending on the reference time horizon
and the frequency of data.

In particular, the estimation methods of the potential output can be concerned with a more
or less long time horizon, by postulating higher or lower variability of the potential output.
Indeed, the longer the reference time horizon is, the less the production factors are
affected by the cyclical fluctuations and much more by structural factors.

The accepted variability of the potential output is inversely related to the time horizon.
The longer the time horizon is, the lower is the variability of potential production and,
accordingly, the higher is the amplitude of the variations of the divergence of the output.
The same consideration can be made for the frequency of data.

Thus, if we are concerned with short-term inflationary tensions, we will tend to give
priority to approaches accepting higher variability of potential output. If, on the other
hand, we are concerned with a long-term growth scenario we will be able to accept a less
volatile potential output.

Estimates of the output gap at particular points in time can vary considerably across
estimation methods. On the other hand, however, there is considerable similarity in the
broad time profile of the various potential output estimates. Indeed, since the level of the
potential output can differ considerably depending on different estimations, it is difficult to
identify the absolute size of the output gap but it is possible to infer its relative size.

An important consequence of these considerations is that potential output and output gap
do not refer to a universal evaluation. Each analytical purpose can call on a specific
degree of variability of potential output, and for given degree of variability, alternative
approaches can be used.

For example, the Central Banks, as their principal purpose is the prevention of inflationary
tensions, have a priori a shorter horizon, which implies not very flexible production
factors. Therefore, in the calculation of output gap, Central Banks tend to prefer the
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cyclical perspective. As well, when Central Banks deal with the control of the budgetary
policies, they privilege a longer time horizon and trends with lower volatility.

In a similar way, the International Monetary Found (IMF) and the World Bank, are mainly
involved in the growth of developing countries and by consequence they focus on long
term growth and their evaluation of the potential output has a much lower level of
volatility.

1.1.2. The Okun’s law

The article that provided the foundation for the potential output concept was published by
A. Okun4 in 1962. Okun proposed a simple linear relation between the divergence of the
unemployment rate at its natural level and the divergence of production from its potential
level. Therefore there is a negative correlation between changes in the unemployment rate
and changes in output growth.

The unemployment/output relationship was more precisely considered by Okun as relating
relative deviations of output from its potential level to deviations of the unemployment
rate from its “natural” level. Potential output is meant to be the answer to Okun’s
question:

"How much output can the economy produce under conditions of full
employment?".

Because “full employment” is defined as the state in which labour markets are neither tight
nor slack, inflationary pressures are presumed to arise when output growth pushes above
its normal level, which in turn is related to declines in the unemployment rate below its
normal level.

A key aspect of this perspective is the implicit, but crucial, role of the potential output and
full-employment concepts in determining whether a particular growth rate or
unemployment rate is inherently “inflationary”.

The connection between unemployment and output growth is often formally summarized
by the statistical relationship known as  the “Okun’ s law”5:

High GDP growth eventually places excessive strain on a nation’s resources.
This strain can become particularly acute in labour markets, where it is
manifested as low unemployment. The labour market tightness associated
with this low unemployment ultimately leads to higher prices.

1.1.3. Phillips curve and NAIRU

The role of the output gap in affecting wage inflation was pioneered by Phillips (1958).
The “Phillips curve” established an empirical relationship between price variation and the

                                               

4 Okun (1962) “Potential GNP: its Methods and Signifiance”.

5 David Altig, Terry Fitzgerald “Okun's Law Revisited: Should We Worry about Low Unemployment?”,
and Peter Rupert, May 1997.
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unemployment level. More precisely the price variation, in the medium term, is equal to
the variation of wages, after deduction of the productivity earnings.

In the event of perfect indexing of salaries to prices, there is only one unemployment rate
which ensures that salaries grow at the same rate as the trend of labour productivity. This
particular level of unemployment rate without inflationary tensions is commonly referred
to as the NAIRU (Non Accelerating Inflation Rate of Unemployment).

In empirical work, inflation is often characterised as a mark-up over unit labour cost and
imported goods prices, with the mark-up varying over the business cycle (de Brouwer and
Ericsson, 1995).

Wages growth, in turn, also appears to be sensitive to the state of the business cycle and
the rate of economic growth. This indicates that the output gap contains valuable
information about movements in price and wage inflation. From a policy perspective,
however, the underlying trend or potential output component should be defined in terms
of a non-accelerating (or decelerating) inflation rate.

The NAIRU is stationary by nature, but in the event of temporary disequilibrium, one can
suppose the need to increase the unemployment rate temporarily. Thus one can define two
NAIRU concepts6:

1) a long term, NAIRU which considers only trend productivity.

2) a medium term NAIRU, with the possibility to be higher than the long term rate for a
certain period.

2. Approaches to the estimation of potential output and output gap

In empirical analysis the definition of potential output and the output gap is much less
strict than in economic theory. There is a large variety of statistical approaches to estimate
such unobserved variables. The diversity of theoretical views on potential output and the
output gap leads to a wide range of methods for their estimation. A first general
classification has been proposed in Chagny and Döpke (2001). They distinguish the
following categories of methods:

1. Univariate non-structural approaches: methods that are based on some statistical
procedure rather than referring explicitly to an economic theory (Cogley 1997). The
interest in non-structural methods is partly motivated by the fact that they require less
information than theory-based methods. This might be of relevance for the Euro-zone
since there is still a lack of data at the aggregate level. Moreover, the methods can be
implemented to model any time series of interest. This allows for a discussion of the
cyclical behaviour of all parts of the economy, i.e. different types of expenditures and
different sectors. Non-structural measures might therefore be used for a discussion of
stylized facts of the business cycle.

                                               

6  Hervé Le Bihan, Henri Sterdyniak, Philippe Cour “La notion de croissance potentitelle a-t-elle un
sens?”, CEPII Economie Internationale, 1997.
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2. Direct measures of the cycle from survey data: the potential growth and the
production gap could be calculated by using business survey data. In this case, in a
short time horizon, production technology is considered to be fixed and inputs to be
complementary. Though the concrete questions in the surveys differ across the Euro-
zone, the European Commission (2000) provides harmonised time series of industrial
capacity utilisation. Thus, potential output equals effective output plus the gap
between the available capacities and a level coherent with the absence of tensions on
the goods market.

3. Structural approaches: these approaches rely on a specific economic theory, which is
assumed to be correct. One can distinguish two broad groups of structural methods:
multivariate methods with theoretical assumptions in so-called structural VARs
(SVARs) and methods based on an aggregate production function. The approaches
based on SVARs allow for more robust and reliable estimates of the output gap, since
most of the underlying theories treat trend and cycle independently. Approaches based
on production functions try to make explicit the nature of constraints that limit output
(for example labour, capital, global factor productivity). Therefore, they require an
analysis of the nature and the transmission of the disequilibria.

4. Multivariate non-structural approaches: these approaches are mainly based on
multivariate time series techniques and can be viewed as an extension and
improvement of the univariate non-structural ones. Statistical relationships among
different variables do not necessarily imply the acceptance of an economic theory.
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Estimating Output Gap

Univariate
Non-Structural Methods

Peak-to-Peak

Linear Detrending

Robust Detrending

Phase Average Detrending

Hodrick - Prescott - Filter

Beveridge - Nelson
Decomposition

Unobservable Component
Method

Band - Pass - Filter

Direct Measures

Survey data

Structural Methods

Okun's Law

Multivariate
Non-Structural Methods

Production Function
Approaches

Long-run restriction
models

Multivariate Beveridge
Nelson Decomposition

Multivcariate Hodrick-
Prescott Filter
Multivariate UC-Method

Figure 2.1 Approaches and methods for the estimation of the potential output

In this paper we concentrate our attention mainly on the first and last of the mentioned
categories. Moreover we discuss long-run restrictions methods which are included in the
third group. Concerning the remaining approaches proposed in the third category, they are
outside the scope of this paper which is essentially focusing on statistical methodologies
for estimating potential output and the output gap. Methods such as the Okun’s law or
those based on production functions require very strong economic priors.

The approach of using direct measures of the cycle from surveys is also outside the scope
of this paper. This approach is based on a particular survey that measures the capacity of
utilisation in industry. Essentially this survey defines potential output as the maximum
allowable production level, which is not completely in line with the definition adopted in
section 1. Moreover capacity utilisation data are only available for industrial sectors. The
resulting output gap estimates appear quite volatile. Finally such surveys are based on
subjective judgements from entrepreneurs and they cannot be considered as statistics in a
strict sense. Nevertheless these surveys are an important source of information for
economic analysis, as they provide a timely and reliable picture of the economic situation.

As shown in figure 2.1, several estimation methods for potential output have been
developed within the different approaches. Several authors have contributed to this
research topic starting from the end of the ‘70s.

We can classify these methods as follows:
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1. Univariate methods

First difference filter PAT filter, phase average trend (Boschan
and Bry 1971)

Henderson filter Stock and Watson decomposition (1986)

Hodrick and Prescott filter (1980) Harvey decomposition (1985, 1989)

Baxter and King filter (1995) Beveridge and Nelson decomposition
(1981)

2. Multivariate methods

Hodrick and Prescott filter (Laxton and
Tetlow 1992)

Beveridge and Nelson decomposition
(1981)

SUTS decomposition (Harvey and Jaeger
1993)

Common trend and common cycle models
(Vahid and Engle  1993, 1997)

This classification is based only on the number of time series involved in each method and
not on their statistical properties. In other words this classification deals essentially with
the amount of information used in the estimation of potential output and output gap.
Clearly, univariate methods can be considered as “self explanatory” ones in the sense that
they do not use any external and/or additional information. By contrast, multivariate
methods use the information from many time series as well as relations derived from
economic theory. Obviously all univariate methods are non-structural by definition,
whereas multivariate methods can be split into structural and non-structural.

From a methodological point of view, we can introduce the following classification:

1. Mechanical methods based on filtering techniques;
2. Mixed methods based on filtering and time series techniques;
3. Model based methods, based only on time series techniques.

Method Type Statistical properties

Hoddrick and Prescott Univariate/multivariate Mechanical

Baxter and King Univariate Mechanical

PAT Univariate Mechanical

Detrending method Univariate Mechanical

Henderson method Univariate Mechanical

Stock and Watson 
decomposit ion

Univariate/multivariate Mixed

SUTS method Univariate/multivariate Mixed

Beveridge and Nelson 
decomposit ion

Univariate/multivariate Mixed

Common trend and common 
cycle decomposition

Multivariate Model based

Table 2.1 Approaches and methods for the estimation of the potential output
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3. Review of basic concepts concerning spectral analysis and linear
filtering

In this section we review some concepts which are commonly used in the econometric
analysis of time series, namely the population spectrum and linear filters. These concepts
are part of a general approach to time series analysis called analysis in the frequency
domain or spectral analysis, which is for many aspects dual to the more common
approach, i.e. the analysis in the time domain.

Evaluating the problem of business cycle extraction from the spectral point of view will
shed much light on the different methods presented in the following sections, will help
understand their properties and will allow for a comparison of their performances. In fact
we will introduce the crucial concept of optimal filtering in the frequency domain and we
will see that many of the methods that have been proposed in the literature are simply an
attempt to approximate an optimal filter.

3.1 Population spectrum and its main properties

Suppose ty  is a stationary process with mean µ and let jγ  denote the jth autocovariance
of ty  such that:

(3.1) ))(( µ−µ−=γ − jttj yyE

If the autocovariances are absolutely summable, that is ∞<γΣ∞
−∞= jj , then the following

scalar function is well defined:

(3.2) ∑
∞

−∞=

γ=Γ
j

j
jY zz)(

where z is a complex scalar. )(zYΓ  is called the autocovariance generating function of ty
and, when divided by 2π and evaluated at )sin()cos( ω⋅−ω== ω− iez i  (where 1−=i  is
the imaginary unit), gives the so called population spectrum of ty :

(3.3) ∑
∞

−∞=

ω−ω− γ
π

=Γ
π

=ω
j

ji
j

i
YY ees

2
1)(

2
1)(

thus the population spectrum is a function of the real scalar ω ; noticing that for any
stationary process we have jj −γ=γ , simple trigonometric manipulations give a simplified
expression for (3.3), that is:

(3.4) 









ωγ+γ

π
=ω ∑

∞

=1
0 )cos(2

2
1)(

j
jY js

From (3.4) we see that the population spectrum is defined for any given value of ω ;
)(ωYs  is a continuous, real-valued function of ω , periodic since )()2( ω=π+ω YY sks  for

any integer k and symmetric around 0=ω . It is also possible to show that )(ωYs  is
nonnegative for any ω .
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The jth autocovariance jγ  can be computed from the population spectrum using the
following result:

(3.5) ∫∫
π

π−

π

π−

ω ωωω=ωω=γ djsdes Y
ji

Yj )cos()()(

Setting 0=j  in (3.5) leads to:

(3.6) 0)( γ=ωω∫
π

π−
dsY

that is, the area under )(ωYs  between π±  is equal to 0γ , the variance of ty . The result
expressed by (3.6) can be generalised by calculating the integral of the population
spectrum in a generic interval *ω± , with π≤ω≤ *0 . In fact it can be shown that the
quantity:

(3.7) ∫∫
ωω

ω−
ωω=ωω

*

0

*

*
)()( dsds YY

is equal to the portion of the variance of ty  that can be attributed to random fluctuations
whose frequency lies in the interval *ω≤ω .

3.2 Linear filters

One of the most important results of spectral analysis is that any stationary process ty  can
be decomposed as an infinite sum of uncorrelated random components, each associated
with a particular frequency. This result is known as Cramér decomposition and states
that:

(3.8) ∫
π

π−

ω ω= )(dzey ji
t

where )(ωdz  are complex orthogonal increments, that is they satisfy:

ωωω=ωω

ω≠ω=ωω

every for   )())()((

every for   0))()(( 2121

dsdzdzE

dzdzE

Y

where )(ωYs  is the population spectrum defined in section 3.1.

Suppose that a second process tx  is obtained as a linear combination of past, present and
future values of ty , that is:

(3.9) ∑
∞

−∞=
−=

j
jtjt yhx

The relation (3.9) can be re-written introducing the lag polynomial )(LH  defined by:

(3.10) ∑
∞

−∞=

=
j

j
jLhLH )(
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where L is the lag operator such that ktt
k yyL −=  for positive and negative values of k.

Thus we obtain:

(3.11) t
j

t
j

jt yLHyLhx )(== ∑
∞

−∞=

A lag polynomial like )(LH  in (3.10) is called a linear filter and tx  is the filtered process
obtained from ty  by applying the filter )(LH . The Cramér decomposition for the filtered
process tx  is given by:

(3.12) ∫
π

π−

ω ωω= )()(~ dzeHx ji
t

where )(~ ωH  is the Fourier transform or frequency response function of the linear filter
)(LH , that is:

∑
∞

−∞=

ω−=ω
j

ji
jehH )(~

For any given ω , )(~ ωH  is a complex number that can be written in polar coordinates:

(3.13) )()()(~ ωΨ−ω=ω ieGH

In (3.13) the modulus )(ωG  is called the gain of the filter )(LH  at frequency ω  and
measures the “amplification” induced by the filter on the components with frequency ω  in
the original series. On the other hand the phase )(ωΨ  measures the “time displacement”
induced by the filter on the same component. Figure 3.1 shows the impact of gain and
phase shifts over a specific periodic component of ty .

a. Increase in gain

-2

-1

0

1

2

0 10 20 30 40 50

b. Phase shift

-2

-1

0

1

2

0 10 20 30 40 50

Figure 3.1 Effects of filtering (     original component,     filtered component)

Let us consider the special case in which the filter defined (3.10) is symmetric, that is
jj hh −=  for every j. It is easy to show that, for such a filter, the frequency response

function )(~ ωH  reduces to:

(3.14) ∑
∞

=

ω+=ω
1

0 )cos(2)(~

j
j jhhH
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which is a real number for any ω . The important consequence is that a symmetric filter
does not induce any phase shift at any frequency.

Suppose now that we want to construct a filter )(* LH  that, when applied to a given
series ty , extracts only the components whose frequencies lie (in absolute value) in a
specific subset *Ω  of [ ]π,0 . Which are, from the spectral point of view, the conditions
that must be imposed on )(* LH  so that it performs this task in an optimal way? They are
rather straightforward:

• the ideal filter is such that its gain is equal to one for the frequencies that must be
extracted and zero elsewhere;

• the ideal filter is such that its phase shift is zero at every frequency.

The optimality conditions can thus be written as:

(3.15)
 every for    0)(*

*such that  every for    0)(*

*such that  every for    1)(*

ω=ωΨ

Ω∉ωω=ω

Ω∈ωω=ω

G

G

According to the shape of *Ω , a specific terminology is commonly used to indicate the
ideal filters:

− if *][0,* ω=Ω  with π≤ω≤ *0 , then )(* LH  fulfilling (3.15) is referred to as the
ideal low pass filter, in the sense that it preserves the low frequency components of

ty  and cuts off all high frequency components;

− if ]*,[* πω=Ω  with π≤ω≤ *0 , then )(* LH  is called the ideal high pass filter,
which extracts from ty  only high frequency components and cuts off all low frequency
ones;

− if ]*,*[* 21 ωω=Ω  with π≤ω≤ω≤ **0 21 , then )(* LH  is called the ideal band pass
filter, which extracts from ty  only the components whose frequency lies in a specific
range, cutting off all low and high frequency ones.

Figure 3.2 plots the gain function for the above mentioned ideal filters.

The cut-off frequencies for the ideal filters must be fixed according to the periodicity of
the components we wish to extract and according to the frequency of the original data
(annual, quarterly or monthly). For example if we want to extract from a quarterly series
all components whose oscillation period lies between 1.5 and 8 years, then we need to fix

years) 8  (period 321 ==T  and years) 1.5  (period 62 ==T , and the corresponding cut-off

frequencies are 162*
11 π=π=ω T  and 32*

22 π=π=ω T .
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Ideal Low pass filter
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Figure 3.2 Gain of the ideal low pass, high pass and band pass filters

4. Univariate methods for the estimation of potential output and output
gap

Letting ty  denote the series of interest, which is supposed to be seasonally adjusted and
(eventually) log-transformed, we make the hypothesis that ty  can be decomposed, in an
additive way, into a “permanent” component tg , representing the growth or trend of ty ,
and a residual or “transitory” component td , representing the deviation from the trend:

ttt dgy +=

In a similar way the transitory component td  can be decomposed in an additive way:

ttt cd ε+=

where tc  is the cyclical component of the series and tε  is the irregular component which
is often modelled as white noise.

The decomposition for ty  is then:

(4.1) tttt cgy ε++=

In this section we will focus on the so-called univariate methods for cycle extraction.
Some general remarks apply to these univariate methods:

• they only use information coming from observed output to infer the level of potential
output;
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• some of these methods, like for example the Hodrick and Prescott filter and the
Beveridge and Nelson decomposition, explicitly consider the stochastic nature of
potential output;

• these methods do not incorporate additional information about the state of potential
output. In other words, they are subject to criticisms similar to those made on Okun’s
method in section 1.

4.1 Deterministic de-trending

The simplest hypothesis which can be formulated for the representation of the potential
output is that it follows a deterministic (linear or quadratic) trend. In this case, all
movements of the observed series ty  are attributed to the deviation component td  since
the output gap is represented by a completely deterministic function with fixed variations.

The practical relevance of such methods for the estimation of potential output is quite
low. They are nevertheless briefly discussed in this paper since they can be viewed as a
benchmark for more complex estimation methods.

In this context we assume that the potential output is a deterministic function of time. If
the series ty  has been log-transformed and if we specify the trend as a linear function of t,
that is:

(4.2) tg t 10 β+β=

then 1β  in (4.2) represents the average growth rate of the economy in the sample period.

It is important to observe that in this case we are able to obtain directly an estimation of
the potential output tg  so that the gap component td  is derived as a residual. This type of
de-trending can be also viewed as a linear filter. It can be proved that the gain of this filter
is characterised by the fact that it removes only partially the components whose frequency
is close to zero.

4.2 First difference de-trending

Differencing data to eliminate the trend component from an economic time series is a
quite common practice. If ty  is integrated of order one (or )1(~ Iyt ), that is

1−−=∆ ttt yyy  is a stationary process, the application of the first difference filter removes
the trend component from the series and gives an estimate of the transitory component.
The transitory component td  is estimated by:

(4.3) 1)1()( −−=−== ttttt yyyLyLHd

The frequency response function of the first difference filter is:

ω−=ω ieH 1)(~

and the corresponding gain is:
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)cos(22)( ω−=ωG

Figure 4.1 plots the gain of the first difference filter together with the gain of the ideal
high pass filter. As is clear from the plot, the performance of the first difference filter as a
high pass filter is quite poor when compared to the ideal filter. In fact the first differences
over-emphasise the high frequency components of ty , for which the gain is almost equal
to two, and down-size considerably low frequency ones.

Moreover the filter is not symmetric, and its phase is nonzero. It can be shown that the
phase shift induced by (4.3) is very high at low frequencies and decreases at higher ones.

Gain of the first difference filter
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Figure 4.1 Gain of the first difference filter compared to the gain of the ideal high pass
filter

De-trending using first differences gives just a rough idea of cyclical fluctuations. It is well
known that when the data are nearly integrated, it can produce an over de-trending at zero
frequency. This means that the auto-correlation function of the de-trended series is
characterised by some negative spurious correlation at lag one. This situation can produce
some relevant bias in the estimation of the cyclical component. In addition, if the data are
stationary, the use of differentiation can produce spurious fluctuations which could
mislead the economic interpretation.

4.3 Henderson moving averages

Henderson moving averages are used to extract the trend from an estimate of the
seasonally adjusted series. They are based on a criterion which ensures a smooth
estimation of the trend-cycle. Let us consider the series:





≠
=

=
0   if   0
0   if   1

t
t

X t

Its transform by a centred moving average M of order 2p+1 and with coefficients { }iθ , is
given by:
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This transform will therefore be smooth if the coefficients curve of the moving average is
smooth.

Henderson (1916, 1924) proposed using quantity 23 )( iiH θ∆Σ= to measure the
“flexibility” of the coefficients curve. This quantity is nil when the coefficients { }iθ  are
located along a parabola and, in the general case, it measures the difference between the
parabolic form and the form of the function giving the { }iθ .

Henderson then looked for order 2p+1 centred averages that retain the order-2
polynomials and minimise quantity H. The order 2p+1 Henderson moving average will be
the solution of the minimisation problem:
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The coefficients of these moving averages may also be calculated explicitly and, for an
order 2p+1 average, by denoting 2+= pn , we have:

[ ][ ][ ][ ]
)254)(94)(14)(1(8

11163 )1(  )1(315
2222

22222222

−−−−
−−−+−−−

=
nnnnn

inininin
iθ

Using this formula, it is therefore possible to calculate, in rational form, the coefficients of
the Henderson moving averages. Therefore, for the sake of symmetry, presenting only the
necessary coefficients, we have:

5 terms: { }160,84,21
286
1  ;  ]5[ −

7 terms: { }295,210,42,42
715
1  ;  ]7[ −

9 terms: { }805,648,288,24,99
2431

1  ;  ]9[ −−

13 terms: { }4032,3600,2475,1100,0,468,325
16796

1  ;  ]13[ −−

And for 23 terms:

{ }580853,557700,491700,392700,275400,156978,54150,19950,58575,63250,44022,17250
4032015

1
  ;  ]23[ −−−−−

The coefficient curves, shown in figure 4.2, are smooth and the gain functions of these
averages are closer to the ideal low-pass filter.
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Coefficients curve Gain function
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Figure 4.2 Coefficients and gain of the Henderson moving averages
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4.4 The Phase Average Trend method

This method has been developed by the National Bureau of Economic Research (NBER)
in the United States. It is extensively discussed in Boschan & Bry (1971) and Boschan and
Ebanks (1978). It is extensively used also by the OECD to construct and analyse a system
of cyclical indicators for the member countries, to identify and anticipate turning points.
This method is essentially based on a recursive approach; furthermore it is the only
method that provides the dating of turning points, thus giving an official chronology of the
cyclical events.

4.4.1. Assessment of the Phase Average Trend Method

The Phase Average Trend Method (PAT) has three main objectives:

• the identification of cyclical turning points;

• the measure of long term trend;

• the construction of the so-called trend-adjusted series.

Let ty  be a seasonally adjusted series which can be decomposed like in (4.1). By applying
an appropriate low-pass moving average, which will be presented below, it is possible to
estimate the trend component tg . The trend adjusted series td  is equal to the transitory
component:

ttttt cgyd ε+=−=

The identification of turning points is obtained by the comparison of different moving
averages applied to an estimation of the transitory component td .

This comparison aims at avoiding that some artificial phase effects affect the results of the
estimation: for example, the presence of irregularities in the original series may affect the
dating of turning points. The identification of turning points gives the possibility to split
the cyclical component in different phases, where the term “phase” refers here to the
interval between two consecutive turning points of different sign and should not be
confused with the same term introduced in section 3.2.

This splitting permits a new estimation of the permanent component tg  obtained by
chaining up the average value of the series ty  of each phase. The Phase Average Trend
method is essentially based on non-parametric techniques and it is mainly iterative. In its
underlying philosophy this method is quite similar to the Census 2 seasonal adjustment
procedure developed by the US Bureau of Census.

The OECD improved version of the Phase Average Trend method can be synthetically
described by the following scheme.
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Original seasonally adjusted series ty

A-First estimation and extrapolation of the long trend tg

(use of a 75 months centred moving average)

B-Computation of the deviation from the estimated trend

( ttt gyd −=′ )

C-Correction of outliers

D-Identification of turning points and splitting

into expansion and recession phases

E-New estimation and extrapolation of the long term trend

by calculating and chaining separate estimates for each phase

(PAT method)

Figure 4.3 OECD improved version of the Phase Average Trend Method

The following points present some considerations on the different steps of Figure 4.3.

A-The long-term trend estimated via a 75 centred moving average with all the weight
equal to 1/75:

 ∑
−=

=
37

3775

1

j

j
tt Lyg

The extrapolation is obtained using a quite rough method: more in detail the extrapolation
is obtained by using projected monthly growth rates which appears absolutely inadequate.
The choice of such moving average is essentially based on the assumptions made on the
length of the business cycle fluctuation.

B-The component td  is then estimated by ttt gyd −=′ .

C-The objective of this step is to obtain a first estimation of the cyclical component tc′ .

The sequence of the operations is as follows:
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i) application to the estimated td ′  series of a so called Spencer 15 terms centred moving
average:

(4.4) j
t

j
jt Ldhc ′=′ ∑

−=

7

7

where the weights are given by:

jh  = [−3 , −6, −5, 3, 21, 46, 67, 74, 67, 46, 21, 3, −5, −6, −3] / 320

At the beginning and at the end of the series, the Spencer moving average is replaced by a
truncated version. Spencer moving average is obtained by combining two moving
averages of order 4 and 5 respectively. It gives the possibility to eliminate some infra-
annual fluctuations.

ii) An indicator of regularity of the series td ′  is then computed. This indicator is
called “months for cyclical dominance” (MCD). This indicator shows the number of
months to be taken into account in order to ensure that the cyclical component is
dominant on the irregular one. If T is the number of observations of ty , we can compute
over the whole period the mean of absolute growth rate. This mean can be computed for
the cyclical component tc′  as obtained by (4.4), and to the estimated irregular component.
The MCD indicator is then obtained by taking the first value of T for which the cyclical
component is bigger than the irregular one. By convention it is assumed MCD ≤ 6.

iii) Given td ′  and tc′ , an observation is considered an outlier if the value of each
estimated irregular component is outside a range defined by its mean ± d times its
standard deviation, where the scalar d depends from the volatility of the original series.
Detected outliers are then replaced by the corresponding values of the Spencer estimation
of the cyclical components tc′ . The resulting series is indicated by td ′′ . This corrected
series is again filtered by 15 terms centred Spencer moving average in order to obtain
another estimation of the cyclical component tc ′′ .

iv) The series td ′′  is also filtered by using a 12 months moving average with all the
weight equal to 1/12. This series will be defined as tc ′′′ .

At the beginning and at the end missing values are computed by simple truncated version
of this filter. This filter is intended to eliminate any residual seasonality. In this way, we
obtain two alternative evaluations of the cycle represented respectively by the application
of the Spencer and of the 12 terms moving averages to the corrected series.

D-The turning point detection is obtained by comparing the turning points of the series
obtained in step C. The idea is to identify turning points in a second moment on different
smoothed time series in order to avoid the risk of any artificial displacement of the turning
points. This method tries to avoid the risk of any wrong datation due to the presence of
some irregularities. The sequence is as follows:

1) On the series tc ′′′  a first group of turning points, called potential turning points (PTP)
is identified. A potential peak or slack is defined by the fact that it is higher (lower)



-22-

than any other point in the range of the five preceeding or following months. The
sequence of peaks and slacks is checked.

2) The so-called corresponding turning points (CTP) are identified in the series tc ′′ . All
CTP in the range of ± 5 months around a PTP are retained, all turning points
identifying cycles of less than 15 months are eliminated. The sequence of peaks is
checked again.

3) A new moving average of the same order of the MCD (less or equal thant six months)
indicator is applied to the non-corrected series td ′ . A simple extrapolation is
performed at the beginning and at the end of the series. The new series is called short-
term moving average. On the resulting series, a new set of corresponding turning
points (CTP1) is identified. The second part of step 2 is repeated comparing these
CTP1 to the CTP (used as a benchmark).

4) A last version of corresponding turning points (CTP2) is derived directly from the
series td . All turning points in a range of ±k months around the CTP1 are retained,
where k = 4 if MCD≤4 and k = MCD if MCD>4.

The second part of step 2 is applied again to the CTP2 with the CTP1 as a benchmark. All
turning points occurring during the first and the last 6 months are eliminated. All turning
points creating a phase of less than 5 months or cycles of periodicity less than 15 months
are also eliminated. This new chronology of turning points CTP2 is called tentative
turning points (TTP).

Figure 4.4 Identification of cyclical turning points of an economic time series

E- A new evaluation of the long term trend is obtained starting from the TTP first
chronology. This step, which is probably the core of the Phase Average Trend method,
essentially calculates an average slope for the series in each phase. This average slope is
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then used to obtain a new estimate of the trend component, with the constraint that its
average must be equal to the average of the original series.

E1- At the first stage the average value of the original series ty  on each phase is
computed. The resulting series is called PA (Phase Average).

E2- A simple three terms moving average with the weights equal 1/3 is computed on the
average values of each phase. The value of this moving average is assigned to the medium
value of the current period. The time interval between two consecutive medium points is
called segment. Two consecutive segments do not have normally the same length (without
the case in which the cyclical fluctuation are perfectly symmetric and regular).

E3- The slope is then computed in each segment. The slope is used to compute the New
Trend called NT by a simple linear interpolation between the two extreme date of each
segment.

E4- The level of this New Trend is then adjusted to respect the average level of the
original series ty . This adjusted trend is called New Trend Adjusted, NTA.

E5- The NTA is then extrapolated at the end of the series by using a linear regression on
time. This regressions starts on the date associated to the last legal point in order to
respect the level of the trend on the last segment.

E6- The extrapolated NTA is smoothed by a 12 terms moving average with weights equal
to 1/12. The main objective is to smooth the link between two consecutive segments. At
the beginning and at the end of the series is simply extrapolated. The resulting series
constitute the final estimation of the trend.

Steps B to D are iterated to produce a final chronology of turning points. This iteration
starts from the final estimation for the trend obtained in step E and uses the definitive
estimation of the trend deviation.

Figure 4.5 description of the Phase Average Trend method.
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4.4.2. Some remarks on the Phase Average Trend methodology

We can point out some open problems with the PAT approach:

• the number of detected turning points is often too high and the estimated long term
trend is often too unstable;

• the identification of new turning points can considerably affect the long term trend
estimation. The long term trend estimation is too “fragile” in particular at the end of the
period;

• the extrapolation of the trend can result considerably biased;

• on the other hand this method allows a quick identification of local inflexion of the
trend, and this is more evident by analysing historical fluctuations;

• finally, this is the only method, among those presented in this review, that provides an
official chronology of turning points.

4.5 Exponential smoothing

This de-trending method has been widely used in the past by economists: among others,
Friedman (1957) applied it in the context of a permanent income analysis and Lucas
(1980) in various empirical studies. An overview of this method, with an emphasis on its
close relation to the Hodrick and Prescott filter presented in section 4.6, can be found in
King and Rebelo (1993). The exponential smoothing filter gives the permanent component
of the series ty  as the solution to the following minimisation problem:

(4.5) ( ) ( )[ ]∑
=

−−λ+−
=

T

t
tttt

g
gggy

T
tt 1

2
1

2

}{ 1

min

The parameter λ penalises the changes in the permanent component (or potential output)
tg . The degree of smoothness of the estimated tg  depends strongly on the chosen value

for λ. The first order conditions for the minimisation problem (4.5) take then the form:

0)(2)(2)(2 11 =−λ−−λ+−− +− tttttt gggggy

Such conditions show the link between the transitory component ttt gyd −=  and the
changes in the permanent component tg .

In order to study the characteristics of corresponding low pass and high pass filters the
first order conditions can be rewritten in the form:

tt gLFy )(=

where )(LF  is given by:

( ) )1)(1(121)( 11 −− −−λ+=λ−λ++λ−= LLLLLF

The exponential smoothing approach can be viewed as a two-side filter able to render
stationary series characterised by stochastic trends (Nelson and Plosser, 1982) or, more
generally integrated series up to order two (see King and Rebelo 1993).
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King and Rebelo (1993) proposed a detailed analysis of this filter in both frequency and
time domain. In particular they computed the gain functions of the filter showing that it is
not a good approximation of the optimal filter.

4.6 The Hodrick and Prescott filter

The Hodrick and Prescott filter is the most known and commonly used univariate method
for the estimation of potential output. It is largely used in scientific papers as well as by
international organisations like the IMF and the OECD. In the European Union it is used
by the Economic and Financial Affairs Directorate and in the Economic Directorate of the
European Central Bank.

4.6.1. Derivation of the Hodrick and Prescott filter

The application of the Hodrick and Prescott filter extracts from ty  the growth component

tg . The estimation of tg  is obtained through the minimisation of the sum of squares of
the transitory component subject to a penalty for the variation in the second differences in
the growth component. That is tg  is the solution to the following minimisation problem:

(4.6) [ ][ ]∑
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where λ is a penalty parameter which is closely related to the “smoothness” of the
estimated trend. With our notation (4.6) can be rewritten as:
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The minimisation of (4.6) leads to a system of linear equations giving the series ty  as a
function of its permanent component via a T×T matrix M:

(4.7) Mgy =

Where y and g are, respectively, the series ty  and tg  stacked in a column vector. The first
order conditions for the minimisation of (4.6) give:
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that is, in matrix form:

Fggy λ=−

where:
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The permanent component is given by:

(4.8) yIFyMg 11 )( −− +λ==

and the matrix M depends only on the number of observations and on the parameter λ.

It is easy to understand that for this filter the role of the smoothing parameter λ is crucial.
By increasing the value of λ we obtain smoother estimates of the growth component tg
and more volatile estimates of the transitory component td . In fact if ∞→λ , (4.6) is

minimised if the estimated trend is a straight line (for which tg2∆  are identically zero); on
the other hand if 0=λ  then (4.6) is minimised if tt yg =  for every t. Figure 4.6 gives an
example of three different estimates of the trend component corresponding to different
choices for λ.

In their original paper Hodrick and Prescott (1980) propose some recommended values
for λ. They suggest:

• λ = 100 for annual data;

• λ = 1600 for quarterly data;

• λ = 14400 for monthly data.

This means that the proposed values for λ are given by 2100 f⋅  where f is the frequency
of ty  (f = 1, 4 and 12 for annual, quarterly and monthly data). Further insights on the
choice for λ will be given in the next section. Figure 4.6 shows the estimated trend
component for the quarterly index of industrial production in the Euro-zone arising from
three different choices for λ and figure 4.7 compares the three corresponding transitory
components.
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Hodrick and Prescott trend for λ = 200

80

90

100

110

120

130

85q1 86q1 87q1 88q1 89q1 90q1 91q1 92q1 93q1 94q1 95q1 96q1 97q1 98q1 99q1 00q1 01q1

Hodrick and Prescott trend for λ = 1600
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Hodrick and Prescott trend for λ = 24000
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Figure 4.6 Estimated trend of the quarterly index of industrial production in the
Euro-zone applying the Hodrick and Prescott filter with 200=λ , 1600=λ
and 24000=λ .
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Hodrick and Prescott transitory component for different λ

Figure 4.7 Estimated transitory component of the quarterly index of industrial
production in the Euro-zone applying the Hodrick and Prescott filter with

200=λ , 1600=λ  and 24000=λ .

4.6.2. Infinite sample properties of the Hodrick and Prescott filter

A detailed analysis of the properties of the Hodrick and Prescott filter has been carried out
by King and Rebelo (1993). Those authors considered the special case where the sample
size is infinite, so the reference series is ∞

−∞=tty }{ . This hypothesis, although not
meaningful for empirical purposes, allows simplification of the algebra involved by the
application of the Hodrick and Prescott filter and to derive useful properties of the filter
itself, on both the frequency and time domain.
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If the reference series is ∞
−∞=tty }{  the matrix equation (4.7) can be written, in the lag

notation, as:

tt gLMy )(=

where:

212 )1()1(1)( −−−λ+= LLLM

So the trend component is obtained by applying the linear filter )()( 1 LMLH g
−=  to the

observed series:

(4.9) ttgt y
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yLHg 212 )1()1(1
1)( −−−λ+

==

and the filter to obtain the transitory component is )(LHd  given by:

(4.10) [ ] ttgtdt y
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=−==

One important consequence of (4.10) is that )(LHd  can be factorised as:

)()1()( 4 LHLLH dd ′−=

so the application of the Hodrick and Prescott filter can render stationary series containing
up to four unit roots.

King and Rebelo (1993) show that the lag polynomial in (4.9) is symmetric. In fact
denoting by 1θ  and 2θ  the roots of )(LM  that satisfy 1<θi , )(LH g  can be written as:
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21

2
1121 ])1()1)(1([ θθ−θ−θθ−=A  and 2A  is the complex conjugate of 1A . So,

with an infinite sample, the Hodrick and Prescott filter is symmetric and induces no phase
shift.

The frequency response function of the filter )(LHd  introduced in (4.10) is a real number
and is equal to:

2

2

))cos(1(41
))cos(1(4)(~
ω−λ+

ω−λ
=ωdH

Figure 4.8 shows the gain of the Hodrick and Prescott filter for the transitory component,
in the case of 1600=λ , together with the ideal high pass filter for quarterly data, for
which the cut-off frequencies respect 16* π=ω . As the figure shows, for 1600=λ  the
Hodrick and Prescott filter offers a good approximation to the ideal filter.
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Gain of the Hodrick - Prescott filter ( λ=1600)

-0.5

0

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

frequency - fraction of  π

Figure 4.8 Gain of the Hodrick and Prescott filter for 1600=λ .

The same is not true for other values of λ: figure 4.9 plots the gain of the Hodrick and
Prescott filter for the same values of λ used in figures 4.6 and 4.7. As the plot shows, for

200=λ  and 24000=λ  the approximation of the Hodrick and Prescott filter to the ideal
filter for quarterly data is rather poor.

Gain of the Hodrick - Prescot filter for different values of λ
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Figure 4.9 Gain of the Hodrick and Prescott filter for 200=λ , 1600=λ  and
24000=λ .

4.6.3. Optimality conditions for the Hodrick and Prescott filter

Harvey and Jaeger (1993) and King and Rebelo (1993) studied the conditions under
which the Hodrick and Prescott filter performs as the optimal filter, in the sense that it
minimises the mean squared error 2

1 )ˆ()1( tt
T
t ddTMSE −Σ= =  where td  is the “true”

transitory component and td̂  is its estimate. Suppose that the permanent and the
transitory components follow two ARMA processes whose innovations are uncorrelated,
that is:

(4.11) g
t

g
t

g LMgLA ε= )()( and d
t

d
t

d LMdLA ε= )()(
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where g
tε  and d

tε  are serially and mutually uncorrelated errors with variances,

respectively, 2
gσ  and 2

dσ . The AR polynomial )(LAg  for the permanent component can
contain one (or more) unit roots.

Whittle (1963) shows that the optimal filter for td  is given by:

(4.12)
)()1()()(

)()()( 1

1
*

LQLALA
LALALH gg

gg

d ψ−+ψ
ψ

= −

−

where 22

2

gd

d

σ+σ
σ

=ψ  and 
)()(

)()()()()( 1

11

−

−−

=
LMLM

LMLMLALALQ dd

ggdd
.

King and Rebelo (1993) study the conditions under which the Hodrick and Prescott filter
(4.10) is coincident with the optimal filter (4.12). These conditions turn out to be very
particular and sometimes in contrast with business cycle economic theory.

For example (4.10) is coincident with (4.12) if the AR and MA polynomials in (4.11) are
given by:

2)1()( LLAg −= and 1)()()( === LMLALM ddg

that is the growth and transitory components are generated by:

g
ttg ε=∆2 and d

ttd ε=

In this case the parameter λ is given by 22
gd σσ=λ . In their original paper Hodrick and

Prescott (1980) argued that for quarterly data dσ  is approximately forty times bigger than

gσ , so that they suggest to choose 1600)40( 2 ==λ  for quarterly data.

The above mentioned optimality conditions are unlikely to be satisfied, as shown by Guay
and St-Amant (1997). The most questionable assumptions are:

• Transitory and trend components are not correlated with each other. This implies that
the growth and cyclical components of a time series are assumed to be generated by
distinct economic forces, which is in contrast with some business cycle models (see
Singleton (1988) for a discussion).

• The process is integrated of order two. This is often incompatible with priors on
macroeconomic time series. For example, it is usually assumed that real GDP is
integrated of order one or stationary around a breaking trend.

• The transitory component is white noise. This is also questionable. For example, it is
unlikely that the stationary component of output is strictly white noise. King and
Rebelo (1993) show that this condition can be replaced by the following assumption:
an identical dynamic mechanism propagates changes in the trend component and
innovations to the cyclical component. However, this condition is also very restrictive.

• The parameter controlling the smoothness of the trend component is appropriate.
Economic theory provides little or no guidance to determine the ratio between 2

dσ  and
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2
gσ . While attempts have been made to estimate this parameter using maximum-

likelihood methods (see Harvey and Jaeger (1993)) it appears difficult to estimate it
with reasonable precision.

4.6.4. The Hodrick and Prescott filter in a finite sample

Section 4.6.2 presented the main properties of the Hodrick and Prescott filter on an
infinite sample, that is when the series of interest is ∞

−∞=tty }{ . Two major conclusions were
drawn:

• the Hodrick and Prescott filter is symmetric, so it does not induce any phase shift at
any frequency;

• the gain of the Hodrick and Prescott filter approximates the gain of the ideal high pass
filter, provided the choice of the parameter λ is accurate (see figures 4.8 and 4.9).

These conclusions are no longer true if we consider the Hodrick and Prescott filter applied
to a finite sample, that is (4.8). In this case, in fact, the filter weights change according to
the period t in which we are estimating the trend. The filter is no longer symmetric and a
phase shift is induced at every frequency, even if it is negligible except for the first and the
last observations in the sample.

Moreover for these first and last observations the filter does not approximate anymore the
ideal high pass filter. Figure 4.10 shows the gain for the Hodrick and Prescott filter
calculated in 2=t , 3=t  and 4=t .
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Figure 4.10 Gain of the Hodrick and Prescott filter with 1600=λ  in a finite sample for
2=t , 3=t  and 4=t .

4.7 The Baxter and King filter

The approach of Baxter and King (1995) to cycle extraction is essentially an attempt to
approximate, through a finite terms centred moving average, the ideal band pass filter
introduced in section 3.2. The approach is based on the definition of the business cycle
proposed by Burns and Mitchell (1946), according to which the business cycle consists of
fluctuations lasting no less than six and no more than thirty two quarters.
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We will present Baxter and King methodology in two steps: first we will derive the
approximation to the ideal low pass filter and then we will extend the method to obtain the
approximation to the ideal high pass and band pass filter. In particular, the derivation of
the high pass filter will allow for a comparison between the methodology of Baxter and
King and the methodology of Hodrick and Prescott.

4.7.1. The low pass and high pass filter in the Baxter and King approach

As was pointed out in section 3.2, the ideal low pass filter, denoted by )(* LH LP , is
characterised by a frequency response function whose gain )(* ωLPG  and phase )(* ωΨLP

fulfil the following conditions:

(4.13)

 every for    0)(

such that  every for    0)(

such that  every for    1)(

*

**

**

ω=ωΨ

ω>ωω=ω

ω≤ωω=ω

LP

LP

LP

G

G

where *ω  is the cut-off frequency. For example if the ideal low pass filter is meant to
extract the trend component from an economic quarterly series then, according to Burns
and Mitchell (1946), the cut-off frequency corresponds to fluctuations of period 32=T
quarters and so we have 162* π=π=ω T .

The time domain representation of the ideal filter )(* LH LP  is an infinite terms symmetric
moving average:

(4.14) ∑
∞

−∞=

=
j

j
jLP LbLH )(*

where jj bb −= . The coefficients jb  in (4.14) can be obtained by computing the inverse
Fourier transform of the step function (4.13):

(4.15) ∫∫
ω

ω−

ωπ

π−

ω ω=ωω=
*

*
* )( dedeGb jiji
LPj

Evaluating the integral (4.15), the coefficients jb  for the ideal low pass filter are given by:

(4.16)
1,2,...for    )sin( *

*
0

=πω=

πω=

jjjb

b

j

Of course the application of (4.14) requires an infinite sample period, so the main target of
Baxter and King (1995) was to approximate (4.14) via a finite terms symmetric moving
average like:

(4.17) ∑
−=

=
k

kj

j
j

k
LP LaLH )(



-33-

where jj aa −= ; so the moving average (4.17) involves only 12 +k  terms. The weights

ja  must be chosen so that they fulfil, for any k, the following constraints:

• the gain )(ωk
LPG  of )(LH k

LP  is equal to one at frequency zero, that is 1)0( =k
LPG , like

for the ideal low pass filter. This condition requires that the coefficients ja  in (4.17)

respect 1=Σ −= j
k

kj a ;

• the gain )(ωk
LPG  is such that the following quadratic loss function:

∫
π

π−
ωω−ω= dGGQ k

LPLP
2* )()(

is minimised.

Baxter and King (1995) show that the ja  that fulfil these conditions are given by:

(4.18) kkjba jj ,...,for    −=θ+=

where jb  is the jth coefficient of the infinite moving average (4.14) and θ  is an additive

constant so that 1=Σ −= j
k

kj a , that is:

(4.19) )12()1( +Σ−=θ −= kb j
k

kj

So the best approximation to an ideal low pass filter is obtained by truncating (4.14)
between k±  and by adding a constant so that the coefficients sum to one.

A crucial aspect for empirical applications is clearly the choice of k which determines the
length of the truncated moving average. Baxter and King (1995) plotted, for quarterly
data, the gain )(ωk

LPG  for different values of k against the gain )(* ωLPG  of the ideal low
pass filter; although it is clear that the larger k is, the better )(ωk

LPG  approximates
)(* ωLPG , the authors conclude that no sensible improvement is obtained beyond 12=k .

Figure 4.11 plots the gain of the Baxter and King low pass filter for 4=k , 12=k  and
20=k  together with the gain of the ideal low pass filter. As the plot shows, the

approximation is very poor for 4=k  but it is rather acceptable for 12=k  and even more
for 20=k .
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Baxter and King low pass filter
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Figure 4.11 Gain of the Baxter and King low pass filter for 4=k , 12=k  and 20=k
(for quarterly data and cut-off frequency 16* π=ω ).

So in the Baxter and King approach the trend component tg  of the series ty  is obtained
by:

∑
−=

−==
12

12

12 )(
j

jtjtLPt yayLHg

where the coefficients ja  are given by (4.18) and the cut-off frequency is 16* π=ω . On
the other end, an approximated high pass filter would extract from ty  the transitory
component td , that is:

(4.20) ∑
−=

−′==
k

kj
jtjt

k
HPt yayLHd )(

The derivation of this approximated high pass filter is straightforward. In fact we have:

(4.21) t
k
LPttt yLHgyd ))(1( −=−=

and the weights ja′  in (4.21) are easily derived from the weights ja  in (4.18) by setting:

0   ,,...,for    
1 00

≠−=−=′
−=′

jkkjaa
aa

jj

So the high pass Baxter and King filter (4.21) can be compared to the Hodrick and
Prescott filter introduced in section 4.6. Figure 4.12 plots the gain of the Hodrick and
Prescott filter compared to the high pass version of the Baxter and King filter for 12=k .
As the plot shows, there are no relevant differences between these two filters.
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Gain of the HP and BK high pass filters
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Figure 4.12 Gain of the Hodrick and Prescott filter (for quarterly data and 1600=λ )
compared to the gain of the Baxter and King high pass filter (for quarterly
data, 12=k  and cut-off frequency 16* π=ω ).

4.7.2. The band pass Baxter and King filter

The most important contribution of Baxter and King (1995) paper is the derivation of a
band pass filter to estimate directly the cyclical component tc . Burns and Mitchell (1946)
define the business cycle as fluctuations in some macroeconomic series lasting no less than
6 and no more than 32 quarters. Thus the natural goal of Baxter and King approach is to
develop a band pass filter, that extracts only the components whose frequency lie in a
particular range ],[ *

2
*
1 ωω , approximating the ideal band pass filter introduced in section

3.2. If the cut-off frequencies *
1ω  and *

2ω  are chosen appropriately then the cyclical
component tc  is extracted by applying to ty  the following moving average:

(4.22) ∑
−=

−′′==
k

kj
jtjt

k
BPt yayLHc )(

whose coefficients are given by:

(4.23) 1212 θ−θ+−=′′ jjj aaa

where ja1  and ja2  are the jth weights, given by (4.18), of the low pass filters with cut-off

frequencies *
1ω  and *

2ω  respectively, and 1θ  and 2θ  are the corresponding correction
terms, defined by (4.19). It is easy to show that the coefficients ja ′′  in (4.23) sum to zero.

As mentioned before, the choice of *
1ω  and *

2ω  depends from the range of periodicity we
want to extract and from the frequency of the original data (annual, quarterly or monthly).
For example to extract from quarterly data fluctuations in the range from 1.5 to 6 years
we would fix 16*

1 π=ω  and 3*
2 π=ω .

Figure 4.13 shows, for quarterly data, the gain of the Baxter and King band pass filter for
different values of k together with the ideal band pass filter. Like in the previous case, the
approximation to the ideal filter is rather poor for small values of k and improves when k
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is increased. Once again no sensible improvement is obtained beyond 12=k , which is
then chosen as a reference value for applications.

Baxter and King band pass filter
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Figure 4.13 Gain of the Baxter and King band pass filter for 4=k , 12=k  and 20=k
(for quarterly data and cut-off frequencies 16*

1 π=ω  and 3*
2 π=ω ).

As an example, figure 4.14 shows the weights of Baxter and King moving average (4.22)
for 12=k , 16*

1 π=ω  and 3*
2 π=ω .

Baxter and King filter weights (for k=12)
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Figure 4.14 Weights of the Baxter and King band pass filter (for quarterly data, 12=k
and cut-off frequencies 16*

1 π=ω  and 3*
2 π=ω )

4.7.3. Some comments on the Baxter and King filter

When using the Baxter and King filter, k observations are lost at the beginning and the end
of the sample period, according to the required degree of approximation to the ideal filter.
As we showed in sections 4.7.1 and 4.7.2, the common choice is 12=k  for quarterly
data. In order to reduce the loss of data at the beginning and at the end of the sample,
truncated versions of the filter can be used.

Alternatively, it is possible to forecast and backcast the series before applying the filter so
as to use the complete moving average. Anyway the reliability of forecasts over such a
long period is quite low. Moreover if this forecast is made with univariate ARIMA models
it is well known that they will not correctly capture turning points. So the use of truncated
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moving averages seems to be preferable, although they are subject to the same
shortcomings that were pointed out for the finite sample version of the Hodrick and
Prescott filter in section 4.6.4.

It is also important to observe that the Baxter and King filter is the only univariate method
explicitly designed for the direct estimation of the cyclical fluctuation. Modifying the cut-
off frequencies *

1ω  and *
2ω  it is also possible to isolate other specific cyclical components

like, for example, Juglar and Kuznets cycles.

Another important feature of this filter is that, thanks to its band pass structure, it can deal
with seasonally adjusted series as well as with unadjusted ones. In section 1 we saw that
business cycle analysis is typically performed with seasonally adjusted data since they have
a more regular behaviour which allows for an easier interpretation of the short term
movements of the economy. Even if the estimation of the cyclical component could be
performed in an equivalent way by applying the Baxter and King filter to both seasonally
adjusted and unadjusted series, in practice, things are different. This is due to the fact that,
in practice, economic series are often short and unadjusted data are often too erratic or
noisy. Applying the same filter to seasonally adjusted and unadjusted (short) series does
not produce the same results, see Astolfi et al. (2001).

4.8 The Beveridge and Nelson decomposition

Beveridge and Nelson (1981) were the first to propose a model based decomposition
method of an integrated time series, which provides a convenient way to estimate its
permanent and its transitory components. They show that any ARIMA(p,1,q) process can
be represented as the sum of a stochastic trend plus a stationary component, where a
stochastic trend is defined to be a random walk, possibly with drift. This representation is
most easily obtained for an ARIMA(0,1,1) model. So suppose that ty∆  is a MA(1)
process, so that 1−+=∆ ttt beey , where te  is white noise and 1<b . Then:

(4.24) 11 −− ++= tttt beeyy

Solving equation (4.24) recursively and assuming 000 == ey  we obtain:

∑∑
−

==

+=
1

11

t

j
j

t

j
jt ebey

and therefore:

(4.25) t

t

j
jt beeby −+= ∑

=1
)1(

Equation (4.25) gives the decomposition of the series ty  into the trend and the transitory
components, which are given by, respectively:

∑
=

+=
t

j
jt ebg

1
)1( and tt bed −=

An alternative expression for the trend component is:
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ttt ebgg )1(1 ++= − .

Evidently tg  is a random walk without drift and td  is a stationary process. Note that
innovations in the two components are both proportional to te , i.e. they are perfectly
correlated; if b>0, the correlation is –1 and if b<0 the correlation is +1.

The same result can be obtained for a general ARIMA(p,1,q) process. An ARIMA(p,1,q)
process can be written as

tt eLbfyLa )()( +=∆

where f is a constant and j
j

p
j LaLa 11)( =Σ−=  and j

j
q
j LbLb 11)( =Σ+=  are two lag

polynomials of order p and q, respectively, whose roots lie outside the unit circle.
Inverting a(L) the model can be rewritten as an infinite MA process:

(4.26) tt eLchy )(+=∆

where j
p
j afh 0=Σ=  and )()()( LaLbLc = . The right term in equation (4.26) can be

decomposed in:

ttt ecLcechy ])1()([)1( −++=∆

that can be written as:

(4.27) ttt eLcLechy )()1()1( *−++=∆

where )(* Lc  is the lag polynomial such that )1()()()1( * cLcLcL −=− . Multiplying both
sides of (4.27) by 1)1( −− L  and assuming 000 == ey  we obtain:

(4.28) t

t

j
jt eLcechty )()1( *

1
++= ∑

=

Equation (4.28) gives the Beveridge and Nelson decomposition for the series ty . The
permanent component is given by:

(4.29) ∑
=

+=
t

j
jt echtg

1
)1(

and can be viewed as the sum of a “deterministic trend” ht and a “stochastic trend”

j
t
j ec 1)1( =Σ . The transitory component is given by:

(4.30) tt eLcd )(*=

As in the ARIMA(0,1,1) case, the innovations in the trend and in the cyclical components
are both proportional to te  and thus are perfectly correlated.

Some general remarks apply to the Beveridge and Nelson decomposition:
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• Forecasting the series of interest is equivalent to forecasting the permanent component
given by the Beveridge and Nelson decomposition since the transitory component has
zero mean. So it is impossible to forecast the transitory component and, in particular,
the turning points.

• The transitory component is defined as a cumulative sum of shocks so the cyclical
pattern is generated by a diffusion mechanism like the one described by Frisch (1933).
This implies that the cycle obtained using the Beveridge and Nelson decomposition
can significantly differ with respect to the one obtained using mechanical approaches,
like the Hodrick and Prescott filter.

• No a priori definition of the characteristics of the cyclical component is required by the
Beveridge and Nelson approach. All the parameters involved in the decomposition are
estimated from the available dataset so the decomposition does not depent upon
“external” parameters linked, for example, to the smoothness of the trend or to the
frequency range of the cyclical component.

• The estimated permanent and transitory components depend heavily on the particular
ARIMA model which is fitted to the data. It is well known that the identification of an
ARIMA model is a quite subjective issue. The Beveridge and Nelson is thus
characterised by a certain degree of arbitrariness and different decompositions can be
consistent with the same dataset.

4.9 The unobserved components decomposition of Harvey

The unobserved components approach, has been introduced by Harvey (1985). The main
idea is that each economic time series ty  is the result  of some unobserved components:

tttt cgy ε++=

which is the decomposition model proposed at the beginning of this section. With this
approach we can also treat non-seasonally adjusted series by using the more general
model

ttttt scgy ε+++=

where ts  is the seasonal component.

For sake of simplicity we focus on the model for seasonally adjusted data. The key
hypothesis is that all the component are stochastic and generated by independent
processes. So the Harvey decomposition is based upon the hypothesis that trend and cycle
have a separate dynamic structure. Thus they are supposed independent, at least in the
basic version of the model, in contrast with the Beveridge and Nelson decomposition
presented in the previous section.

The main advantage of this model is that it can deal with structural breaks via an adequate
formulation of the trend generating mechanism. It is also important to observe that, since

tc  is assumed to be generated by a stochastic process of zero mean and finite variance,
namely ),0(~ ΩNct  forecasting ty  is equivalent to forecasting the trend component tg .
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4.9.1. Alternative models for the trend component

The general model for the trend component tg  proposed by Harvey is:

ttt

tttt gg
ζ+β=β

η+β+=

−

−−

1

11

where tη  and tζ  are orthogonal white noise. So that, 0),(Cov =ζη tt  for all t, s.

It is important to note that tη  gives the possibility to the trend to fluctuate around its
deterministic path. By contrast, tζ  affects the slope of the trend.

It is possible to show that this representation of the trend tg  corresponds to an ARIMA
model integrated of order two and respecting some particular constraints. As special cases
of this representation, when 022 =σ=σ ζη , the trend tg  is purely deterministic:

tggg tt β+=β+= − 01

When only 02 =σζ , tg  is a random walk with drift of the form:

ttt gg η+β+= −1

Finally if 02 =ση , the trend is an integrated process of order two where its second
difference is equal to a white noise. This formulation of tg  is commonly referred as
“slowly moving smooth trend”.

The general formulation proposed by Harvey allows a large variety of trend specifications
with different characteristics. This can be viewed as one of the main advantages of this
approach, which is able to deal with very different growth typologies.

On the other hand, as in the Beveridge and Nelson decomposition, the cyclical component
is supposed to be a zero mean stationary process. So, on the long run, forecasting the
series is equal to forecasting the trend component.

4.9.2. The cyclical component

In the Harvey approach (1985-1989) the cycle tc  is modelled on the basis of a linear
process with the possibility of displaying some more or less regular fluctuations. The
general model can also deal with some asymmetries in the fluctuations.

The general form of the linear process is given by:
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where tκ  and *
tκ  are mutually uncorrelated white noise errors with the same variance.
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The parameter ρ , satisfying 10 ≤ρ≤ , is the amplification factor insuring the stability of
the cycle and λ , satisfying π≤λ≤0 , defines the frequency of the cycle corresponding to
a period of λπ2 . *

tc  is a technical variable dual of the cycle tc .

If tκ  and *
tκ  are set equal to 0, the cycle is then deterministic and is given by:

(4.32) )sincos( ttc t
t λβ+λαρ=

where 0c=α  and *
0c=β . If 1=ρ  the cyclical movements are constants and if 1<ρ  the

cyclical fluctuations tend to decrease.

Harvey proposes a stochastic version of the deterministic cycle. The deterministic cycle is
a linear combination of trigonometric functions and it doesn’t appear really adequate to
describe economic fluctuations. The presence of innovations in the stochastic version of
the cycle allows a higher flexibility, which better describes the behaviour of economic
variables.

The role of innovations is to define at each time new initial conditions for the process
whereas such conditions are fixed and equal to α and β in the deterministic version.

The formalisation proposed by Harvey seems really similar to the impulse propagation
mechanism described by Frisch (1933). The cyclical components of a series is the result of
a random chronology of impulses of a given variance and of a propagation mechanism
characterised by a virtual duration and amplification factor. The resulting component is
characterised by expansion and recession phases which can be asymmetric, thus displaying
a more complex pattern with respect to the deterministic cycle in (4.32).

The model (4.31) can be viewed has an AR(1) model and can be written in the form:
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So the representation for the cycle tc  is given by:

ttt LLcLL *22 )sin()cos1()cos21( κλρ+κλρ−=ρ+λρ−

The right side of this equation is a sum of moving average processes. For this reason it
can be written in the following form:

t
c

t LcLL εθ−=ρ+λρ− )1()cos21( 22

Where t
cε  is the cyclical innovation and where θ is a function of the basic parameters of

the model. It can be easily shown that the cycle tc  is a stationary ARMA(2,1) process if
1<ρ .

The parameters of the model are constrained by its structural specification so that the
eigenvalues of the AR polynomial are in the complex region, which is the usual condition
for a cyclical behaviour of an autoregressive process. When λ takes values 0 or π the
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process degenerates in AR(1), since 0sin =λ  in (4.31) and the cyclical component is
simply described by:

ttt cc κ+ρ= −1

It can be useful to express the cycle tc , in its general form, as an infinite moving average
process, which gives

∑
∞

=
−εψ=

0j
jt

c
jtc

where the parameters jψ , after the estimation, take the form:

10 =ψ and ( ) 1for    , >ρ=ψ ρλ jjfj
j

where f λ,ρ is a periodical function of ρ and λ of periodicity λπ2 .

The sequence of parameters jψ  describes a decreasing cycle, if 1<ρ , of period λπ2
and with amplitude defined by the parameters ρ and λ. The infinite moving average
representation proposed above can be useful in understanding the propagation mechanism
of the stochastic cycle. Each innovation is the origin of its own cycle. For a given time
point t the observed value of tc  appear to be the result of a accumulation of elementary
cycles generated by each past innovation. All elementary cycles have the same frequency,
amplitude and degree of deceleration but they differ in terms of date, sign and size of the
innovation generating them.

Model trend + cycle

tttt cgy ε++=

tttt gg η+β+= −− 11

ttt ζ+β=β −1

Restrictions

0,0,0 222 ≠σ≠σ≠σ εςη       Local Linear Trend + stochastic cycle

0,0,0 222 ≠σ≠σ=σ εςη       Slowly Moving Smooth Trend + stochastic cycle

0,0,0 222 ≠σ=σ≠σ εςη       Random Walk With Drift + stochastic cycle

0,0,0 222 ≠σ=σ=σ εςη       Deterministic Trend + stochastic cycle

Figure 4.15: Trend specification in the structural decomposition of Harvey

4.9.3. Synthesis of alternative decomposition models

The unobserved component approach allows users to define a wide variety of models for
both the growth and the cyclical components. Since for economic proposes only
stochastic cycles can be judged of interest and since degenerated AR(1) processes are of
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no interest since they do not produce any cyclical movement, the main differences on the
decomposition is given by the specification of the growth component.

Figure 4.15 presents the most common used trend specifications with the associated
restrictions and under the hypothesis that the cycle is represented by a stochastic,
stationary, and non-degenerate ARMA process.

4.9.4. Extension of the model

In order to deal with some special economic features the general decomposition model
presented above can be generalised mainly following three different lines:

a) Possibility of defining cycles of different periodicity

There is a wide range of economic fluctuations, which can characterise observed time
series. Examples can be seasonal fluctuations and long term movements such as
Kuznets cycles. So the cyclical part of the model can be appropriately adjusted to deal
with such fluctuations. In this case, the decomposition scheme will be more complex
involving, for example, a seasonal component ts .

b) Inclusion of intervention variables to treat structural breaks

Structural changes can produce breaks in the trend evolution of the economy. To
have a good representation of these structural changes, like for example the German
unification, it is possible to include in the decomposition model four different types of
intervention variables:

• “Impulse intervention variables” corresponding to an outlier in the irregular
component tε ;

• “Step intervention variables” describing a level shift in the series;

• “Slope intervention variables” representing a permanent change of the slope of
the trend;

• “Seasonal intervention variables” representing a change in the seasonal pattern.

c) Use of external variables to explain some features for which the simple univariate
model cannot be adequate

The inclusion of external variables can be justified when there are modification in the
dynamic behaviour of the series which cannot be explained by its internal structure.
This can be the case of external shocks such as a non-expect depreciation of the
national currency (Italy 1994) or the oil crises (1974-1975).

By taking into account all the previous extensions, the model presented above can be
rewritten in the following more general form:
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where there are m distinct cycles, p explanatory variables tkx , , and r intervention variables

thw , .

4.9.5. Estimation and testing

In order to estimate the unobserved component tg  and tc  the model is expressed in the
usual state space model. The state equation is given by ttt Fzz χ+= −1  where tz  is the
state vector including all the unobserved component, F is a so-called transition matrix and

tχ  is the noise component. In our case the model takes explicitly the form:
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and the variance covariance matrix of tχ  is diagonal. The measurement equation is given
by ttt Hzy ε+=  which can be written in the form:

[ ] ttt zy ε+= 0101

The estimation of the unobserved components is obtained in a maximum likelihood
framework via the Kalman Filter. The Kalman Filter gives a recursive estimate of the state
vector tz  at each time t conditional on the available information.

Then a smoothing procedure allows to compute the expectation of the state vector tz
conditional on the available information over the overall observation period 1, ... ,T. This
operation give the possibility of extracting at each time all unobserved component as well
as their innovations.

Different diagnostics have been proposed to evaluate the adequacy of the model. The
most commonly used one is the one step forecasting error defined as the variance of the
difference between the observed values of ty  and the one step ahead forecast of the
model. The square root of this measure gives the standard error associate to the model.
The standardised errors defined as a the ratio between the one step forecast errors and the
standard error of the model are then used to compute additional quality measures. Such
measures are:

a) Normality statistics giving the possibility of identify the presents of unexplained
outliers. Tests have been proposed by Bowman and Shenton (NBS) and by Doornik
and Hansen (NDH) which are based on the first and fourth moment of the distribution.
Those statistics are distributed as ( )2²χ .

b) Absence of autocorrelation of the residuals based on the Box and Ljung test Q(p,q).
Under the null hypothesis this statistics is distributed as ( )q²χ  where q the number of
parameters governing the stochastic component.

The statistics R2
D is used to assess the forecasting performance of the one step forecasting

performance of the estimated model in comparison with the benchmark model represented
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by a random walk drift given by ttt yy η+β+= −1 . If R2
D takes positive values this means

that the estimated model performs better than the benchmark one.

4.9.6. Some remarks

The unobserved components decomposition of Harvey presents some operational
difficulties, both with regard to the parameters estimation and the extraction of the
cyclical and trend components. These require, in fact, a state space representation of the
model, and the extraction of the components is made using the Kalman filter.

The fact that the components are supposed to be uncorrelated can be viewed as an
obstacle in particular in the short run when it can be likely to assume a correlation
between growth and cyclical movements as proposed in the Beveridge and Nelson
decomposition.

The main advantage of this approach is represented by its flexibility and by the possibility
of using dummies and external variables to deal with events not easily treated in a purely
univariate context. Moreover the fact that this approach can treat seasonal series can be
viewed as an important improvement with respect to other approaches. In effect,
seasonality, cyclical movements and trends can be simultaneously identified and extracted
within the same procedure which ensures an internal consistency which does not
characterise alternative decomposition approaches.

5. An application of univariate cycle extraction techniques to some
Euro-zone data

In this section we propose a simple comparative analysis of different cycles obtained by
using alternative extraction techniques.

5.1 Description of the data

The reference series is the (seasonally adjusted) industrial production index for the Euro
zone. The seasonal adjustment has been obtained through the so-called "direct" approach,
that is by aggregating unadjusted data from Member States and then removing the
seasonal component from the total using TRAMO SEATS. The sample period is from
January 1985 to March 2001. Figure 5.1 shows the evolution of the monthly industrial
production index over the sample period.

The choice of industrial production index for this comparison can be easily explained.
Even if the share of the industrial sector of total GDP is no more than 40%, the industrial
fluctuations can explain more than 60% of the total GDP volatility.

This implies that the industrial production index is the main indicator when we want to
analyse short-term cyclical movements. Moreover, this series is available on a monthly
basis; this increases considerably its ability to describe cyclical fluctuations, for example
with respect to the total GDP which is only available on quarterly basis.
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Figure 5.1 Industrial production index for the Euro zone

5.2 Euro zone cyclical fluctuation

It can be of high interest to derive the alternative estimations of the cyclical fluctuations in
the industrial production index following some of the approaches presented in section 4
and to compare them in order to discover main similarities and differences. We focus our
attention upon the following four approaches:

• Hodrick and Prescott: this approach is the most widely known and used in literature;
• Baxter and King: it is the only approach that directly estimates the cyclical component;
• Phase Average Trend: based on an iterative procedure, focuses on an accurate dating

of turning points;
• Beveridge and Nelson decomposition: an approach that just considers the "stochastic"

aspect of the problem.

Figures 5.2 to 5.5 show the alternative estimation of the Euro zone cycle obtained by
using the above mentioned methods.

The comparison of figures 5.2, 5.3 and 5.4, shows quite clearly that the estimated cyclical
component does not differ too much from one method to the other. Moreover, as was
expected, the Baxter and King filter produces smoother estimates than the other two
approaches. This is essentially due to the fact that the Baxter and King filter estimates
directly the cyclical component tc  while the Hodrick and Prescott filter and the Phase
Average Trend method produce estimates of the transitory component td  which includes
also the irregular part εt.
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Figure 5.2 Hodrick and Prescott cycle of the Euro zone industrial production index

Figure 5.3 Baxter and King cycle of the Euro zone industrial production index
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Figure 5.4 PAT (Phase Average Trend) cycle and turning point chronology of the Euro
zone industrial production index

Regarding turning points, they are almost coincident in the series resulting from the HP
and PAT methods. The turning points are slightly different in the series resulting from the
BK approach.

These differences, which are not at all systematic, could be explained by the presence of
the irregular component tε  in the cycles derived from HP and PAT methods: this
component may produce small distortions in the turning point detection which is not
observed in the cycle derived from the BK filter.

Concerning the Beveridge and Nelson cycle, figure 5.5 shows five alternative estimates
obtained by imposing different ARIMA structures to the industrial production series.
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Cycle obtenu avec le modèle ARIMA 
(3,1,1).
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Cycle obtenu avec le modèle ARIMA 
(2,1,3).
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Cycle obtenu avec le modèle ARIMA 
(0,1,5).
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Cycle obtenu avec le modèle ARIMA 
(6,1,0).
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Cycle obtenu avec le modèle ARIMA 
(3,1,3).
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Figure 5.5 Alternative Beveridge and Nelson cycles of the Euro zone industrial
production index

Clearly, Beveridge and Nelson cycles are quite different from the previous ones because
they are showing a transitory component which is essentially different from the one that
underlines purely mechanical approaches. The cycle is not based on some a priori
specification, such as those proposed by the NBER, but it is determined by a cumulative
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sequence of stochastic shocks represented by an infinite moving average process. This
implies that the Beveridge and Nelson cycles are generally less regular and less smoothed
than the previous ones. This implies that quasi-periodical movements are much more
evident in the cycles derived from mechanical filters than in cycles derived from the
Beveridge and Nelson decomposition.

Looking at the figure 5.5, we can observe that the estimated cycles are quite similar, even
if the ARIMA models on which they are based are different. The only exception is
represented by the cycle estimated starting from an ARIMA model of order (0,1,5). This
can be explained by the fact that this model is the only one in which the autoregressive
part is missing. The cyclical component obtained by this model is significantly different
from the others.

5.3 Simple comparative analysis

In this section, we propose a very simple graphical comparison of the different cycles
outlined in section 5.2. For the Beveridge and Nelson decomposition only the cycle
obtained from an ARIMA(3,1,1) has been considered.

Figure 5.6 Comparison of cycle of Euro zone industrial production index obtained using
the four methods

We can easily note as the Baxter and King cycle (red curve) and the Hodrick and Prescott
cycle (blue curve) appear to be really similar. We could imagine the Baxter and King cycle
as a smoothed version of the Hodrick and Prescott one.

The cycle derived with the Phase Average Trend method (black curve) is also quite similar
to the two others already mentioned but only in the second half of the sample period. This
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could be produced, at least partially, by the extensive use of extrapolation techniques at
the beginning and at the end of the series.

Finally, the Beveridge and Nelson cycle (green curve) is characterised by a similar pattern
that the previous three, even if this evolution is less smoothed and characterised by a
higher volatility which is completely consistent with its stochastic nature. Moreover, the
Beveridge and Nelson turning point seem to be sometimes out of phase with respect to
the Beveridge and Nelson cycle. For example, the Baxter and King cycle identifies a
significative negative turning point in June 1993, which is also displayed by the Hodrick
and Prescott and Phase Average Trend cycles.

Looking at the Beveridge and Nelson cycle, this negative turning point appears in January
1993 i.e. 6 months earlier. This phenomenon needs to be better investigated due to the
fact that the Beveridge and Nelson decomposition is strongly dependent on the chosen
ARIMA specification.

6. Multivariate methods for the estimation of potential output and
output gap

In section 1 it has been shown how potential output is typically a constraint equilibrium
position of the economic system which corresponds, in many cases, to a so called steady
state. Steady state position is commonly defined as an equilibrium growth path without
any tension. The constraints are defined by the absence of such tensions. Structural
relationships such as Okun’s law, Phillips curve and NAIRU are just a few examples of
the constraints to be imposed on the evolution of potential output.

Besides any economic consideration, the constraints can vary according to the time
horizon of the analysis. In a long-run context the optimal utilisation of productive factors
and the technological process play the most important role. By contrast in a shorter period
the absence of inflationary pressures can be viewed as the main conditioning factor.

All univariate methods discussed in section 5 cannot deal by definition with all the above
mentioned constraints. The potential output derived in that context is a sort of statistical
trend obtained by smoothing the observed data.

The multivariate methods that we present in this section are an extension of the univariate
ones; in many cases they allow the possibility of including structural economic constraints
in the estimation process of potential output.

Such methods have been developed quite recently (starting from the end of 1980s,
beginning of 1990s). This means that they are still in a testing phase where more research
activities need to be done. This situation justifies the fact that only a limited number of
empirical applications of such approaches are available at present (see for a good survey,
Chagny and Döpke, 2001). Even if, the multivariate context appears to be most adequate
for a robust estimation of potential output and the output gap, available results do not
show clear evidence in favour of such methods in comparison with the univariate ones.

Moreover, economic theory is based on quite simple models which do not reflect the
complexity of the economic system. The presence of non-linearity, unexpected structural
and political changes as well as purely exogenous factors can affect the results obtained by
using multivariate methods.
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Finally, it must be also pointed out that, in the multivariate methods, the role of the
subjective appreciation of analysts is increased since they have responsibility and the
choice of the conditioning economic relationships to be included in the model.

6.1 The multivariate Hodrick and Prescott Filter
This method has been proposed by Laxton and Tetlow (1992) at the Bank of Canada. It is
a generalisation of the univariate Hodrick and Prescott Filter already presented above. The
main improvement of this filter is that it includes some structural relationships coming
from the economic theory. Examples of economic relationships to be included are the
Phillips curve, the Okun's Law and the NAIRU hypothesis. Moreover it is also possible to
include information about the supply side equilibrium and the stage of the business cycle.
In this sense this filter intends to solve one of the main shortcomings of the Hodrick and
Prescott filter (see Chagny and Döpke 2001), i.e. the fact that it is defined without any
reference to the economic theory.

6.1.1. Assessment of the filter

By assuming the presence of one conditioning economic relationship, the solution for the
multivariate version of the HP filter is given by:
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for given λ1 and λ2 and where tξ  is the residual from an estimated economic relationship:
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where ty '  is another variable depending on the growth component tg  and on an

exogenous variable tx  and ),0(~ 2VNt σξ .

This method has been used by the Bank of Canada (see Butler, 1996), by the Bank of
New Zealand (see Conway and Hunt, 1997) and by OECD (1999). As in the univariate
filter 1λ  and 2λ  reflect the weights of different components in the minimisation problem.
They can consequently affect the degree of smoothness of the residual component td .

This can be shown by rewriting the first equation (6.1) in the following form:

[ ]∑
=

−+ 







ξ

σ
+−−−

σ
+−

σ=

T

t
ttttttt

g
gggggy

T
tt 1

2
2
2

2
112

1

2
2
0}{

1)()(1)(1min
1

with 2
1

2

1 σ
σ

=λ  and 2
2

2
0

2 σ
σ

=λ .

In this case, the estimation of the growth component tg  is not simply a moving average
on the observed value ty  but it includes also the elements coming from the economic

relationship. The suitable 2λ  value is inversely proportional to the variance 2
2σ  of the
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residual component of the economic relationship. A higher value of 2λ  means that
information added by the economic relationship is relevant.

An example of an application of the multivariate Hodrick and Prescott filter is given by
De Brouwer (1998). Consider the estimation of potential output tg  by using the
additional information coming from the Phillips curve, Okun’s Law and capacity
utilisation equations. We can then write the following minimisation problem:

(6.2)
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where t,πε , tu ,ε  and tcu ,ε  are the residuals in the regressions listed below and t,2λ , t,3λ

and t,4λ  are possibly time-varying weights.

The residuals are obtained from the following three equations, which define, respectively,
the Phillips curve, Okun’s law and capacity utilisation.

• ttt
e
tt gyLA ,))(( πε+−+π=π : which states that inflation is above expected value when

output is above the non-accelerating inflation level of potential output.

• tutttt gyLBnairuu ,))(( ε+−+= : which draws on Okun’s law with the unemployment
rate below the non-accelerating inflation rate of unemployment (NAIRU) when
output is above its potential level.

• tcutt
g
tt gyLCcucu ,))(( ε+−+= : which draws on a partial indicator of supply

capacity, stating that capacity utilisation is above trend when output is above
potential.

Estimation of tg  minimising (6.2) is obtained through an iterative procedure.

Initial values for these equations are obtained by computing a preliminary estimation of tg
by using an univariate HP filter with λ=1600 as suggested by Hodrick and Prescott (1981-
1997).

To estimate the three structural relations, additional hypothesis are needed in particular
concerning the generating mechanism of expectations in the Phillips curve, the estimation
of NAIRU and capacity utilisation to be made (see De Brouwer 1998).

An iterative procedure is used to obtain a final estimation of the potential output. As a
first step the structural equations are estimated by using the results from the univariate
Hodrick and Prescott filter as initial conditions. Then, the results from the structural
equations are used in the multivariate Hodrick and Prescott model to compute again the
potential output tg . The output gap is consequently obtained and the structural equations
are then re-estimated based on such new results. The loss function for the multivariate
filter is then recomputed using the new results for the structural equations. This procedure
will continue until the coefficients on the output gap satisfy specified convergence criteria,
as described in Conway and Hunt (1997).
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The problems of weighting different structural components in the loss function need also
to be briefly discussed. The weights can be considered fixed or they can vary at each
iteration. The main principle is that the weight should be inversely proportional to the size
of the residuals from the corresponding equation. For example, using the output gap
variance as reference criteria we can calculate the weight of the jth component as:
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which can be recomputed at each iteration.

The estimation of the gap depends on the definition of the conditioning relationships and
on the weighting scheme in the loss function. The way inflation expectations are
generated, the choice of the narrow estimates as well as their relation with the expected
inflation rate can considerably affect the final estimates of the output gap. Finally, it is also
possible to envisage time varying weights jλ  which reflect the change of the relative
importance of the conditioning relationships in the estimation period.

6.1.2. Some remarks

The multivariate HP filter is an improvement and an extension of the usual HP filter.
Consequently, the same observations made to the HP filter can be applied to the
multivariate one. Additionally, it is useful to underline how the results derived from the
multivariate HP filter are really and strongly dependent on the subjective appreciation of
the economic theory.

Neo-classical or Keynesian hypothesis on the structural relationships can produce really
different patterns for the output gap. Moreover, the results of the filter are also
conditioned by the choice of the convergence criteria and by the fact that nothing in
principle can ensure that the iterative process described above will converge.

6.2 Multivariate Beveridge and Nelson decomposition

The Beveridge and Nelson decomposition in a multivariate framework was proposed by
Evans and Reichlin (1994). The basic idea follows the definition, made by Beveridge and
Nelson, of the trend component in terms of long-run forecast of the series of interest. By
increasing the information set, i.e. by including additional explanatory variables, better
forecasts can be made for the series of interest and thus, argue Evans and Reichlin, better
estimates can be obtained of the permanent component of the series.

In a multivariate setting the variable ty  in (4.26) is replaced by two vectors: the first one,
denoted by ty  contains 1k  I(1) non-stationary variables and the second one, denoted by

tz , contains 2k  stationary variables. The first row of ty  contains the variable of interest
(or its logarithm). Stacking in a single column vector the first differences of ty  and the
levels of tz , we can write the following Wold decomposition:
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where j
jj LCLC 101 )( ∞

=Σ=  and j
jj LCLC 202 )( ∞

=Σ=  are two matrix lag polynomials and the
errors te  are white noise with Ω=)( teVar .

The term teLC  )(  in (6.3) can be decomposed into:
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which can be written as:
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Multiplying the first 1k  rows of (6.4) by 1)1( −− L  we obtain:
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which gives the multivariate Beveridge and Nelson decomposition for the vector ]  [ ′tt zy .

The rank of the matrix )1(1C , which is less than or equal to 1k , is central in determining
the long-run evolution of the variables ty . If )1(1C  is full rank then the 1k  variables in ty
are moved by 1k  independent random walks. If the rank of )1(1C  is rk −1  this implies that
there are r linear combinations of ty  which are stationary, that is the variables ty  are
cointegrated and r is their cointegration rank.

Thus the rank of )1(1C  gives the number of “common trends” that, following (6.5),
determine the long-run evolution of the non-stationary variables ty .

It must be noticed that an identification problem exists in (6.3) and it is impossible to
associate one element (or a linear combination of elements) of te  with a particular
economic process. In fact suppose S is a non-singular matrix and a new set of innovations

tt eS 1−=η  is introduced. Then (6.3) could be written as:

tt
t

t SLCheSSLCh
z
y

η+=+=






∆ −  )( )( 1

So the identification of the parameters in (6.3) require a normalisation constraint. The
usual strategy is choosing S so that:

I
C
C

=








20

10
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Quah and Vahey (1995) show an example where the normalisation is based on priors
coming from the economic theory.

6.3 The common trends - common cycles decomposition of Vahid and Engle

Let ty  denote a vector of n )1(I  variables, so that ty∆  is stationary. We can write the
Wold representation of ty∆ :

(6.6) tt eLChy  )(+=∆

where te  are white noise with covariance matrix Ω . Equation (6.6) is analogous to (6.3)
in the case that no additional stationary variables tz  are considered. Furthermore we
assume 0=h  for ease of notation: this implies no deterministic trends in the levels of ty .

In (6.6) the lag matrix polynomial j
jj LCLC ∞

=Σ= 0)(  satisfies the normalisation constraint

nIC =0  discussed in section 6.2.

The right term in (6.6) can be expanded as follows:

(6.7) ttt eLCLeCy )()1( )1( *−+=∆

By integrating (6.7) we obtain the multivariate Beveridge and Nelson decomposition for
ty , introduced in section 6.2, that is:

(6.8) t

t

j
jt eLCeCy )()1( *

1
+= ∑

=

where the permanent components of ty  are given by:

(6.9) ∑
=

=
t

j
jt eCg

1
)1(

and the transitory components by:

(6.10) t
j

j
jtt eLCeLCd ∑

∞

=

==
0

** )(

If the matrix )1(C  has full rank n, then (6.9) shows that the permanent components of ty
can be seen as the sum of n independent random walks. On the other hand if the rank of

)1(C  is nk <  then we can write:

δ′γ=)1(C

where γ  and δ  are both kn×  matrices of rank k. Consequently (6.8) can be written as:

(6.11) ttt

t

j
jt ddey +γτ=+









δ′γ= ∑

=1
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where the 1×k  vector j
t
jt e1=Σδ′=τ  contains the k “common trends” of ty . It follows

from (6.11) that the common trends tτ  are random walks, since:

ttt eδ′+τ=τ −1

so equation (6.11) says that when the rank of )1(C  is nk < , the trend components of ty
can be viewed as the sum of k (instead of n) independent random walks tτ . This result is
known as “common trend representation” and was derived by Stock and Watson (1988).

Furthermore the fact that )1(C  has rank nk < , implies that there will be knr −=  linear
combinations of ty , say tyα′ , which are stationary, that is there are r cointegrating
combinations for the variables ty . The r independent cointegrating vectors, which are
stacked into the columns of the rn×  matrix α , are all orthogonal to )1(C , so:

(6.12) 0)1( =α′C

This result, together with (6.11), gives:

(6.13) tt dy α′=α′

so the stationary linear combinations of ty  depend only on the transitory components td
and not on the common trends tτ . The result expressed by (6.13) suggests to Vahid and
Engle (1993) the following question: are there linear combinations tyα′~  of ty  which only
depend on the common trends tτ ? This would imply:

(6.14) 0~ =α′ td

where α~  is a sn×  matrix. Those authors show that (6.14) holds if and only if α~  satisfies
the following relation:

(6.15) tt ey α′=∆α′ ~~

that is if and only if there exist s linear combinations of ty∆  which are an innovation with
respect to all the information available at time 1−t . If (6.15) holds we say that ty∆  have a
serial correlation common feature. Every column vector of α~  is called a cofeature vector
and defines a cofeature combination.

From the definition of the transitory component td  in the multivariate Beveridge and
Nelson decomposition, equation (6.14) implies:

(6.16) ,...1,0every for    0~ * ==α′ jC j

Vahid and Engle (1993) show that a consequence of (6.16) is that every *
jC  can be

factorised as follows:

(6.17) jj CFC ~* =
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where F and jC~  are, respectively, )( snn −×  and nsn ×− )(  matrices. The matrix F is the

same for all j and has rank )( sn − , while the matrices jC~  have rank less than or equal to
)( sn − . Substituting (6.17) into (6.10) leads to the following expression for the transitory

component:

(6.18) tt
j

j
jt dFeLCFd ~~

0
== ∑

∞

=

So the n-dimensional transitory component td  can be viewed as a linear combination of

)( sn −  “common cycles” td~ . Substituting (6.18) into (6.11) gives the so called “common
trend - common cycles” decomposition for ty  that is:

(6.19) ttt dFy ~
+γτ=

One corollary of (6.15) is that:

(6.20) 0))1((~~ *
0 =−α′=α′ CIC n

Equation (6.20) characterises the matrix α~  with respect to )1(C : it follows, in fact, that
)1(C  must have s eigenvalues equal to one, and that α~  is the matrix of the corresponding

eigenvectors. Recalling, from (6.12), that the cointegrating vectors, stacked in the matrix
α , are the eigenvectors corresponding to the r eigenvalues of )1(C  equal to zero, it
follows that the columns of α~  are linearly independent from the columns of α .

Furthermore this implies that if n )1(I  variables ty  are linked by nr <  cointegrating
combinations, so that they have rn −  common trends, they can have at most rn −
cofeature combinations, i.e. at most r common cycles. In other words, the sum of the
number of common trends and the number common cycles cannot exceed n.

In the special case in which there are r cointegrating combinations and exactly rn −
cofeature combinations, equation (6.19) yields a unique decomposition of ty  into
permanent and transitory components. In fact consider the nn×  matrix A obtained by:









α′
α′

=
~

A

Due to the linear independence of α  and α~ , A will have full rank and will have an inverse
1−A . This inverse can be partitioned as:

]~[1 −−− αα=A

where −α~  and −α  are, respectively, )( rnn −×  and rn×  matrices. Equations (6.13) and
(6.14) imply that:









α′

γτα′
=

t

t
t dF

y ~
~

A
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so that the series ty  can be partitioned as:

(6.21) tttttt yydFyy α′α+α′α=α′α+γτα′α== −−−−− ~~~~~1AA

It is possible to show that the matrices α′α= −~~P  and α′α=− −PI  in (6.21) are
idempotent and so they can be viewed as projection operators. So if the number of
common trends and the number of common cycles sum exactly to n, it is possible to
determine a projection operator which, for every t, divides the innovation te  into the
innovation in the permanent component and innovation in the transitory one.

6.4 The multivariate unobserved component decomposition of Harvey

The model proposed by Harvey and discussed in section 4.6 can be easily generalised to
the multivariate case where more variables are involved. Let ty  represent a column vector
containing n variables ity , ni ,...,1= . Each ity  allows for a decomposition scheme

itititit cgy ε++=  in which the permanent and the transitory components can be modelled
as in section 4.6.

The main point of this multivariate decomposition is to stress if and how the stochastic
components on which each variable ity  is decomposed depend on several common
factors.

For the growth variable itg , the presence of common factors corresponds to the existence
of cointegrating relations among the variables ity . Concerning the cyclical component the
presence of common factors can be viewed as an indication of similarities or
synchronisation among the components itc  of the variables ity . Similar cycles are
characterised by the same structural characteristic (same periodicity and reduction factor)
but they are not synchronised since they are not generated by the same sequence of
innovations. So resulting cycles can be out of phase and of different amplitude. Common
cycles are not only similar but they are also generated by innovations which are perfectly
correlated. They can differ only in terms of their amplitude.

In order to obtain a parsimonious model for the variables ity  it is useful to reduce the
number of innovations determining the n cyclical movements itc . This can be possible by
identifying nk <  common innovation factors which can be assumed as generators of the
cyclical movements of our variables.

When 1=k  we are in a very special case when all n variables ity  are characterised by
common cycles which are perfectly synchronised. When nk <<1  the cyclical movements
of each ity  is defined by a specific weighted combination of the k common innovation
factors.

The reduction of k can be really useful to improve and simplify the inference of the
estimated model. As an example we fix 3=n  so that )( 321 ′= tttt yyyy .

In this case, if 1=k  each cycle itc  will be a linear transformation of the common

elementary cycle ω
tc , which is generated by the following equation:
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Harvey proposed to write the model in the following way:

tttt

tttt

tttt

cgy

cgy

cgy

3333

2222

111

ε+θ+=

ε+θ+=

ε++=

ω

ω

ω

The only difference among the three cycles is represented by its amplitude and they are
proportional to each other. When 2=k  each cycle itc  will result from a combination of

two elementary cycles ω
tc1  and ω

tc2 . The two elementary cycles are similar but defined by
different and independent innovation chronology. Our model can now be written in the
following form:

ttttt

ttttt

tttt

ccgy

ccgy

cgy

323213133

2212122

1111

ε+θ+θ+=

ε++θ+=

ε++=

ωω

ωω

ω

The synchronisation of the cycles itc  will be only partial and it will depend on the
parameters 21θ , 31θ  and 32θ . The Harvey representation is very useful but nevertheless
conventional. The cyclical component tc1  corresponding to the observed variable ty1  is

assumed to be equal to the first elementary cycle ω
tc1 . The cyclical component tc2  is the

sum of a multiple of the first elementary cycle and the second elementary cycle:
ωω +θ= ttt ccc 21212 . The cyclical component tc3  is a linear combination of the two

elementary cycles: ωω θ+θ= ttt ccc 2321313 .

When k common factors determine the cycles of n variables the formulation presented
above is not the only one admissible. It appears clearly that the optimal possible
identification of k common factors generating the n, innovations itκ , ni ,...,1= ,
determining the cyclical movements itc  is a crucial point of this decomposition. The
number of common factors is given by rank(σ²Ω)=∑n

j=1∑T
t=1kj,t

2 which is the rank of the
variance covariance matrix of innovations. When nrank =Ωσ )( 2  it is impossible to
identify a subset of factors generating the n cycles. In this case, even if the cycles can
appear to be correlated, the phase shift among them is important and complex enough to
avoid the possibility of identifying common factors.

6.5 The Long-run Restrictions decomposition

The long run restriction models are essentially based on the theory developed by
Blanchard and Quah (1989). The authors use structural VAR models and they impose
long run restrictions to obtain an estimation of potential output and the output gap
conditional on such restrictions. The model proposed by Blanchard and Quah is a simple
supply demand model where the long-run restrictions are represented by the fact that
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nominal shocks do not have any permanent effect on the output variable. Lalonde et al.
(1998) and Funke (1997) have proposed extensions and applications of this approach.

Let tz  be a vector of n stationary variables. The Wold theorem allows this vector to be
expressed in the following form:

(6.22) ttt LCz ε+δ= )(

where tδ  is deterministic, j
jj LCLC ∞

=Σ= 0)(  is the moving average matrix with nIC =0

by definition. tε  is a n-dimensional vector of one-step forecasting errors of tz  given

1−tz with ),0(~ Ωε Nt . The long-run restriction approach assumes that the vector tz  has
the following structural representation:

(6.23) ttt Lz ηΓ+δ= )(

where j
jj LL ΓΣ=Γ ∞

=0)(  and tη  is an n-dimensional vector of structural shocks that are
assumed standardised, that is ),0(~ nt INη . It is possible to identify the structural form
(6.23) from the reduced form (6.22) by imposing the following restrictions.

(6.24)
1

0

0

'
00

)()( −ΓΓ=
ηΓ=ε
Ω=ΓΓ

LLC
tt

From equations (6.24) we obtain

)'1()1()'1()1( ΓΓ=ΩCC

This relation means that we can identify the matrix 0Γ  by imposing a sufficient number of
constraints on the matrix )1(Γ  that describes the long-term relationships.

In the Blanchard and Quah (1989) approach it is assumed that the first variable of the
vector tz  is production and that )1(Γ  is upper-triangular so that certain shocks are
constrained not to have any long term effects on production. In particular, Blanchard and
Quah make the hypothesis that nominal shocks do not have long-run effects on real
variables.

Supposing, as in Blanchard and Quah (1989), that the logarithm of production is the first
variable of the vector tz  and according to the long-run restrictions approach, we can
obtain the following decomposition:

d
t

dg
t

gg
t

g
t LLz ηΓ+ηΓ+ηΓ+µ= )()()1( *

1

where tt yz ∆=1  is the first logged difference of real output, g
tη  is the vector of permanent

shocks affecting the production, d
tη  is the vector of transitory shocks, )1(1

g
zΓ  is the long-

run multiplier of permanent shocks and )1()()(* ggg LL Γ−Γ=Γ  describes their transitory
dynamics.
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The estimated potential output based on this approach is then given by:

g
t

gg
t

g
t Lg ηΓ+ηΓ+µ= )()1( *

such that potential output is defined as the permanent part of production. The transitory
component of production is given by d

t
d

t Ld ηΓ= )(  and corresponds to the output gap.

A simple bivariate model provides an illustration of this approach. We suppose that tz
contains the logarithmic growth rate of production and inflation growth rate. The basic
assumption is that inflation does not have permanent effects on production (see Chagny
and Döpke, 2001). In other word, in the Blanchard and Quah model, it is assumed that the
nominal variables are neutral with respect to the real ones.

In a more complex situation some transitory shocks may affect the real output but not
inflation. Consequently, these shocks do not affect the output gap. It is then possible to
identify some shocks that affect permanently inflation but not production. In the same way
we can identify shocks that do not have any permanent effects on both output and
inflation.

An extension of the model of Blanchard and Quah (1989) has been discussed by Lalonde
et al. (1998). In their approach the SVAR contains more than two variables and the
inflation is the second variable in the vector tz . Once more, Γ(1) should be upper
triangular to reflect the long-run restrictions.

Production is then decomposed as follows:

dd
t

dddp
t

dpg
t

gg
t

g
t LLLz ηΓ+ηΓ+ηΓ+ηΓ+µ= )()()()1( *

1

where dp
tη  is the vector of shocks having transitory effects on production but permanent

ones on inflation and dd
tη  is the vector of shocks that do not have any permanent effects

on both production and inflation. Matrices )(LdpΓ  and )(LddΓ  are defined according to

the vectors dp
tη  and dd

tη , and represent the multipliers of such shocks. The dynamics
dp
t

dp L ηΓ )(  can be then used as an estimation of the output gap.

This approach is commonly referred to as long-term restriction on production and
inflation. It gives a more constrained estimation than the long term restriction on
production method proposed by Blanchard and Quah.

By defining:

( ) ( ) ( ) dd
t

dd
z

dp
t

dp
z

d
t

d
z LLL ηηη 111 Γ+Γ=Γ

we see that the estimated output gap satisfies:

( ) ( ) dd
t

dd
z

d
t

d
z

dp
t LLLg ηΓ−ηΓ=Γ= 11)(

So the output gap corresponds to the transitory component of production, excluding
those shocks which are not permanently related to inflation.
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For the long-run restrictions on production we assume that the real output is integrated of
order one. In the long-run restriction on production and inflation we assume that both
production and inflation are )1(I . An interesting application of this extended version of
the Blanchard and Quah model is proposed by Lalonde et al. (1998) to the U.S., Canada
and German economies.
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