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Foreword 

 
The quality of European statistics is essential for users. European legislation requires that a 

certain level of quality of statistics is guaranteed, and this quality has to be assessed.  

One important dimension of quality is accuracy. The accuracy is in the general statistical 

sense the degree of closeness of estimates to the true values and its components are variance 

and bias. The scope of this initiative is the variance requirements and estimation. 

Different statistical domains have been confronted with similar needs related to the variance 

of estimates. These needs range from setting up precision (variance) requirements and a 

process to assess compliance to the requirements (in EU Labour Force Survey – LFS), to 

developing procedures to streamline the production of standard errors of European statistics 

on the basis of the information provided by National Statistical Institutes (NSIs) of the 

European Statistical System - ESS (in the Community Survey on ICT
4
 Usage in Households 

and by Individuals).  

The initiatives launched by different statistical domains on similar issues called for a 

harmonisation of the methods in the ESS. In agreement with the ESS Directors of 

Methodology (DIME), the Eurostat Directorate ‘Methodology, corporate statistical and IT 

services’ (in charge of the methodological coordination and support both at Eurostat and ESS 

level) set up  a Task Force (TF) with a generic mandate to issue general recommendations on 

variance requirements and estimation for ESS household surveys. The implementation of the 

general recommendations and the specific agreements at stake for LFS and ICT are decided 

by the domain specialists. Actually, a LFS domain specialist in Eurostat set up a domain 

specific TF which run in parallel with the DIME TF, discussed the general recommendations 

and provided valuable feedback to the DIME TF. The coordination between the two TFs was 

ensured by the Eurostat methodologists. With respect to the ICT, domain specialists in 

Eurostat are currently assessing the use of methods to estimate standard errors centrally in 

Eurostat. 

For efficiency reasons, the DIME TF was a think tank composed of a limited number of high 

profile experts in Member States, two high profile academic experts and the Eurostat 

methodologists involved in their respective projects. The handbook prepared under the 

auspices of the DIME TF was additionally submitted for review by experts designated from 

other Member States than those who participated to the DIME TF and was subsequently 

developed on specific issues. 

We expect that the general recommendations issued within this coordinated approach will 

provide a basis for a more harmonised/standardised approach of similar problems in other 

surveys. 

 

 

Antonio Baigorri 

Head of Unit 
Daniel Defays 

Director  

                                                 
4 Information and Communication Technology. 
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1. Introduction 
 

The objective of this handbook is to present the results of the work on Precision Requirements 

and Variance Estimation for ESS Household Surveys, and more specifically the general 

recommendations issued by the Task Force, set up under the auspices of the DIME. The 

handbook covers only the variance component of accuracy (and not the bias). 

The recommendations are in line with the ‘ESS handbook for quality reports’ (Eurostat, 

2009a) and with the mandate of the Task Force. They comprise: 

 a recommendation for a standard formulation of precision requirements in EU 

regulations, by taking into account survey specificities such as indicators and regional 

disaggregation. The point of formulating these requirements is to achieve uniform and 

unambiguous understanding between the National Statistical Institutes (NSIs) and 

Eurostat; 

 a review of variance estimation methods, with a view to establishing a more 

harmonised approach when computing standard errors and confidence intervals for 

statistics at national and EU levels. The handbook recommends good practices and 

identifies bad ones which should be avoided; 

 a recommendation for an integrated approach to the increased availability of standard 

errors in the ESS, with a view to achieving a fully harmonised approach. The 

recommendation assesses a range of possible approaches — from fully centralised to 

decentralised; 

 a recommendation on how to assess NSIs’ compliance with the precision 

requirements. 
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2. Precision requirements 

One objective of this chapter is to identify and assess the existing approaches for setting up 

precision requirements and to propose one of them as best practice. Other objectives are to 

provide the appropriate precision measures for each type of indicator and to introduce the 

concept of domains and how to handle them when defining precision requirements. This 

chapter sets out known examples of precision thresholds/sizes used in different contexts and 

by different institutions. These are not meant to be prescriptive but to give some feasible 

benchmark when defining precision thresholds. Finally, the chapter proposes a set of standard 

formulations of precision requirements for regulations, for level (annual, quarterly, monthly, 

etc.) estimates, and for estimates of net change (for overall national populations and for 

national breakdowns). 

2.1 The two approaches for specifying precision requirements 

 

Michele D’Alò and Stefano Falorsi (ISTAT) 

 

There are two main strategies for setting up precision requirements: specifying minimum 

effective sample sizes with which the NSIs have to comply, or precision thresholds that have 

to be met by the main target indicators of the survey. Both strategies can be defined at either 

the planning or estimation stage, after the survey has been carried out. 

The approach to setting up precision thresholds for survey estimates has already been used in 

the EU Labour Force Survey (EU-LFS) and in the Community Survey on Information and 

Communication Technology (ICT). 

The EU-LFS Framework Regulation (Council Regulation No 577/98 of 9 March 1998) 

introduced precision requirements in the form of precision thresholds which have to be met 

over certain sub-populations by estimates of annual averages and estimates of changes over 

two consecutive quarters. This ensures that the EU-LFS national samples can achieve a 

significant degree of ‘representativeness’. 
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Figure 2.1.1: Precision thresholds — EU-LFS 

 

 

It is important to note that the current LFS precision requirements refer to a theoretical 

situation in which unemployed people account for 5 % of the working-age population. These 

requirements are thus a reference for designing the survey, but cannot tell us anything about 

the quality of the actual survey results. This approach, within the context of the current 

arrangements for formulating precision requirements, prevents the relative standard errors 

used as precision thresholds from becoming meaningless (when the proportion approaches 

zero, the relative standard error approaches infinity). However, this is a critical point in the 

current formulation of precision requirements. In particular, it is difficult to say whether or 

not such requirements — for theoretical situations — are met when the relative standard 

errors can only be reliably computed for the actual estimates (Eurostat, 2010c). 

A more straightforward formulation of precision requirements in the form of precision 

thresholds (referring to the quality of the actual estimates) is provided in the methodological 

manual for the ICT survey (Eurostat, 2010b). For the household survey: 

 
‘The estimated standard error (…) shall not exceed 2 percentage points of the 

overall proportions and shall not exceed 5 percentage points for the proportions 

related to the different subgroups of the population, where these subgroups 

constitute at least 10 % of the total population in the scope of the survey’. 

Another approach is to formulate precision requirements in terms of minimum effective 

sample sizes to be achieved by the countries. 
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This is the case with the EU-SILC
5
 Framework Regulation (European Parliament and Council 

Regulation No 1177/2003 of 16 June 2003). 

Figure 2.1.2: Minimum effective sample sizes — EU-SILC 

 

The concept of effective sample size basically refers to the minimum sample size that would 

be required, under simple random sampling without replacement, to obtain the same level of 

precision as with the actual sampling design. In practice, however, many samples are selected 

with ‘complex’ designs (multi-stage selections, weight adjustment for non-response, 

calibration, etc.). It follows that the minimum effective sample sizes under simple random 

sampling have to be adjusted for design effects Deff , viz. the variation in design efficiency 

caused by sampling design components such as stratification or clustering. This leads us to the 

concept of achieved sample size. Design effect is found to be subject to interpretation and is 

not easy to forecast because it also depends on indicators, domains and the estimation 

methods used. See Appendix 7.2 for more information. 

If n  denotes the achieved sample size, then the effective sample size effn  is given by (Kalton 

et al, 2005): 

Deffnneff / .    (2.1.1) 

                                                 
5 EU Statistics on Income and Living Conditions. 
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The achieved sample size refers to the number of (ultimate) respondents. Therefore, the real 

sample size at the planning stage should be adjusted to the anticipated non-response. 

In practice the value of Deff  is unknown and has to be estimated. The design effect of an 

estimator ̂  of the parameter   is defined as the ratio between the variance )ˆ(V  of the 

estimator under the actual sampling design and that which would be obtained from a 

hypothetical simple random sample without replacement of the same size: 

 
)θ(V

)θV(
θDeffDeff

*
SRS

ˆ

ˆ
ˆ  .   (2.1.2) 

*̂  is an ‘equivalent’ estimator of   under simple random sampling without replacement. See 

Appendix 7.2 for more information. 

When designing a survey, defining the minimum level of precision is a very important step: 

very high precision attends to waste resources, while very low precision makes the results less 

usable. From an EU perspective, it is desirable to have accurate statistics at national level so 

that we can compare not only the performance of countries against specified targets but also 

their performance between each other. 

Specifying a minimum sample size makes it possible to calculate a confidence interval that 

includes the true value of the parameter with probability  1  close to 1. A common 

practice when determining confidence intervals consists of assuming that the estimator 

follows a normal distribution. A confidence interval with a given confidence level is then 

derived using percentile values of the normal distribution of mean 0 and variance 1. The half-

length of the confidence interval represents the (absolute) margin of error of the estimator, 

while the relative margin of error is obtained by dividing the absolute margin of error by the 

estimated value of the parameter (see Appendix 7.1). 

As a general formula, let us consider a simple random sampling without replacement, and 

assume that we are seeking a relative margin of error of %100 k  for the total Y  of a study 

variable y . Thus, the minimum sample size is given by: 

22

2/1

22

222

2/1

min

y

y

SNzYk

SNz
n












 

,     (2.1.3) 

where 
2

yS  is the variance of y  over the whole target population (see Appendix 7.1) and  

1 / 2z   is the percentile value at 100(1 / 2)%  of the normal distribution of mean 0 and 

variance 1. In many practical applications 05.0 . The population quantities Y  and 
2

yS  are 

actually unknown and have to be estimated using data from auxiliary sources (previous 

surveys, administrative sources, expert judgment, etc.). In the above formula k is the relative 

margin of error expressed as a proportion, while %100 k is the relative margin error 

expressed as a percentage. Equation (2.1.3) accounts for the finite population correction.   

Calculation of minimum sample sizes had so far relied on a single estimator for which a 

specified level of precision was desired. This made it difficult for Eurostat to assess 

compliance since it required knowledge and monitoring of the actual sampling design. 

Nonetheless, there are also practical situations where minimum sample sizes are not 

determined on the basis of a precision criterion. For instance, in many ESS surveys, budgetary 

constraints may be such that they put a strict limit on the total number of interviews which can 
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be conducted at EU level. Minimum sample sizes at country level are then determined by 

allocating the total number of EU-level interviews among the countries, basing the allocation 

method on a general compromise between EU and country accuracies. This is done by 

allocating a minimum number of units to the small countries, thereby ensuring a minimum 

level of precision in each of them. 

There are also intermediate situations where budgetary constraints at EU level are weaker, so 

a more ambitious EU precision target can be set. In such cases, sample sizes at country level 

should be adjusted for design effects and anticipated non-response. The choice of the actual 

sampling design is dictated by a trade-off between reducing cost and reducing variability. This 

adjustment of national sample sizes triggers additional costs which should be considered in 

the total budget at EU level (given that budgetary constraints are weaker), on condition that 

the non-response and design effects are kept under control.     

Determining minimum sample size works only if precision thresholds have been set first. 

Conversely, the only practical way for countries to take on board precision thresholds is to 

ensure that a minimum number of units have been sampled. The two main strategies are 

therefore equivalent in theory, but may differ in practice, especially for multi-purpose 

surveys. 

Large-scale surveys are usually designed to estimate a great number of parameters with 

reference to many different domains of interest. In this context, precision requirements 

expressed as precision thresholds seem to be more flexible, even though they also refer to a 

reduced set of target indicators. A given effective sample may achieve satisfactory precision 

for one indicator but may be less satisfactory for others. Besides, sampling designs that meet 

design requirements may end up producing low-quality output (e.g. a minimum sample size 

does not continuously achieve satisfactory precision in case of dynamic phenomena, a 

minimum sample size does not naturally cover for all sources of variability like calibration).  

What really matters to data users is output quality. Therefore, for EU regulations, precision 

requirements expressed as precision thresholds are recommended. They are an important 

instrument in terms of quality assurance. Preference is given to output quality under the 

assumption that it includes all of the effects (sampling design, non-response, calibration, 

imputation, etc.). 

With regard to allocation in large-scale surveys, bear in mind that surveys have, in most cases, 

multiple objectives. This means that it is unrealistic to hope for sample dimensions that 

guarantee predetermined levels of precision for all estimates of interest. A further problem 

arises from the need to produce parameter estimations for quite a large number of domains. It 

is recommended to limit precision requirements to the main target indicators for key 

reporting domains in order to avoid cumulative conflicting constraints on a single data 

collection instrument. 

Though we may be seeking the optimum autonomous solution in terms of precision of 

estimates for each domain, the result, in practice, is a compromise of different aims, each of 

them demanding a specific type of response and where the solution may be at odds with the 

other solutions available. So we need to establish an optimum sample size and allocation in a 

multivariate framework, assuming that an optimum for each variable considered individually 

may not be optimum for the overall set of variables of interest. The extensive range of 

objectives and ties calls for multivariate allocation methodologies, in order to get an overall 

picture of how to achieve optimum determination of sample size. More precisely, determining 

the sample size and the sampling allocation has to be able to guarantee precision thresholds 

for each variable of interest and for a variety of domains. The method proposed by Bethel 

(1989) aimed at determining optimum size from a multivariate viewpoint in the case of a 
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design with one stage of stratification and with reference to a single domain. The method has 

been generalised for multi-purpose surveys in the context of multi-stage sampling designs 

when multiple domains are under study. The method is based on inflating the variance of the 

estimator hŶ  of the total hY  in stratum h  under simple random sampling by means of an 

estimator of the design effect Deff  for each domain of interest (Falorsi and Russo, 2001).  

  

Summary 

The two main strategies for setting up precision requirements refer to: 

 precision thresholds, to be met by a few main target indicators of the survey, and 

 minimum effective sample sizes, to be ensured by the NSIs. 

For regulations, it is recommended to express requirements by defining minimum precision 

thresholds to be met by a few main target indicators. Precision and accuracy are concepts that 

are well defined and documented in the ESS quality framework and are easily understood by 

users of statistics. 

It is recommended to limit precision requirements to the main target indicators for key 

reporting domains in order to avoid cumulative conflicting constraints on a single data 

collection instrument. 

Minimum sample size is a meaningful concept for data producers who need to design 

instruments to collect data and estimate costs. However, precision requirements expressed as 

precision thresholds seem to be more flexible, even though they also refer to a reduced set of 

target indicators. A given effective sample may achieve satisfactory precision for one 

indicator but may be less satisfactory for others. Besides, sampling designs that meet design 

requirements may end up producing low-quality output (e.g. a minimum sample size does not 

continuously achieve satisfactory precision in case of dynamic phenomena, a minimum 

sample size does not naturally cover for all sources of variability like calibration).  Precision 

requirements expressed as precision thresholds — which are assumed to cover these sources 

— are an important instrument for quality assurance. What really matters to data users is 

output quality. Therefore, for EU regulations, precision requirements expressed as precision 

thresholds are recommended.  

The two frameworks are nevertheless equivalent in theory: minimum sample sizes are a 

translation of precision thresholds in an ideal survey sampling context. The technical 

difficulty associated with the effective sample size framework has to do with determining the 

design effect that measures the distance between the actual design and the ideal situation. 

Design effect is found to be subject to interpretation and is not easy to forecast because it 

depends also on indicators, domains and the estimation methods used.  
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2.2 Precision measures in relation to type of indicators 

 

Denisa Camelia Florescu and Jean-Marc Museux (Eurostat) 

 

When setting up precision requirements for a survey, the precision measures should be 

geared to the type of indicators. Most of the commonly used indicators in ESS surveys belong 

to one of the following categories: 

 the total or the mean of a continuous variable (e.g. the total or the mean household 

income); 

 in the case of a qualitative variable,  the interest generally lies in the total or the proportion 

of population elements in a given category (e.g. total number or proportion of unemployed 

people in the population); 

 a non-linear function of several totals, means or proportions (ratios, regression 

coefficients, etc.). 

First of all, we need to clarify the difference between percentages and proportions, and 

between proportions and ratios. 

 Percentages and proportions are conceptually equivalent but are expressed in different 

ways. An indicator may refer to the percentage of individuals having access to Internet — 

which can, for instance, take the value of 50 % — or to the proportion of individuals 

having access to Internet — which is, in the same case, 0.5. 

 Both ratios and proportions are parameters of a population. A ratio is a ratio of two totals 

or means. A proportion is a special case of a ratio. The numerator and the denominator are 

counts of elements, in the case of a proportion. The numerator is the count of elements in 

a domain A, and the denominator is the count of elements in a domain B. Domain A has 

to be a subset of domain B. 

Ratios and proportions are usually estimated by individually estimating the numerator and 

the denominator. It is not important whether the population parameter is a ratio or a 

proportion when it comes to variance estimation. The important point in variance 

calculations is whether or not the estimator of the denominator has sampling variability. In 

many practical cases, the variance of the estimator in the denominator is zero. This 

happens, for instance, with proportions when the population total in the denominator is 

known from external sources. In this case, we have to estimate the variance of the 

estimator in the numerator and divide the result by the squared value of the denominator. 

An example is the proportion of individuals having broadband connection, provided the 

whole number of individuals is known from an external source. On the other hand, the 

variance of the estimator in the denominator may be strictly positive; this means that the 

variability of the denominator has to be taken into account in calculations. This occurs, for 

example, with domain estimators, viz. estimators for sub-populations. For instance, a 

statistic may be the unemployment rate, where the total labour force (the population of 

employed and unemployed persons) is estimated from a sample of observations. In order 

to estimate the variance of such non-linear statistics, we often resort to the Taylor 

linearisation method (Tepping, 1968; Woodruff, 1971; Wolter, 2007; Osier, 2009). 

According to the above definitions, both proportions and ratios can have a constant 

denominator (variance of the denominator is zero) or a variable denominator (variance of 

the denominator is not zero). 
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However, for simplification purposes and in the variance estimation context, the concept 

of ratio is used to designate a ratio of two estimators where the denominator has a non-

zero variance (a non-linear statistic), while the concept of proportion is used to designate a 

linear statistic (with constant denominator). 

Coefficients of variation (relative standard errors) are generally not recommended for 

estimating the precision of percentages/proportions. This is because the value of the 

percentage/proportion has a strong impact on the value of the coefficient of variation, 

especially when the percentage/proportion is low, and because the coefficients of variation for 

the percentages/proportions of any characteristic are not symmetrical. 

Consider a simple random sample without replacement of size n . Let us assume that we want 

to estimate a proportion 



P 0  P 1  over the entire population, and that the exact size of the 

population (denominator of the proportion) is known from external sources. Thus, the 

coefficient of variation CV  of the estimated proportion is given by: 

nP

P
CV




1
 .     (2.2.1) 

Therefore, the lower the value of proportion P , the higher will be the coefficient of variation 
CV . Furthermore, let us examine the impact of the proportion on the minimum sample size 

needed to achieve a coefficient of variation of 5 %. 

Figure 2.2.1: The impact of the proportion on the minimum sample size needed to achieve a 
coefficient of variation of 5 %, under simple random sampling 
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When a precision threshold is expressed as a coefficient of variation, the proportion has a 

strong impact on the minimum sample size needed to attain this threshold: the sample size 

tends towards infinity, as the proportion approaches zero. Therefore, the use of coefficients of 

variation in precision requirements would lead to more stringent conditions for 

countries/regions with small values of proportion, and would thus require a huge increase in 

sample size. This could result in values of sample sizes which can never be attained under 

standard budgets. 
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In particular, it can pose serious accuracy problems when estimating a proportion of 

individuals in ‘rare’ sub-populations, for instance, individuals having a particular profession 

or activity status: 

Table 2.2.1: Minimum sample size to ensure a coefficient of variation of 5 % 

 Clergy Administrators, 

public sector 
Scientists Retired 

farmers 
Retired 

factory 

workers 

Proportion in the 

total population 

(P)* 

0.001 0.005 0.01 0.02 0.05 

Minimum sample 

size needed (n) 
400 000 80 000 40 000 20 000 8 000 

*Source: French Census, 1990 

On the other hand, whenever the precision threshold is expressed using an absolute measure 

of accuracy like standard error, then the minimum sample size needed increases as the 

proportion approaches 0.5 (from both directions), albeit not to infinity. The use of standard 

errors in precision requirements would therefore impose less stringent conditions. As a result, 

survey targets expressed in terms of standard errors are more tractable.   

Figure 2.2.2: The impact of the proportion on the minimum sample size needed to obtain a 
standard error of 0.5 percentage points, under simple random sampling 
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The above therefore discourages the use of coefficients of variation for 

percentages/proportions, but encourages and recommends the use of standard errors. 

However, for specific surveys, experts should decide to use that precision measure which is 

the most demanding in the case of that proportion value which makes the study variable the 

most relevant.  

This means: 
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 the use of the standard error may be preferred if the study variable becomes more relevant 

as the estimated proportions get closer to 0.5, since it imposes more demanding 

requirements (bigger sample size) for proportions nearer to 0.5; 

 the use of the coefficient of variation may be preferred if the study variable becomes more 

relevant as the estimated proportions tend to 0, since it imposes more demanding 

requirements (bigger sample size) for proportions nearer to 0. However, we should note 

the huge increase in the sample size whenever the proportion approaches 0 and should set 

a low threshold of the proportion under which the requirement does not apply; 

 the use of either standard error or coefficient of variation is equally preferable if the study 

variable becomes more relevant as the estimated proportions approach 1, since they both 

relax the burden (lower the sample size needed). 

 

Summary 

It is recommended to use precision measures which are geared to the type of indicators they 

refer to. 

The general definitions of ratio and proportion are: a ratio is a ratio of two totals or means, 

while a proportion is a special case of a ratio where the numerator and the denominator are 

counts of elements in domain A and domain B respectively, where domain A is a subset of 

domain B. However, for simplification purposes and in the variance estimation context, the 

concept of ratio is used to designate a ratio of two estimators where the denominator has a 

non-zero variance (a non-linear statistic), while the concept of proportion  is used to designate 

a linear statistic (with constant denominator). 

Recommended precision measures are: 

 coefficients of variation and other precision measures expressed in relative terms for totals 

and means of continuous variables; 

 standard errors and other precision measures expressed in absolute terms for proportions, 

but also for ratios and changes which are close to 0.  

The second recommendation aims to avoid situations where precision requirements lead to a 

huge increase in the sample size when the indicator approaches 0. Moreover, absolute 

precision measures for the percentages/proportions of any characteristic are symmetrical. 

However, for specific surveys, experts should decide to use that precision measure which is 

the most demanding in the case of that proportion value which makes the study variable the 

most relevant.  

This means: 

 the use of the standard error may be preferred if the study variable becomes more relevant 

as the estimated proportions get closer to 0.5; 

 the use of the coefficient of variation may be preferred if the study variable becomes more 

relevant as the estimated proportions tend to 0. However, we should set a low threshold of 

the proportion under which the requirement does not apply; 

 the use of either standard error or coefficient of variation is equally preferable if the study 

variable becomes more relevant as the estimated proportions approach 1. 
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2.3 Precision requirements and reporting domains 

 

Denisa Camelia Florescu and Jean-Marc Museux (Eurostat) 

 

Precision thresholds and/or minimum effective sample sizes can be defined at EU level, at 

country level or at domain level. There are usually no precision requirements for EU estimates 

as their reliability is a direct consequence of the reliability of national estimates. Thus, in 

practice, precision requirements are mostly laid down at national and domain levels. 

It is recommended that precision requirements be formulated for a certain domain level for a 

specific survey, whenever a regulation stipulates that reliable estimates are required at that 

domain level. 

A domain is a subgroup of the whole target population of the survey for which specific 

estimates are needed. A domain may consist of a geographical area, such as a NUTS2 region, 

or a major population centre, e.g. capital cities. It may also comprise a specified population 

category, such as a major national or ethnic group (OECD). For instance, the focus may be on 

not only the unemployment rate of the entire population, but also of breakdowns by age, 

gender and education level. 

Units in a domain may sometimes be identified prior to sampling. In such cases, the domain 

can be treated as a separate stratum from which a specific sample may be taken. Stratification 

ensures a satisfactory level of representativeness of the domain in the final sample: these are 

called planned domains. 

Precision thresholds and/or minimum effective sample sizes are mostly set up for planned 

domains. On the basis of the result (2.1.3) in Section 2.1, the minimum sample size required 

to achieve a relative margin of error of %100 k , for the total dY  of a study variable y , over 

a domain dU  of size dN , is given by: 
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where 
2

ydS  is the variance of y  over the domain and  1 / 2z   is the percentile value at 

100(1 / 2)%  of the normal distribution of mean 0 and variance 1. In the above formula k is 

the relative margin of error expressed as a proportion, while %100 k is the relative margin of 

error expressed as a percentage. The population values dY  and 
2

ydS  are unknown and have to 

be estimated using data from auxiliary sources (previous surveys, administrative sources, 

expert judgment, etc.). Equation (2.3.1) accounts for the finite population correction. The 

formula (2.3.1) is applicable when the whole sample is selected by simple random sampling, 

in which case it can be assumed that the sample ds   of size dn
 
(which is supposed to be 

constant) from the domain dU  has been selected by simple random sampling without 

replacement.
6
    

When several precision thresholds are defined (at both national and domain level), the 

minimum effective sample size should attain each precision target as specified in (2.1.3) and 

(2.3.1). Whenever constraints are tight, such that they lead to a sample size which cannot be 

                                                 
6 The formula (2.3.1) cannot be applied if the selection probabilities are different for the units included in the same domain. 
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attained given the available resources, there will need to be a compromise solution, which 

will involve removing and/or relaxing certain objectives. 

On the other hand, there are many unplanned domains for which units cannot be identified 

prior to sampling. The need for estimates of certain domains is often evident only after the 

sampling design has been decided or after the sampling and the fieldwork have been 

completed. However, it is recommended that survey managers avoid setting requirements for 

unplanned (reporting) domains, especially for domains which represent a small share of the 

total population. Sample sizes for sub-populations are random variables, since formation of 

these sub-populations is unrelated to sampling design. The survey manager cannot control the 

size of an unplanned domain sample needed to ensure compliance with established 

requirements. Besides, the random size of the sample builds an additional component of 

variability into the domain estimates (Eurostat, 2002). These two issues occur in particular in 

relation to rare sub-populations
7
 (say, where the domain accounts for less than 5 % of the total 

population). 

To illustrate the variability of the sample size from unplanned domains, consider a simple 

random sample s  without replacement of size n  selected from a target populationU , of 

size N . Let ds  be the part, of size dn , of the whole sample s  which falls into a 

domain



Ud Ud U . dn  is a random variable which satisfies the following properties: 

 
   ddd

dd

PnPnV

nPnE





1
 ,      (2.3.2) 

where 
N

N
P d

d   denotes the relative size of the domain dU  in the population U . For 

example, with n = 8000 and dP  =0.05, we get a coefficient of variation for the sample dn  of 

nearly 5 % and a relative margin of error of nearly 10 %, which is not negligible. For a fixed 

sample size n = 8000, the lower the relative size of the domain ( dP ), the higher will be the 

coefficient of variation for the sample size dn  from the domain. 

Figure 2.3.1: The coefficient of variation (CV) (%) for the sample size dn  from the domain, 

plotted against the relative size dP  of the domain (fixed whole sample size n= 8000) 

 

CV(%) 

 

                                                                                          Pd 

                                                 
7 Small domain estimation is excluded when we are talking about precision requirements for rare populations. 
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When unplanned domains form a part of the whole population, e.g. age groups, gender, 

education levels, the survey manager can estimate what the domain sample sizes would be if 

the national sample structure mirrored the population structure by domain. Precision measures 

can be calculated for unplanned domain estimates to interpret the expected domain sample 

sizes in terms of statistical accuracy. 

The precision of estimates for unplanned domains can be improved by post-stratification. 

However, bias can be introduced at the same time. The effect on the mean square error should 

be considered before post-stratifying. 

 

Summary 

It is recommended that precision requirements be formulated for a certain domain level for a 

specific survey, whenever a regulation stipulates that reliable estimates are required at that 

domain level. 

When several precision thresholds are defined (at both national and domain level), the 

minimum sample size should attain each precision target. Whenever constraints are tight, 

such that they lead to a sample size which cannot be attained given the available resources, a 

compromise solution should be sought by removing and/or relaxing certain objectives. 

In sample surveys, some of the domains are unplanned, i.e. the domain units cannot be 

identified prior to sampling. It is recommended that survey managers avoid setting 

requirements for unplanned (reporting) domains, especially for domains which represent a 

small share of the total population. The survey manager cannot control the size of an 

unplanned domain sample to ensure compliance with requirements. In addition, the precision 

of estimators over unplanned domains is known to have a variance component related to the 

uncertainty of the sample size from such domains. These occur in particular with rare sub-

populations (say, where the domain accounts for less than 5 % of the total population).  

 

 

2.4 Examples of precision thresholds/sizes 

 

Denisa Camelia Florescu and Jean-Marc Museux (Eurostat) 

 

Specifying what degree of precision is desired is an important step when planning a sample 

survey. A very high level might mean wasting of resources, while a very low one might make 

the results less usable. In practice, questions arise as to which precision thresholds are linked 

to acceptable quality, but there is no common standard. 

Precision thresholds are generally survey-specific and depend on users’ needs and on the 

required reliability. Furthermore, and over and above statistical concerns, determining 

precision thresholds is also a political and resource-related decision. 

Some examples of precision sizes/thresholds used in different contexts by different 

institutions are given below. They are not meant to be prescriptive but rather to give some 

feasible benchmarks to be used when defining precision thresholds: 

 A coefficient of variation of 5 % or less means a satisfactory level of reliability for 

estimates, while a coefficient of variation of more than 5 % means lower reliability 

(Ardilly, 2006). 
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 In the ICT household survey, the estimated standard error may not exceed 2 percentage 

points for the overall proportions and 5 percentage points for the proportions relating to the 

different subgroups of the population, where these subgroups comprise at least 10 % of the 

total population within the scope of the survey (Eurostat, 2010b). 

 In the EU-SILC, a methodological document (Eurostat, 2001) sets out how to use the 

‘compromise power allocation’ method to allocate the EU sample size (which should not 

exceed 80 000 to 100 000 sample households) to countries. The main household income 

measure is the poverty rate, and varies roughly in the 5-25 % range. At national level, 

taking a proportion (percentage) of 15 % as the basis for computations, a simple random 

sample of 5 000 households is required (except perhaps for the smallest countries) to 

estimate this with 1 percentage point error (the absolute margin of error) (95 % 

confidence interval). This corresponds to an absolute standard error of around 0.5 

percentage points. 

 The European Health Interview Survey (EHIS) methodological sampling guidelines 

(Eurostat, 2009b) show how to allocate the EU sample size (270 000 individuals) to 

countries by using the ‘compromise power allocation’ method. This sample size derives 

from the consideration that an average of 10 000 or 7 500 individuals per country would 

make for good precision (for a sample size of 7 500 and a percentage of 10 %, the absolute 

standard error is 0.3 percentage points). National effective sample sizes have been 

computed by taking the percentage of people with severely hampered activity as the most 

critical indicator. This indicator was selected because of low prevalence in some Member 

States, which could lead to precision problems for some sub-groups. The corresponding 

errors in absolute percentage points (standard error in absolute terms) were then computed 

for the national effective samples. At national level, the absolute standard error varies 

from 0.1 to 0.4 percentage points. This corresponds to an absolute margin of error of 

between 0.2 and 0.8 percentage points (95 % confidence interval). 

 At ISTAT, coefficients of variation should not exceed 15 % for domains and 18 % for 

small domains; when they do, this serves as an indication to use small area estimators. 

Note that this is just a rule of thumb and that not all domains are equivalent because they 

are associated with the percentage of the population they represent, and this population can 

vary. 

 Statistics Canada applies the following guidelines on LFS data reliability (Statistics 

Canada, 2010): 

o if the coefficient of variation (CV) ≤ 16.5 % , then there are no release restrictions; 

o if 16.5 % < CV ≤ 33.3 %, then the data should be accompanied by a warning (release 

with caveats); 

o if CV > 33.3 %, then the data are not recommended for release. 

 

Summary 

There are no general precision thresholds/sizes that would hold good for all ESS surveys. 

They tend to be survey-specific and purpose-specific, depend on users’ needs in terms of 

reliability, and are related to available resources. 

The handbook nevertheless presents some (non-prescriptive) examples of precision 

thresholds/sizes used by different institutions for specific cases. 
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2.5 Recommendations for a standard formulation of precision 
requirements 

 

Denisa Camelia Florescu and Jean-Marc Museux (Eurostat) 

 

The DIME Task Force issued a proposal for a standard formulation of national precision 

requirements for percentages/proportions
8
 (as this is the type of indicator most often 

encountered in household surveys) in EU Regulations. This is linked to the strategy of setting 

requirements in terms of precision thresholds (see Section 2.1). Precision thresholds refer to 

the actual value of the estimated indicator. Unlike precision thresholds, a compliance criterion 

fixed at the design stage would be difficult for Eurostat to monitor and may be fruitless since 

the main aim is the quality of the output. 

The proposed standard formulation of precision requirements is issued for indicators of the 

proportion type, for national estimates of level, and for net changes in the national estimates 

of level, as follows: 

 Precision requirements for estimates of level (e.g. annual, quarterly, etc. estimated 

percentages): 

o For overall national estimates: 

‘The survey should be designed such that the estimate of the standard error does 

not exceed  ... percentage points for the estimated percentage  ...
9
 for the 

total reference population’. 

o For estimates of national breakdowns (domains): 

‘The survey should be designed such that the estimate of the standard error does 

not exceed ... percentage points for the estimated percentage  ...
10

 for the …
11

 

population breakdowns, where such population breakdowns comprise at 

least ...%
12

 of the total reference population’. 

 Precision requirements for net changes in the estimates of level (absolute changes in the 

estimated percentage between successive years, quarters, etc.) 

o For overall national estimates: 

‘The survey should be designed such that the estimate of the standard error does 

not exceed ... percentage points for the change between ...
13

 of the estimated 

percentage ...
14

 for the total reference population’. 

o For estimates of national breakdowns (domains): 

                                                 
8 Percentages and proportions are conceptually equivalent. See Section 2.2 for more information. 

9 These ellipses will be replaced by the name of the main target indicator. 

10 These ellipses will be replaced by the name of the main target indicator. 

11 According to Section 2.3, survey managers should avoid setting requirements for unplanned domains, especially for domains 
which represent a small share of the total population. Precision requirements can be set for planned domains, e.g. NUTS2, 
where the sampling design provides for stratification by NUTS2. 

12 Breakdowns can also be defined according to their contributions to the target indicators. 

13 The period of time concerned by the change will be mentioned here. For example, the ellipses can be replaced by ‘two 
successive quarters’.  

14 These ellipses will be replaced by the name of the main target indicator. 
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‘The survey should be designed such that the estimate of the standard error does 

not exceed ... percentage points for the change between ...
15

 of the estimated 

percentage ...
16

 for the …
17

 population breakdowns, where such population 

breakdowns make up at least ...%
18

 of the total reference population’. 

If the confidence interval of the net change includes the value 0, then the change in 

the estimates is not significantly different from 0 at the corresponding significance 

level. 

 The requirements for the estimates of level and of net change should be accompanied by 

additional provisions for the relaxation and/or exemption of requirements for small and 

very small geographical domains (breakdowns) (e.g. countries, NUTS2 or NUTS3 

regions). These provisions are particularly relevant to estimates of national breakdowns, 

where there are only few population units in small countries’ breakdowns, thus requiring a 

higher sampling fraction than for bigger countries. The provisions address a political 

concern concerning the burden on small countries/regions. The following provisions can 

be used: 

‘The same requirement is relaxed to a threshold of ... percentage points for geographical 

domains with a population of between ... and ... inhabitants’. 

‘Geographical domains whose population is below ... inhabitants are exempted from these 

precision requirements concerning changes’.  

This proposal on formulating a common standard of national precision requirements is 

accompanied by the following explanations and clarifications: 

 The type of estimate to which the standard formulation refers to is the estimated 

percentage (conceptually equivalent to the estimated proportion). 

 The concept of standard error is closely related to survey design since it reflects the 

expected variability of the parameter estimator (the parameter in this case is the 

population percentage). Typically, the standard error remains an unknown value which 

itself has to be estimated, by using an appropriate estimator (called the ‘estimator of the 

standard error’). Consequently, ‘standard error’ should be used in conjunction with 

‘estimator’. For determining a particular sample and a particular estimated percentage, we 

can calculate an estimate of the standard error by using an appropriate estimator. Hence, 

as the requirements concern the survey output, the formulation refers to the ‘estimate of 

standard error’ rather than just to ‘standard error’. ‘Estimate of the standard error’ should 

be used in conjunction with ‘estimated percentage’. 

 The measurement unit of a percentage is percentage points. Both standard error and 

absolute margin of error conserve the measurement unit of the target indicator. An 

estimate of standard error is therefore expressed in percentage points in the formulation of 

requirements. 

                                                 
15 The period of time concerned by the change will be mentioned here. For example, the ellipses can be replaced by ‘two 

successive quarters’.  

16 These ellipses will be replaced by the name of the main target indicator. 

17 According to Section 2.3, survey managers should avoid setting requirements for unplanned domains, especially for domains 
which represent a small share of the total population. Precision requirements can be set for planned domains, e.g. NUTS2, 
where the sampling design provides for stratification by NUTS2. 

18 Breakdowns can be also defined according to their contributions to the target indicators. 
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Let us consider a net sample size of 8 000 units (individuals). Assuming simple random 

sampling, if the estimated percentage of individuals with access to the Internet is 50 % (50 

percentage points), then the estimate of the standard error is around 0.56 percentage 

points. The half-length of the confidence interval (the estimate of the absolute margin of 

error) is around 1.1 percentage points, for a confidence level of 95 %. The upper and lower 

limits of the confidence interval are determined by adding and subtracting 1.1 percentage 

points to and from 50 percentage points. Thus, the lower limit of the confidence interval is 

48.9 % (48.9 percentage points) and the upper limit is 51.1 % (51.1 percentage points). 

Confusion may arise if the percentage sign ‘%’ is used instead of ‘percentage points’ to 

express the estimate of standard error or of the absolute margin of error. The risk is that 

the upper and lower limits of the confidence interval are determined after calculating the 

percentage of 1.1 % out of 50 percentage points and then adding and subtracting the result 

to and from 50 percentage points. For this reason, the threshold for the estimate of 

standard errors is expressed in ‘percentage points’ (and not in ‘%’) in the formulation of 

requirements. 

 The precision requirements concern the survey output (the actual estimates), while 

measures have to be taken at the design stage to ensure compliance with the requirements. 

This is the rationale for the expression ‘the survey should be designed such that...’ in the 

formulation. At the design stage, survey designers should take into consideration the 

expected non-response, the variability of the variable of interest in the population, the 

design effect, etc. in order to estimate the sample size needed. Meeting survey output 

requirements by adopting measures at the survey design stage is not an easy task. This is 

because of the variability of the variance estimates across all possible sample realisations 

and the fact that the variance estimate of the point estimate obtained with one sample is 

subject to this variability. It is one of the reasons why compliance with requirements is 

accompanied by provisions on tolerance (see chapter 5 for more details). 

 Unlike the margin of error, the use of the standard error in precision requirements does not 

assume a normal distribution of the sample means across all possible sample 

realisations.
19

 

 The requirements cover only precision and not the bias, so the whole concept of accuracy 

is not fully covered. The precision should incorporate the effects, e.g. of non-response, 

calibration, etc. However, the elimination of bias cannot be guaranteed. It is common 

practice to set up a control mechanism for the level of non-response: 

o In EU-SILC, under Commission Regulation No 1982/2003, the precision 

requirements for publication of the data must be expressed in terms of the number 

of sample observations on which the statistic is based and on the level of item non-

response (besides the total non-response at unit level). 

 The Commission shall not publish an estimate if it is based on fewer than 

20 sample observations, or if non-response for the item concerned exceeds 

50 %. 

 The Commission shall publish the data with a flag if the estimate is based 

on 20 to 49 sample observations, or if non-response for the item concerned 

exceeds 20 % and is 50 % or below. 

                                                 
19 However, bootstrap confidence intervals, for instance, are not based on the normality assumption. 
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 The Commission shall publish the data in the normal way when they are 

based on 50 or more sample observations and the item non-response does 

not exceed 20 %. 

All data publications must include technical information for each Member State on 

the effective sample size and a general indication of standard errors for at least the 

main estimates. 

o The OECD Programme for International Assessment of Adult Competencies 

(PIAAC) outlines a minimum overall response rate of 70 % as the goal, and goes 

on to state that (OECD, 2010):   

 data from all countries with a minimum response rate of 70 % will 

generally be included in international indicators and reports unless sample 

monitoring activities and/or non-response bias analyses indicate serious 

levels of bias in the country data; 

 results from countries with response rates of between 50 % and 70 % will 

typically be included in international indicators and reports unless 

problems resulting from such response rates are compounded by other 

factors, such as under-coverage bias; 

 results from countries with response rates below 50 % will not be published 

unless the country can provide evidence that the potential bias introduced 

by the low response rates is unlikely to be greater than the bias associated 

with response rates of between 50 % and 70 %. 

 The proposed standard formulations have some limits caused by the dependence of the 

estimated standard error on the actual value of the percentage (estimated percentage). For 

dynamic phenomena in particular, the change in the value of the indicator may trigger a 

need to readjust the sample size to ensure continued compliance with requirements. 

However, continuously adapting the sample size is neither feasible nor desirable. The 

following possibilities should therefore be envisaged: 

o The survey designers may consider the most demanding value possible of the 

estimated percentage when they estimate the sample size needed. If the 

requirements set thresholds for the estimate of the standard error, then theoretically 

this value is 50 %; in practice, however, it can be the nearest percentage value to 

50 % out of the actual range of relevant values for the specific survey.
20

 The 

feasibility of such reflections should be assessed by the domain specialists for each 

survey. 

o Both requirements for the estimates of level and net change may use multiple 

thresholds for the estimates of standard error, which should be set up in function 

of the values of the estimated percentages. The rationale behind this is to alleviate 

the different treatment (burden) imposed on countries with different values of 

estimated percentages. The thresholds may be determined as: 

 the standard errors that correspond to the upper boundaries of each band 

defined by the values of estimated percentages; 

 the standard errors that correspond to the mid-points of each band defined 

by the values of estimated percentages. 

                                                 
20 If the requirements set thresholds for the estimate of the relative standard error (coefficient of variation), then the most 

demanding percentage in terms of sample size is 0 %, or percentages that tend to 0 %. 
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o The threshold for the estimate of the standard error may be expressed as a model 

function of the estimated percentage for the requirements of the estimates of both 

level and net change. 

This is in fact the approach for revising the current precision requirements 

(Eurostat, 2010d) preferred by the Group of Experts on Precision Requirements for 

the Labour Force Survey (LFS). The main principle that guided the choice of this 

approach is that the new precision requirements for the LFS should be neither 

more restrictive nor more relaxed than the current ones. And in practice, it imposes 

a neutrality constraint in the revised text. 

The advantages of this approach are: 

 the required precision of design would be fixed, while allowing the 

threshold to vary with the actual value of the estimate; 

 compliance with requirements will not be influenced by the actual value of 

the estimate. On the one hand, this approach avoids having to tighten up 

the requirements just because of a change in the value of the estimate; it 

also avoids any pressure to increase the sample size, even with an efficient 

sampling design. On the other hand, it avoids relaxing the requirements and 

having to deal with a possible budgetary request to cut the sample size, 

thereby reducing the quality of the survey estimates as a whole. 

 The requirement for the precision of the net change of estimates may be adapted by 

establishing the required difference at which an estimate of change has to be significant.
21

    

o For overall national estimates: 

‘The survey should be designed such that a difference of ...
22

 or more percentage 

points in the estimated percentage ...
23

 between ...
24

 is significant at the 0.05 level, for 

the total reference population’. 

o For estimates of national breakdowns (domains), the formulation can be adapted 

analogously. 

Determination of the (maximum) estimated variance (of the estimator of net change) 

which allows us to conclude that the actual change is significant can be done by using 

the following statistical test: 

H0: P2-P1=0 

  H1: P2-P1≠0 . 

We reject the null hypothesis if: 

2
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 ,    (2.5.1) 

where 1P̂
 
= estimated percentage of time t1, 

                                                 
21 This is, for instance, the approach of the U.S. Current Population Survey. See U.S. Census Bureau (2006), p.3-1. 

22 The specific value for the absolute change required to be significant will replace the ellipses. 

23 These ellipses will be replaced by the name of the main target indicator. 

24 The period of time concerned by the change will be mentioned here. For example, the ellipses can be replaced by ‘two 
successive quarters’.  



 

 

Precision requirements 2 

Handbook on precision requirements and variance estimation for ESS household surveys 25 

2P̂  = estimated percentage of time t2, 

)ˆˆ(ˆ
12 PPV   = estimate of the variance of the estimator of the net change, 

2
1



z = the 

2
1


  quantile of the standard normal distribution. 

From the above formula, the null hypothesis will be rejected when the net change of 

estimates is higher than its estimated absolute margin of error. In other words, 

rejection of the null hypothesis occurs when the confidence interval of the change does 

not include the value 0. 

Let us take a numerical example. Suppose the net change of estimates between t1 and 

t2 is equal to 10 percentage points. If the estimated absolute margin of error is 5 

percentage points (for α = 5 %), then the confidence interval ranges from 5 to 15 

percentage points. As the confidence interval does not include the value 0, the change 

is statistically significant. For the same example, the absolute net change is higher than 

its estimated absolute margin of error, in which case the null hypothesis is rejected. 

This approach explicitly requires significance of net change. However, significance 

can also be a consequence of applying the requirements and not just the basis of the 

requirement itself. 

Precision requirements for gross changes
25

 can also be established. However, all requirements 

for a survey (for estimates of level, of net changes and of gross changes) should be 

parsimonious and should be assessed from the point of view of redundancy and consistency. 

The specific choice for formulating requirements should be analysed and decided by the 

specialists for each survey. Precision thresholds should be agreed by the specialists of the 

statistical domain, based on technical feasibility studies. 

 

Summary 

It is recommended to follow a standard formulation of precision requirements for EU 

regulations which aims at uniform and unambiguous understanding within the ESS. This 

formulation (which is presented in this section) is issued for indicators of the proportion type, 

for both: 

 estimates of level (e.g. annual, quarterly, etc. estimated proportions), for the overall 

national estimates and estimates of national breakdowns (domains); 

 net changes of estimates of level (absolute changes of the estimated proportions between 

successive years, quarters, etc.), for the overall national estimates and estimates of 

national breakdowns. 

Both requirements should be accompanied by additional provisions for relaxing and/or 

exempting requirements for small and very small geographical breakdowns. 

The proposed standard formulations have some limits caused by the dependence of the 

estimated standard error on the actual value of the estimated proportion. The following 

possibilities should therefore be envisaged: 

                                                 
25 See Section 3.7.3 for the definition of gross changes. 
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 the survey designers may consider the most demanding value possible of the estimated 

percentage when they estimate the sample size needed; 

 the requirements may use multiple thresholds for the estimate of standard error, to be set 

as a function of the values of the estimated percentages; 

 the threshold for the estimate of the standard error may be expressed as a model function 

of the estimated percentage. 

Precision requirements for gross changes can also be established. All requirements for a 

survey (for estimates of level, of net changes and of gross changes) should be parsimonious 

and should be assessed from the point of view of redundancy and consistency. 

The specific choice for the formulation of requirements should be analysed and decided by the 

specialists for each survey. Precision thresholds should be agreed by the specialists of the 

statistical domain, based on technical feasibility studies. 
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3. Best practices on variance estimation  
 

This chapter starts with information on the main sampling designs used in the ESS household 

surveys. This is followed by reviews of all variability sources of estimates which should be 

taken into account, as far as possible, when estimating variance. 

The chapter then reviews the variance estimation methods, their characteristics and 

applicability, and evaluates the methods against defined criteria. Later on, it introduces a 

matrix (Appendix 7.4) which offers guidance on the choice of suitable variance estimation 

methods in relation to sampling design and type of indicators, also listing unsuitable methods. 

There is also guidance on available methods for incorporating the effect on variance of 

indirect sampling, implicit stratification, unequal probability sampling, calibration, unit non-

response, imputation, coverage errors and measurement/ processing/ substitution errors. Then 

the chapter presents tools for variance estimation. Some examples of current methods and 

tools used in NSIs and Eurostat are briefly described. 

The last part of the chapter discusses surveys using sampling over time and guides the reader 

towards estimation of variance for an annual average of estimates and for estimators of net 

change that present a covariance structure induced by a rotation pattern (e.g. as in the LFS). 

The final part introduces the concept of gross changes and sets out basic ideas for variance 

estimation of gross changes. 

 

3.1 Overview of sampling designs in household surveys 

 

Denisa Camelia Florescu (Eurostat) and Onno Hoffmeister (FAO) 

 

A draft inventory of sampling designs used in the EU Labour Force Survey (EU-LFS), the 

Information and Communication Technology (ICT) household survey, and EU Statistics on 

Income and Living Conditions (EU-SILC) highlights their diversity and complexity. 

The sampling designs used are: 

 simple random sampling of individuals; 

 stratified random sampling of individuals; 

 (stratified) cluster sampling of households, addresses, etc. Clusters are selected in 

the first stage and all eligible individuals in the clusters are interviewed;   

 (stratified) indirect cluster sampling of households, addresses, etc. Some individuals 

are selected in the first stage and then all eligible individuals living in the household or 

at the address of the selected individuals are interviewed; 

 (stratified) multi-stage sampling of individuals. Clusters are selected in the first 

stage(s) and some individuals are selected from clusters in the last stage; 

 (stratified) multi-phase sampling of individuals. A master sample, a microcensus or 

a sample drawn from another survey sample is used as sampling frame. Some 

individuals are selected from that frame or from clusters formed in later phases; 
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 (stratified) multi-stage cluster sampling of households, addresses, etc. Clusters are 

selected in a higher stage than the first and all eligible individuals in the clusters 

formed in the last stage are interviewed; 

 (stratified) indirect multi-stage cluster sampling of households, addresses, etc. 

Some individuals are selected in a stage higher than the first one and all eligible 

individuals living in the household or at the address of these selected individuals are 

included; 

 (stratified) multi-phase cluster sampling of households, addresses, etc. A master 

sample, a microcensus or a sample drawn from another survey sample is used as a 

sampling frame. Clusters are selected from that frame or from clusters formed in later 

phases and all eligible individuals in the clusters selected in the last sampling phase 

are interviewed; 

 (stratified) indirect multi-phase cluster sampling of households, addresses, etc. A 

master sample, a microcensus or a sample drawn from another survey sample is used 

as sampling frame. Some individuals are selected from that frame or from clusters 

formed in later phases and all eligible individuals living in the household or at the 

address of these selected individuals are included. 

Systematic sampling (with equal or unequal selection probabilities) is often used as a 

sampling scheme in the different sampling stages. 

The above classification makes a clear distinction between direct and indirect sampling. For 

example, in direct cluster sampling, the ultimate sampling units are clusters (e.g. households), 

while in indirect cluster sampling a sample of clusters is obtained from a sample of other units 

(e.g. individuals). A sample of individuals may be selected from a population register and 

then a sample of households is obtained by taking all households that have at least one of their 

current members in the original sample of individuals. 

Figure 3.1.1: Indirect sampling of households through individuals 

 

 

 

 

 

 

 

 

 

 

 

In practice, alternative names are sometimes used for indirect sampling, such as network 

sampling. 

The distinction between direct and indirect cluster sampling is deemed relevant, since 

different weights should be applied to these designs. When a simple random sample of 

Selection of 

individuals 

Selection of 

households 
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households is selected, every household has an equal probability of selection. On the other 

hand, an indirect selection of households through individuals leads to the selection of 

households with probabilities proportional to their size (according to the number of household 

members). Weighting for the selected households is by the generalised weight share method. 

See Section 3.4 for more information on adjustment of weights and for variance estimation for 

indirect sampling. 

An additional distinction should be made between multi-stage sampling and multi-phase 

sampling.   

Both sampling procedures involve sampling at different stages or phases. 

However, multi-stage sampling refers to sampling designs in which the population units are 

arranged hierarchically and the sample is selected in stages corresponding to the levels of the 

hierarchy. The sampling units are different for the different stages. On the other hand, in 

multi-phase sampling the same type of sampling unit (e.g. individuals) is sampled multiple 

times. In the first phase, a sample of units is selected and every unit is measured on some 

variable. Then, in a subsequent phase, a subsample of units of the same type is selected only 

from those units selected in the first phase and not from the entire population. 

In multi-stage sampling, sampling units are selected in various stages but only the last sample 

of units is studied. In multi-phase sampling, the sample of units selected in each phase is 

studied properly before another sample is drawn from it. 

Unlike multi-stage sampling, in multi-phase sampling information may be collected at the 

subsequent phase at a later time; in this event, information obtained on all sampled units of 

the previous phase may be used if this appears advantageous. 

Multi-phase sampling can be used when we do not have a sampling frame with sufficient 

auxiliary information to allow for stratification, or when we cannot identify in the sampling 

frame the population subgroup of interest. The first phase is used to measure the stratification 

variable on an initial sample of units or to screen out the initial sample of units on the basis of 

some variable. Then, using only the strata or the part of the sample for which we want 

additional information, a probability sample of those elements is selected for additional data 

collection on a second variable. For example, a first phase can screen out a sample of 

individuals to identify only those who have been a victim of a robbery, while the second 

phase can ask more detailed information (e.g. whether the individuals reported the robbery to 

the police) to a sub-sample of the identified victims of a robbery. Multi-phase sampling 

reduces costs, time and the response burden. Moreover, the information from both phases can 

then be used to compute a regression or a ratio estimate. For instance, a ratio can be the share 

of individuals who reported a robbery to the police in the total number of individuals who 

have been a victim of a robbery. 

Multi-stage sampling is a particular case of multi-phase sampling arising by imposing the 

requirements for invariance and independence of the second phase designs. Invariance means 

that every time the i
th

 PSU (primary sampling unit) is included in the first stage sampling, the 

same subsampling design must be used. Independence means that subsampling in a given 

PSU is independent of subsampling in any other PSU. See Särndal et al (1992), Section 4.3.1. 

Two-phase sampling is sometimes called ‘double sampling’. 

Multi-phase sampling can be identified when a survey sample is drawn from a master sample, 

a microcensus or from another survey sample. When calculating weights, it is recommended 

that selection probabilities for those first-phase units be taken into account and that the 
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additional variability resulting from multi-phase sampling be accurately incorporated in the 

calculation of variance estimates. 

An additional distinction should be made between interviewing all, some or one of the 

eligible members of the selected households. Variance estimation should take this into 

account.   

Most surveys employ multi-stage designs, whereby a sample of households is drawn using 

any conventional sampling design (simple random sampling without replacement, systematic 

sampling, stratified sampling, multi-stage sampling and so on) and then individuals are 

selected for interview from every sampled household. There are two main options at this 

stage. The first option consists of selecting and interviewing one person per sampled 

household. The respondent is generally selected by the next/last birthday method or the Kish 

grid method. An alternative is to survey some or all of the household members above a certain 

age limit. 

Osier (2011) discusses how many people should be interviewed per household in the EU 

Safety Survey (EU-SASU), particularly whether one or all members should be interviewed in 

every sampled household. The paper starts with a review of some technical aspects in relation 

to selecting and interviewing all members of a household, rather than one. The choice has 

implications for data quality, mainly sampling variance, non-response rate and measurement 

errors, and for the overall cost of the survey. 

The advantages of interviewing all household members are: 

 The survey costs are reduced: in order to achieve a target sample size, this option 

means contacting far fewer households than if one person was interviewed per 

household. For face-to-face surveys, the number of trips to a segment area can be 

minimised, which helps save money by reducing travel costs. Nevertheless, with 

telephone or web surveys the cost of contacting a household is generally small. 

 Household respondents may help interviewers by providing contact information for 

the other household members and the times when they are likely to be available. 

Further, if their experience was positive, household respondents help to locate and 

motivate other household members to respond, a burden which would otherwise fall 

on interviewers. Thus, because the fieldwork can be supervised more easily, non-

response is likely to be reduced. 

 Having all the members of a household interviewed may also produce more accurate 

results, especially to household-level questions. 

The disadvantages of interviewing all household members are: 

 It often leads to less accurate results in terms of sampling variance, mainly because the 

members of a household tend to be more homogeneous than the general population 

with regard to the variable of interest. 

 Data for multi-respondent households may be subject to certain biases on sensitive 

topics (e.g. domestic violence, personal attitudes). This measurement bias could be 

reduced if only one person per household were interviewed. 

To compare the effect of selecting one, some or all persons from each sampled household, 

Osier (2011) uses variance estimation formulae (which assume a simple random sampling of 

households, a constant number of household members and a constant overall sample of 

individuals) under different scenarios related to different values of victimisation rates and 



 

 

Best practices on variance estimation 3 

Handbook on precision requirements and variance estimation for ESS household surveys 31 

intra-cluster correlation coefficients. The design effect is also considered. See Osier (2011) 

for more details, including consideration of cost. 

Finally, some NSIs draw household samples using balanced designs. A sampling design is 

said to be balanced if it ensures that the Horvitz-Thompson estimators of some ‘balancing’ 

variables are equal to the known totals. The cube method proposed by Deville and Tillé 

(2004) enables balanced samples to be selected. As there is often no such thing as an exact 

balanced sampling design, the cube method generally proceeds in two steps: a ‘flight phase’ 

in which exact balance is maintained, and a ‘landing phase’ in which the final sample is 

selected while complying as closely as possible with the balance conditions. Deville and Tillé 

(2005) derive a variance approximation for balanced sampling. It stems from considering 

balanced sampling as a calibration exercise at the design stage and, like calibration (see 

Section 3.4), it relies on the residuals of regression of the study variable on the balancing 

variables. 

 

Summary 

Sampling designs used in household surveys are highly diverse and complex. 

Variance estimation should take into account sampling design. It should distinguish between 

direct and indirect sampling, between multi-stage and multi-phase sampling and, in the case 

of household surveys, between enumerating only one or more members of the same 

household.   

 
 

3.2 Sources of variability of an estimator 

 

Mārtiņš Liberts (CSB) 

 

This section reviews the main sources of variability of an estimator and gives general 

guidelines on how to incorporate such variability components into variance estimation. 

 

We have a parameter of interest denoted by   which we would like to estimate from a sample 

0s S  ( 0S  denotes the set of all possible samples that can be drawn from the target 

population). We have an estimator denoted by ̂  which we are using to estimate  . By 

definition, ̂  is a stochastic variable. It is a function of the set-valued random variable S
~

 

whose realisations are the possible samples (see Appendix 7.1). 

    ssSsS  ˆˆ:
~ˆˆ

0   .     (3.2.1) 

In practice, the expected value of ̂  denoted by  ̂E  is often not equal to   (because of 

non-response errors, measurement errors, coverage errors and other errors). The difference 

between  ̂E  and   is the bias of ̂ : 

        
 0

ˆˆˆ

Ss

sspEB .      (3.2.2) 

Bias is a component of the mean square error. It is one of the accuracy measures of a 

population parameter estimator. The bias of an estimator is the average error of the estimator 
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over all possible samples. An estimator is biased if, on average, its value differs from the true 

value. In this handbook, however, we are not concerned with bias. 

The sample-to-sample variability of ̂  around  ̂E  is the other component of the mean 

square error of an estimator. We will express this variability by variance  ̂V : 

              2222 ˆˆˆˆˆˆˆ

0

 EEEspEEV
Ss

s  


.       (3.2.3) 

The sampling variability is the variability of the statistic computed for all possible samples 

taken from a population. Precision refers to how close estimates from different samples are to 

each other. 

The concepts of bias and variability are illustrated in the figure below. 

Figure 3.2.1: Bias and variability (precision) of an estimator26 

 

We need to know the variance  ̂V  in order to be able to measure the variability of an 

estimator. It is not possible to measure the true value of  ̂V  from a sample of the 

population. But it is possible to build a variance estimator  ̂V̂  for  ̂V . 

Before building  ̂V̂  it is recommended to explore the different sources of variability for an 

estimator. There are several sources of variability for an estimator ̂ , namely: 

Sampling design and estimator 

The first source of variability of an estimator comes from the procedure used in selecting the 

sample (commonly known as the sampling design). Consider a finite population U  of 

size N . A random sample s  of size n  is selected from the population according to a sampling 

                                                 
26 Charles Annis, P. E. Statistical Engineering. http://www.statisticalengineering.com/Weibull/precision-bias.html. 

http://www.statisticalengineering.com/Weibull/precision-bias.html
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design 



p  p s ,sS0 .27
 The variability of ̂  depends on sampling design p  in the sense 

that the estimator would take different values from one realisation of the sample to another. 

The variability caused by observing a sample instead of the whole population is called 

sampling error. 

The form of an estimator also has an impact on variance. For example, calibration estimators 

are known to be generally more accurate than ‘non-calibrated’ estimators. Not taking this 

feature into account in calculations would lead to misleading results, particularly when 

calibration information is strongly correlated with what the survey intends to measure 

(Deville and Särndal, 1992). See Section 3.4 for how to account for variability caused by 

calibration. 

There is a great deal of statistical literature (e.g. Särndal et al, 1992) that deals with variance 

estimation under ‘ideal’ survey conditions. By ‘ideal’ conditions we mean a full response, a 

sampling frame that perfectly represents the target population (no frame errors) and absence 

of measurement, processing and any other non-sampling errors. 

Unit non-response 

All surveys have to deal with unit non-response, that is, the failure to collect information on a 

sample unit (due to non-contact, refusal or other reasons). Unit non-response is a source of 

both bias and variability for ̂ . Variability comes from the fact that we have a subset r  of 

respondents selected as a subset from sample s  with the conditional probability  srq . The 

variance of the estimator increases because the size of the subset r  of respondents is smaller 

than the size of sample s . 

See Section 3.4 for how to account for the variability caused by unit non-response. 

Item non-response 

Another practical problem is item non-response, that is, failure to collect information on 

certain items only. Item non-response is usually handled by imputation. A common source of 

error in variance estimation is to treat imputed values as exact values. Ignoring imputation and 

treating imputed values as if they were observed values may lead to valid point estimates 

(under missing at random scenario) but it could lead to underestimation of variance (if 

standard variance estimation methods are naively applied). 

The impact of imputation on variance can be large if there is considerable item non-response. 

A non-response rate of 30 % may lead to 10-50 % underestimation of standard error (Kovar 

and Whitridge, 1995, as cited by Eurostat, 2002). 

See Section 3.4 for how to account for the variability caused by item non-response. 

Coverage (frame) errors 

Frame imperfections such as over-coverage and multiple listings are other potential sources of 

variability in estimates. Under-coverage is usually a source of bias. Under-coverage occurs 

when target population units are not accessible via the sampling frame. Sometimes the 

sampling frame is incomplete, some units are omitted and potential respondents cannot be 

sampled with a view to participating in the survey. 

 Over-coverage generally increases variance because it results in the number of sampled 

eligible units being lower than the sample size (non-eligible units which do not belong 

                                                 
27 See Appendix 7.1. 
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to the target population do not provide information on the study variables of a survey). 

The random number of sampled eligible units introduces a further component of 

variance. 

 Multiple listings can increase variance. One of the main reasons is that multiple listings, 

like over-coverage, reduce the size of the final effective sample (population elements 

that appear in the sample more than once are excluded from it).   

See Section 3.4 for how to account for variability caused by coverage errors. 

Measurement errors 

Measurement errors introduce another component of variance — response variance (Wolter, 

2007). Measurement errors arise from the fact that observed values which are collected 

through a fixed survey procedure may differ from true values. There are many explanations 

for this e.g. respondents might not understand a question, or be unwilling to provide true 

answers to certain questions. Interviewers might also influence respondents to give erroneous 

answers. For further details regarding variance estimation under measurement errors, see 

Section 3.4. 

Processing errors 

Processing errors are of the same nature as measurement errors. Possible sources of 

processing errors are data entry, data editing (checks and corrections) or coding. Just as with 

measurement errors, we can assume processing errors to be a random variable with some 

unknown characteristics. Processing errors can introduce an extra component of variability in 

̂ . For further details, see Section 3.4. 

Substitution errors 

Substitution errors are likewise of the same nature as measurement errors. Substitution errors 

are caused by substituting a unit in a sample by another unit considered as a good proxy for 

the original one. The value collected on a substituted unit generally differs from what would 

have been collected on the original unit, which makes substitution errors equivalent to 

measurement errors. For further details, see Section 3.4. 

Substitution is, in practically all cases, bad practice and should be avoided because there is a 

high risk that the process of identifying the units to be substituted is informative. 
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The main sources of variability of an estimator are summarised in Table 3.2.1: 

Table 3.2.1: The main sources of variability of an estimator 

Source 
Component of 

variance 

Estimation methods 

(see Section 3.4 for a description of methods) 

Sampling design 

and estimator 
Sampling variance 

Estimator based on sampling design, type of parameter 

of interest   and estimator̂ . 

Methods which account for the effect of implicit 

stratification,  rotating samples, indirect sampling and 

unequal probability sampling on variance are presented 

in this handbook. 

Among methods which can account for the effect of 

calibration on variance, the main one presented is the 

Deville and Särndal method (1992). 

Unit non-response 
Non-response 

variance 

Adjusting the variance estimator  ̂V̂  to take unit non-

response into account can be done by using methods 

which assume that respondents are missing at random or 

completely at random within e.g. strata or constructed 

response homogeneity groups or by using the two-phase 

approach or Fay’s approach (Fay, 1991; Shao and Steel, 

1999). 

Item non-response Imputation variance 

Multiple imputation can be used to account for the 

imputation variance. 

Replication methods and analytical methods can also be 

used to incorporate imputation into variance estimation. 

Deville and Särndal (1994) proposed a method for the 

regression imputed Horvitz-Thompson estimator. 

Over-coverage 
Over-coverage 

variance 

Methodology of domain estimation can be used. Target 

population has to be defined as a domain of the frame 

population. 

The related loss of precision can be quantified. 

Multiple listings 
Multiple listings 

variance 

Same as over-coverage. 

Possible to estimate if correct sampling probabilities can 

be computed. 

Measurement 

errors 
Measurement 

(response) variance 

Require several sets of repeated measurements. Each 

new set must be conducted under the same conditions as 

the others and, above all, must be uncorrelated with the 

other sets (very hard to achieve in practice). 

Processing errors Processing variance Same as measurement errors. 

Substitution errors 
Substitution 

variance 

Same as measurement errors. 

 

In surveys based on samples, the total variance comprises sampling variance and non-

sampling variance, while in censuses and take-all strata, the total variance consists only of 

non-sampling variance. 
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The total variance of an estimator ̂  can be split into many components, as summarised in the 

previous table. In theory, we should estimate each component individually. However, certain 

components of variance may be difficult to estimate because the necessary information for 

variance estimation is missing. This is what happens, for instance, with the response variance 

caused by measurement errors, as we never have repeated measurements of the same variable 

at our disposal. The fact is that it is hard to estimate variance components separately, even 

though the users of statistics are usually interested in the overall variance of ̂  by taking all 

the different sources of variability into account. It therefore makes sense to devote most of our 

efforts to determining the main components of variance and ignore the others. This approach 

almost certainly leads to the overall variance being underestimated, but it is still probably the 

most reasonable solution one can hope for under such circumstances.   

Variance estimators can be tested by simulation experiments. It might be possible to simulate 

artificial extra non-response (unit or item), measurement and processing errors. Experiments 

could be done to examine how the variance of population parameter estimates is affected by 

increasing the level of artificial errors. These could lead us to draw some conclusions about 

the relationship between the variance of population parameter estimates and the amount of 

errors. 

The overall recommendations for constructing suitable variance estimators are to: 

 consider all possible sources of variability (see Table 3.2.1), or at least those sources 

which account for most of the total variance; 

 consider those sources of variability which can be estimated; 

 consider those sources of variability which can be described with some other indicative 

information (for example, level of processing errors). 

 

Summary 

The total variance of population parameter estimates is made up of several components: 

sampling variance, non-response variance, imputation variance, over-coverage variance, 

multiple listings variance, measurement (response) variance, processing variance and 

substitution variance. 

The recommendation is to make an a priori impact assessment of the different sources of 

variability and to choose methods that allow the most important sources of variability to be 

accounted for as much as possible. 
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3.3 Variance estimation methods: description, evaluation criteria and 
recommendations 

Yves Berger (University of Southampton), Alexander Kowarik (Statistics Austria), Mārtiņš 

Liberts (CSB) and Ralf Münnich (University of Trier) 

 

This section describes the variance estimation methods. It also makes a general comparative 

assessment of the methods on criteria related to applicability (the sampling design used and 

the type of statistics), accuracy (confidence interval coverage probabilities, unbiasedness and 

stability) and administrative considerations (cost, timeliness and simplicity). It introduces 

Appendix 7.4, which offers guidance on which variance estimation methods to choose in 

relation to sampling design and type of indicators, and which sets out unsuitable methods (bad 

practices). 

There are various variance estimation methods. There are basically three groups that we 

consider here: analytical methods, replication methods and methods based on generalised 

variance functions. In addition, we consider linearisation methods. These are used to find a 

linear approximation of a non-linear estimator, after which a variance estimation method is 

applied. Valliant, Dorfman and Royall (2000) synthesise much of the model-based literature 

on variance estimation. However, model-based estimation of variance is not within the scope 

of this handbook. 

 

Description of variance estimation methods 

 

 Analytical methods 

 

Analytical methods provide direct variance estimators which seek to reflect the main features 

of the sampling design (stratification, clustering, unequal probabilities of selection, etc.). 

Analytical methods can be: 

o Exact analytical methods 

By nature, exact analytical methods lead to tailor-made variance formulae which reflect 

the main sampling design components As a result, the variance estimators are generally 

design-unbiased, or nearly design-unbiased, which makes them attractive. The first rule is 

that, whenever possible, we should strive to establish variance formulae which adhere as 

strongly as possible to the sampling design. 

o Approximate analytical methods 

When a sampling design is too complex, we will not be able to fix any exact variance 

estimator unless we make additional assumptions and/or use approximate methods. 

Assumptions always provide an approximate picture of reality, and so will any variance 

estimators thus obtained. 

Approximate analytical methods rely therefore on assumptions; they are born of the 

barriers that prevent the large-scale implementation of exact analytical methods: 

o Firstly, sampling designs might happen to be so ‘complex’ that we cannot get a 

variance estimator unless we make further assumptions. These assumptions consist of 

approximating the sampling design. Hence, this leads to simplified biased variance 

estimators. 
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o A second barrier to the extensive use of exact analytical methods is ‘mathematical’ 

difficulties. For example, the exact calculation of probabilities of selection of the order 

two — that is, the probability that two distinct units i and j be selected in the sample 

— is not feasible for certain sampling designs, especially where units are selected with 

unequal probabilities. To overcome this, the approximate variance formulae (3.4.21), 

(3.4.22) and (3.4.23) are proposed, wherein double inclusion probabilities are not 

used. 

o Unit non-response requires further assumptions to be made regarding the nature of the 

response mechanism: a Poisson selection, a post-stratified selection, a simple random 

selection, etc. The accuracy of any analytical variance estimator that would take into 

account both sampling design and non-response mechanism is closely linked to the 

validity of the non-response model. 

The same is true of measurement errors, since the only way to handle them 

analytically is to make model-based assumptions. If the model turns out to be true, 

then the variance expression should be unbiased; otherwise, it might result in a high 

level of bias. 

o In the case of multi-stage sampling, variance estimation at the first stage only is 

insufficient and not recommended when variances at subsequent stages are 

comparatively large. It can be extremely cumbersome to estimate the variance at each 

stage, especially if samples are drawn with unequal probabilities at several stages 

within the sampling design. The problem of calculating selection probabilities of the 

order two is given at each stage (Särndal et al (1992)). Münnich et al (2011a) also 

show some variance estimation methods for complex sampling designs, like multi-

stage sampling or unequal probability sampling. 

For a two-stage sampling design, according to Raj (1968), an unbiased estimator of the 

variance of the Horvitz-Thompson estimator of a total Y is given by 

    



n

i

iiVwTfYV
1

ˆˆˆˆ ,    (3.3.1) 

where  ˆf T  is the estimated variance contributed by the first stage, T̂   is the vector of 

the estimated totals of the PSUs, iV̂  is an unbiased estimator of the second-stage 

variance of the estimated total of PSU i, and iw   is the first-stage sampling weight of 

PSU i. The formula applies only to invariant and independent second-stage designs, 

i.e. to cases where the design that is used for sampling within PSU i does not depend 

on which other PSUs have been selected in the first-stage sample, and where the 

subsampling in PSU i is independent of subsampling in any other PSU. 

Rao (1975) extended the above method to the case where the second-stage design is 

not invariant: 

     



n

i

iisi VbwTfYV
1

2 ˆˆˆˆ ,      (3.3.2) 

where isb  are coefficients that depend on the sample s  of selected PSUs, on the 

sampling design and on the first and second-order inclusion probabilities of PSUs. The 

weights iw  might also depend on the selected sample s . 
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The latter formula shrinks to a single term when (1) the estimator of the total is 

Horvitz-Thompson, (2) the variance estimator is unbiased and (3) the first-stage 

inclusion probabilities are small. This simplification should not be made without 

checking whether the ignored term is indeed negligible. 

Actually, in a multi-stage design, if the ratio of selected clusters at the first stage to the 

total number of clusters in the population is small, then stages other than the first add 

little to the standard error and so the variance estimation methods may take account 

only of the first stage of sampling design. For a mathematical elaboration, see Kish 

(1965) and Cochran (1977). The variance estimation process gets easier if clusters are 

selected with probabilities proportional to their size and when we assume (without 

important errors) that they have been selected with replacement (Nikolaidis, 2008). 

o The selection in the sample of one PSU per stratum makes it impossible to estimate 

the variance of any statistic. This can happen with very small strata, or with strata 

suffering from severe non-response problems. 

In these cases, an unbiased estimator of the variance is not available, not even for 

linear statistics. It is possible to use an estimator that tends towards an overestimate of 

the variance. This is the collapsed stratum estimator, which is applicable only to 

problems of estimating the variance of linear statistics. 

One solution is to collapse strata so as to have at least two PSUs in each stratum. So in 

order to estimate the variance of estimator Ŷ , we combine the original H strata into G 

groups of at least two strata each. Assume that H is even and that each group contains 

precisely two of the original strata. The estimator of the population total can be 

expressed as  1 2

1 1

ˆ ˆ ˆ ˆ ,
G G

g g g

g g

Y Y Y Y
 

     where ˆ ( 1,2)ghY h   denotes the estimator of 

the total of stratum h in the group g. If we consider g1 and g2 as independent 

selections from group g, then the estimator of the variance of Ŷ is 

   



G

g

ggcs YYYV
1

2

21
ˆˆˆˆ . The estimator overestimates the true variance 

by     



G

g

ggcs YVB
1

2

21
ˆˆ  , where  ghgh YE ˆ . For more details, see Cochran 

(1977), Kish (1965), etc. and for the implications on variance estimation, see Wolter 

(2007) (Section 2.5). 

For non-linear estimators, the variance can be estimated by a combination of collapsed 

stratum and Taylor series methodology. See Wolter (2007) (chapter 6). 

o Another difficulty arises with the calculation of confidence intervals, for which it is 

generally assumed that the statistic follows a normal distribution. However, when 

dealing with non-linear statistics, this assumption can be questioned. Bootstrap or 

empirical likelihood (Hartley and Rao, 1962; Owen, 2001) methods are appropriate for 

this type of situation. 

Analytical (exact and approximate) methods can be used for linear statistics and 

simple non-linear statistics (ratios, ratios of two ratios) under most of the commonly 

used sampling designs (see Appendix 7.4). Exact methods can be used under simple 

random sampling, stratified random sampling and cluster sampling, while approximate 

methods can be used for multi-stage sampling designs. 
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 Linearisation methods  
 

These are used to obtain a variance estimator in the event of a complex form of the parameter. 

Variance estimation based on linearisation methods consists of finding a linear approximation 

to a non-linear statistic (such as ratio estimate, regression coefficient, correlation coefficient), 

working out a variance estimator for the linear approximation and finally using it as an 

estimator for the variance of the non-linear statistic. 

o Taylor linearisation (TS) 

The Taylor linearisation method (Tepping, 1968; Woodruff, 1971; Wolter, 2007) is a 

well-established method of obtaining variance estimators for non-linear statistics 

(defined either in an explicit or an implicit way) which are smooth (differentiable). It 

consists of approximating a non-linear statistic with a linear function of observations 

by using first-order Taylor series expansions. 

Taylor series expansion requires the assumption that all higher-order terms are of 

negligible size. Some underestimation of variance is to be expected, at least for 

moderate-sized samples, because higher-order terms are neglected. If all higher-order 

terms are of negligible size, then the variance approximation works well and can be 

used; otherwise, serious biases in the estimates may result. Dippo and Wolter (1984) 

apply second-order Taylor series approximations to several estimates and show that 

this reduces the bias, but increases the variance of the variance estimate and 

complicates computations considerably. Underestimation of the variance from Taylor 

series may compensate for some of the overestimation that results when variance is 

computed assuming sampling with replacement for a without-replacement sampling 

design. 

For linearisation, the function of interest may not be expressible as a smooth function 

of population totals or means. In order to accommodate statistics with a more complex 

mathematical expression, generalised linearisation frameworks have been developed: 

o Linearisation based on estimating equations (Binder, 1983; Kovacevic and Binder, 

1997) 

In this technique, population parameters are expressed as solutions to appropriate 

population estimating equations. Sample estimates of these parameters are obtained by 

solving sample estimating equations which involve design weights and, possibly, 

calibrated weights based on auxiliary information. Variance estimates can then be 

obtained either by linearisation or by Newton Raphson optimisation. 

This method can, for example, treat quantiles as well as measures of income 

inequality, such as the Gini coefficient, which the Taylor method cannot. The method 

is applicable to a wide range of complex sampling designs and is also less 

computationally intensive than replication alternatives. 

o Linearisation based on influence functions (Deville, 1999) 

If the parameter of interest is a non-linear function of population totals, the statistic of 

interest (the estimate of the parameter) is computed as the same non-linear function of 

the estimated population totals. Each estimated total is a weighted sum of the sample 

observations of the corresponding variable. The sampling weights can be viewed as 

the values of a measure defined on the real multidimensional space with as many 

dimensions as there are variables of the survey. The estimator of the parameter of 

interest is then a function, say T , of this measure. A linearised variable is defined with 
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its value on each sample point equal to the value of the influence function (a special 

form of derivative) of T  on the sample point. If the sample size is large and some 

additional conditions hold (Deville, 1999), then the variance of the statistic of interest 

is approximated by the variance of the weighted sum of the linearised values of the 

variable, which is easy to compute. This linearisation covers more non-linear functions 

than Taylor linearisation without involving more calculations. Influence functions can 

be used for linearisation of non-smooth statistics for which Taylor series expansions 

can no longer be used. In fact, the derivation rules for influence functions are similar 

to the rules for computing the derivative of a function in a standard differential 

calculus. 

Practical applications of linearisation based on influence functions can be found in 

EU-SILC (Eurostat, 2005; Osier, 2009). 

o Jackknife linearisation 

The idea of jackknife linearisation is to replace repeated resampling of a statistic with 

analytic differentiation. The result is a formula that is simple to calculate and which in 

large samples is a good approximation to the traditional jackknife calculation (Canty 

and Davison, 1999). 

Formulae for linearisation-based variance estimates can be found in the literature for the most 

common indicators on poverty and income dispersion (Verma and Betti, 2011). Thus, 

variance estimation based on linearisation should be feasible for nearly all statistics used in 

practice and under most of the commonly used sampling designs. 

A recommended application of linearisation methods is when the number of sample members 

becomes a random variable, for example in the case of unplanned domains or by using 

clusters with different sizes. Then the mean becomes a ratio of variables. Moreover the 

majority of statistics are non-linear, and because there are no exact expressions for calculating 

their variances, it becomes necessary to use approximations such as Taylor series linearisation 

and replication methods. In order to obtain an adequate approximation for the variance of the 

ratio estimator by means of a Taylor series, the sample size (the denominator of the ratio) 

should not be subject to great variation, which would however be the case when e.g. clusters 

have widely different sizes. The difficulty in keeping the denominator variability under control 

increases when the estimation is directed at subclasses, since it is then impossible to control 

the number of units belonging to each subclass. 

The linearisation approach relies on the assumption that the sample-to-sample variation of a 

non-linear statistic around its expected value is small enough to be considered linear. The 

latter assumption is particularly correct with large samples. Although this is unlikely to be a 

problem with national samples comprised of thousands of elements, we should be cautious 

when dealing with breakdown estimates, especially when such estimates refer to small 

domains (Osier, 2009).       

With the linearisation approach to variance estimation, a separate formula for the linearised 

estimate must be developed for each type of estimator (requiring additional programming 

efforts). In this respect, the linearisation approach differs from the replication methods which 

do not require derivation of a variance formula for each estimator. This is because in 

replication methods, the approximation is a function of the sample, and not of the estimate. 

Replication methods for estimating variance for very complex functions are therefore easier 

than linearisation methods. On the other hand, some sampling designs may not satisfy 

restrictions required by replication methods. The linearisation method is applicable to any 

sampling design. Linearisation and replication approaches do not produce identical estimates 
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of standard error, but empirical investigations have shown that for many statistics, the 

differences are negligible (Kish and Frankel, 1974). 

 Replication methods 

The replication approach is based on the originally derived sample (full sample), from which 

a (usually) large number of smaller samples (sub-samples or replicate samples) is drawn. 

From each replicate sample the statistic of interest is computed. Replicate estimates are 

determined using the same estimation method as the original estimate. The variability of these 

replicate estimates is used to derive the variance of the statistic of interest (of the full sample). 

In the case of calibration estimators the replicate weights should be produced in a similar 

way to full sampling weights. All the weighting adjustment processes performed on the full 

sampling weights should also be carried out for each replicate weight. 

o Jackknife (JK) 

Jackknife is used in statistical inference to estimate bias and standard error in a 

statistic, when a random sample of observations is used. The basic idea behind the 

jackknife estimator lies in systematically re-computing the statistic leaving out one 

observation (or group of observations such as in delete-a-group jackknife) at a time 

from the sample set and reweighting the remaining units. Using this new set of 

‘observations’ for the statistic, an estimate for the bias (estimator bias) can be 

calculated, as well as an estimate for the variance of the statistic. 

A general description of the variance estimation method is given below. 

Assume a sample s  of n  elements obtained by a non-stratified sampling design. Let 

also the population parameter   be estimated by ̂ , an estimator based on data from 

the full sample s .   

The jackknife technique starts by partitioning the sample into A  random groups of 

equal size. We assume that for any given s  each group is a simple random sample 

(without replacement) from s . Next, for each group ( Aa ,,1 ), we calculate 



ˆ 
a , 

an estimator of  , based only on the data that remain after omitting group a . For 

Aa ,,1 , we then define 



ˆ a  A ˆ  A 1 ˆ 
a        (3.3.3) 

sometimes called the 



a th
 pseudovalue. The jackknife estimator of   (an alternative to 

the estimator ̂ ) is given by 

 





A

a

aJK
A 1

ˆ1ˆ      (3.3.4)
 

   

and the jackknife variance estimator is defined as 

 
 




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1ˆ  .      (3.3.5) 
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In practice 



ˆ V JK  is used as an estimator of )ˆ(V  as well as of )ˆ( JKV  . Alternatively, 

the variance of the statistic is estimated by 

 
 

 






A

a

a
AA

V
1

2
ˆˆ

1

1ˆ  .        (3.3.6) 

 

Denoting  ̂  the mean of the A values 



ˆ 
a 

, the jackknife variance estimator can also 

be written as 
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)()(
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
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.

    

(3.3.7) 

The jackknife variants are JK1 for non-stratified sampling designs, JK2 for stratified 

designs with two PSUs per stratum, and JKn for stratified designs with two or more 

PSUs per stratum. The number of replicates depends on the variant selected, the 

number of strata and the number of PSUs by strata. 

Note that, in stratified designs, jackknife is not an independent process in each of the 

strata, but is done sequentially for all PSUs in all strata, taken one by one. 

Jackknife is easier to apply to many kinds of sampling designs, including complex 

sampling schemes (Shao and Tu, 1995), such as multi-stage sampling with varying 

sampling weights, than the bootstrap method. 

Jackknife can accommodate most estimators likely to occur in survey practice. 

However, delete-one or groups jackknife variance estimators do not work for 

complex non-smooth statistics such as poverty measures (except for the Gini 

coefficient — Berger, 2008) as they lead to inconsistent variance estimators (Miller, 

1974; Wolter, 2007). Delete-one or groups jackknife should therefore not be used for 

complex non-smooth statistics (except for the Gini coefficient). In this case, 

linearisation based on estimating equations or influence functions can be used instead, 

followed by e.g. analytical methods. However, the delete-a-group jackknife might 

also perform well for non-smooth statistics (e.g. quantiles, rank statistics) as the 

number of sample elements in clusters increases. Additionally, the deficiency of the 

delete-one or groups jackknife can be restricted by using a more general jackknife, 

called the delete-d jackknife,  with the number of deleted observations, d , depending 

on a smoothness measure of statistics. In particular, for sample quantiles, the delete-d 

jackknife with d satisfying 0
d

n
 ( n  is the number of PSUs) and dn (as 

n ) leads to consistent variance estimators in the case of independent and 

identically distributed observations (Shao and Wu, 1989). 

Nor should delete-one jackknife be used in stratified sampling (Wolter, 2007, pp. 

172-173). 

Existing jackknife variance estimators used with sample surveys can seriously 

overestimate the true variance under one-stage stratified sampling without replacement 

with unequal probabilities. In this case, Berger (2007) describes a generalised 

jackknife variance estimator.  However, it has many disadvantages (i.e. it cannot be 

implemented in standard statistical packages, it is computationally intensive, the exact 

joint inclusion probabilities are difficult to calculate). Further, Berger (2007) proposes 
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a jackknife estimator which does not require exact joint inclusion probabilities and is 

always positive, unlike the generalised jackknife variance estimator. The jackknife 

proposed by Berger (2007) is unbiased. 

Berger and Skinner (2005) propose a delete-one weighted jackknife for general 

unequal probability sampling designs. 

Kott (2001) shows that a delete-a-group jackknife variance estimator underestimates 

variance when the number of replicates is higher than the number of PSUs and that 

this is a frequent case in social surveys, where generally only one or two PSUs are 

selected for each stratum. To deal with this, Kott proposes an extended delete-a-group 

jackknife which is implemented in EVER software. ISTAT has carried out simulation 

studies to investigate the performance of the methods in the presence of imputation in 

social surveys. 

For stratified multi-stage with replacement designs, Rao et al (1992) propose a 

customary delete-cluster jackknife. For stratified multi-stage without replacement 

designs, this customary delete-cluster jackknife is biased when there is a low 

variation between PSUs or high variation within PSUs. 

For two-stage self-weighted designs, Escobar & Berger (2010) propose a jackknife 

estimator which involves deleting PSUs as well as units. The estimator is design 

consistent and asymptotically unbiased. 

o Bootstrap  

Bootstrapping is a statistical method for estimating the sampling distribution of an 

estimator by sampling with replacement from a population reconstructed from the 

sample using appropriate weights: see Canty and Davison (1999). It is most often used 

to derive robust estimates of standard errors and confidence intervals of population 

parameters such as mean, median, proportion, ratio, correlation coefficient or 

regression coefficient. 

The number of replicates, and the number of PSUs sampled in each replicate, can be 

chosen by the analyst, although there are practical recommendations for both these 

quantities. Efron and Tibshirani (1986) report that the number of replicates in the 

range of 50 to 200 is adequate in most situations. The precision of the bootstrap is 

higher if the number of replicates is increased. 

Assume a sample 



s drawn from a population 



U  by a sampling design without 

replacement. Let also the population parameter   be estimated by 



ˆ . A brief 

description of the bootstrap technique is as follows: 

i. Using the sample data, construct an artificial population *U , assumed to 

mimic the real but unknown population U . 

ii. Draw A  independent ‘bootstrap samples’ from *U  by a design identical to the 

one by which 



s was drawn from U . Independence implies that each bootstrap 

sample must be replaced into *U  before the next one is drawn. For each 

bootstrap sample, calculate an estimate )(
ˆ

a   Aa ,,1  in the same way as 



ˆ  

was calculated. 

iii. The observed distribution of )()1(
ˆ,,ˆ

a   is considered an estimate of the 

sampling distribution of the estimator 



ˆ , and  ̂V  is estimated by 
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 
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V  ,      (3.3.8) where 
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

 
A
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a
A 1

)()(
ˆ1ˆ  .        (3.3.9) 

The bootstrap method is quite flexible as it can handle most estimators likely to occur 

in survey sampling practice, including nondifferentiable statistics (unlike for instance 

jackknife) and new, novel statistics (more easily than TS method) (Wolter, 2007). 

However, Wolter (2007) notes that bootstrap has not been adequately tested for large-

scale, complex surveys and cannot give any recommendation on its use in this 

environment. 

Bootstrap can be used for constructing hypothesis tests. It is often used as a robust 

alternative to inference based on parametric assumptions when those assumptions are 

in doubt, or where parametric inference is impossible or requires very complicated 

formulae for calculation of standard errors. The bootstrap method does not depend on 

any specific properties of the sample statistic and can therefore be used universally in 

a general computational algorithm. But the ordinary Monte-Carlo non parametric 

bootstrap can lead to biased variance estimates when samples are drawn with unequal 

probabilities or without replacement and large sampling fractions (Davison and Sardy, 

2004; Münnich et al, 2011a); techniques for addressing this issue are available (see 

Canty & Davison, 1999). 

In planning a sample survey, a pilot sample is typically used to determine the required 

sample size to achieve a specified level of accuracy for statistical inference. Mak 

(2004) proposes a practical procedure based on bootstrap for estimating 

simultaneously the variances of a statistic for all sample sizes based on a single 

observed pilot sample. For an observed sample of size n0, it is well known that 

bootstrap can be used to estimate numerically the variance of a sample statistic 

computed from the sample. To study the variances of the statistic for other sample 

sizes, we can in principle generate bootstrap samples of size n for a range of values of 

n, and then calculate the bootstrap variance estimate for each n. This, however, will be 

computationally demanding and inefficient. By contrast, the method proposed requires 

bootstrap samples to be generated for only two selected values n1 and n2 of n. 

Estimates of the variances of the statistic with small biases can then be computed for 

any other values of n. It is proved theoretically that these biases decrease rapidly to 

zero as n1 and n2 increase. 

o Balanced repeated replication (BRR) or balanced half-samples (BHS) 

This method is suitable for a stratified sampling design with two sampled elements in 

each stratum or for cluster designs where each cluster has exactly two final stage units 

per cluster. The aim is to select a set of samples from the family of 2
H
 half-samples 

(where H stands for the number of strata or clusters), compute an estimate for each 

one and then use them for the variance estimator such that the selection satisfies the 

‘balance’ property. 

A general description of the method is given below. 



 

 

Best practices on variance estimation 3 

Handbook on precision requirements and variance estimation for ESS household surveys 46 

We consider a sample 



s, where 
H

h

hss
1

  and each 



sh  consists of exactly two 

elements drawn from stratum h . A half-sample is a set consisting of exactly one of the 

two elements from each 



sh . Therefore, there are 



2H  possible half-samples. The basic 

idea of this method is to select a set of half-samples from the set of all 



2H  half-

samples to estimate the variance. Balanced repeated replication uses the variability 

among A  replicate half-samples that are selected in a balanced way. 

Let the elements of each hs  be denoted as 1h  and 2h  and 








2element  contains   sample-half if1

1element  contains    sample-half if1

ha

ha
rah . The set of A  replicate half-
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1
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y
ry  denote the value of the element of hs  included in 

half-sample a . 

Finally, let  ar̂  be the estimate of interest, calculated in the same way as 



ˆ   but 

using only the observations in half-sample a , e.g.    
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if   is the 

population mean. Then the BRR estimator of the variance of 



ˆ  is given by 

  



A

a

aBRR r
A

V
1

2
ˆˆ1ˆ  . (3.3.10) 

BRR is a flexible method in terms of the kinds of estimators that can be 

accommodated. But it is restricted in terms of sampling design, as the standard BRR 

works when two units (or two first-stage clusters) are sampled from each stratum and 

data imputation is not used. However, by pairing adjacent selections in a random 

sampling design, BRR can also be applied to non-stratified designs. By more 

complicated balancing schemes or by collapsing schemes, BRR can also accommodate 

three-or-more-per-stratum designs and one-per-stratum designs (Wolter, 2007). 

BRR is popular in the United States for variance estimation for non-linear survey 

estimators under stratified multi-stage sampling design. Survey agencies such as the 

U.S. Census Bureau, the U.S. Bureau of Labor Statistics and Westat have computer 

software for computing BRR variance estimates. 

o Random groups method (RG) 

The random group method of variance estimation amounts to selecting two or more 

samples from the population, using the same sampling design for each sample, 

constructing a separate estimate of the population parameter of interest from each 

sample and an estimate from the combination of all samples, and then computing the 

sample variance among the several estimates. 

o Independent random groups method 

Mutual independence of the various samples arises when one sample is 

replaced into the population before selecting the next sample. We assume that 
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we draw 



A  independent samples Ass ,,1    of equal size. The first sample 



s1 is 

drawn by sampling from the whole population and is then replaced into the 

population. The second sample 



s2  is then drawn by the same design that 

produced 



s1 and independently of 



s1. Then 



s2  is replaced into the population. A 

third sample 



s3  is drawn, by the sampling design that produced 



s1 and 



s2  and 

so on until 



A  samples have been drawn. What is important is the replacement 

of each sample as  before the next sample 



sa1 is drawn. 

For each Aa ,,1 , an estimator )(
ˆ

a  of 



  is calculated on data from as  only. 

The same estimator formula applies throughout. The average of the )(
ˆ

a , 

denoted as )(
ˆ
 , is used for estimating 



 : 




 
A

a

a
A 1

)()(
ˆ1ˆ  ,         (3.3.11) 

whereas the independent random groups variance estimator is given by 

 
 







A

a

aIRG
AA

V
1

2

)()(

* ˆˆ
1

1ˆ  .       (3.3.12) 

 

o Dependent random groups method 

The method of dependent random groups is used for samples that do not meet 

the requirements of independent random groups. We assume that we first draw 

one large sample from the whole population by a probability sampling design. 

A random mechanism is then used to divide it into a number of disjoint 

subsamples, the random groups. These will not be independent but are treated 

as if they were. 

Let 



s be the sample drawn from the population 



U , which we call full sample. 

We divide 



s into 



A  disjoint random groups Ass ,,1   such that 
A

a

ass
1

 . We 

assume that 



s is of a fixed size 



n and we also assume for simplicity that the 

groups are of equal size. Let )()(1
ˆ,,ˆ,,ˆ

Aa    be estimators of 



 , where )(
ˆ

a  

is based only on data from the group 



sa , where Aa ,,1 . We now consider 

the estimator )(
ˆ
 , formed by averaging: 




 
A

a

a
A 1

)()(
ˆ1ˆ            (3.3.13) 

and the estimator 



ˆ  based on data from the full sample 



s, disregarding the 

division into random groups. The variance estimator is given by 

 
 







A

a

aDRG
AA

V
1

2

)()(

* ˆˆ
1

1ˆ   .         (3.3.14) 

In some cases 



ˆ  and )(
ˆ
  can be so defined that they will be identical. An 

alternative variance estimator is given by 
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 
 







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ˆˆ

1

1ˆ   .         (3.3.15) 

The random group method is a flexible method which can accommodate almost any 

estimator and almost any sampling design. 

The general characteristics of replication methods are as follows: 

 Even though replication methods have strong theoretical foundations, their purpose is 

rather to provide users with a sort of universal ‘recipe’ which could fit any type of 

sampling design and any type of statistics of interest (linear and more complex 

statistics). For a given design, the same analysis procedure is used for almost all 

statistics, regardless of their complexity. They can be applied to complex sampling 

schemes, such as multi-stage sampling. Rao et al (1992) describe a jackknife, a 

bootstrap and a balanced repeated replication for such sampling schemes. A 

bootstrap for multi-stage sampling is also illustrated in Preston (2009).          

 Another property of replication methods is that they enable  users of secondary survey 

data to estimate standard errors without knowing the detailed sampling design. The 

replicate weights created by the survey methodologists can quite simply be included in 

the data file and be used by users of secondary survey data (e.g. researchers) to 

estimate the variance. This is especially useful when there are confidentiality issues 

involving sample units and there is need to prevent dissemination of any information 

that identifies the sample units. However, the release of replicate weights with the 

public use data files may still raise confidentiality issues. See Section 4.2 for a 

possible solution to this problem. 

 Replication methods need computational power to perform all calculations on each 

replicate sample. They require more extensive computation than for instance Taylor 

series linearisation.  

 Generalised Variance Functions (GVF) 

GVFs model the relationship between the variance or the relative variance of an estimator 

and its expectation. The model parameters can be determined from a set of variance 

estimates obtained through direct computations (using analytical or replication methods) 

and then used to estimate the variance of any other statistic of interest. As such, GVFs 

cannot entirely substitute analytical or replication methods, but they are used after the 

application of these methods on a set of estimates to approximate standard errors for a 

wide variety of estimates of target population characteristics. 

GVFs are somewhat less flexible than the other methods, being designed primarily for 

multi-stage sample surveys of households. Although GVFs have been used in other 

applications, these have not been generally as successful (Wolter, 2007). 

GVFs are applicable primarily to estimated proportions or to estimates of the total number 

of individuals in certain domains or sub-populations. There have been a few attempts, not 

entirely successful, to develop GVF techniques for quantitative characteristics (Wolter, 

2007). 

Variance estimation based on GVFs is mainly empirical: there is no theoretical evidence 

to guide the choice of a model. This approach is particularly suitable for handling variance 

estimation when the publication load is extremely heavy, with up to thousands of statistics 

for which variance estimates are needed. The approach is also interesting for data users, 
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since it enables them to estimate accuracy without any information regarding sampling 

design. For more information, see Section 4.2. 

 

Evaluation criteria of variance estimation methods and related recommendations 

Many estimation methods lead to adequate estimators of variance under the commonly used 

sampling designs. Even so, there are basic criteria which can help any survey practitioner to 

choose a variance estimation method: 

 applicability of methods (to the sampling design used and the type of statistics) 

The complexity of a variance estimation method derives from two aspects — the 

complexity of the statistic under study (linear statistics, non-linear but smooth 

statistics and non-smooth statistics) and the complexity of the sampling design. 

Variance estimation methods can be classified according to their fitness to deal with 

complex statistics and complex sampling designs, as follows: 

o methods that can be used for complex statistics: e.g. Taylor linearisation; 

o methods that can be used for complex designs: e.g. jackknife method; 

o methods that can be used both for complex statistics and complex sampling 

designs: e.g. jackknife method. 

The Task Force mapped the different variance estimation methods in relation to the 

main categories of the identified sampling designs and to the main types of statistics. 

The purpose of the exercise was to lay down some recommendations on good and bad 

practices of using certain methods for certain sampling designs and types of statistics. 

The list of recommended and not recommended methods does not claim to be 

exhaustive. The result of this exercise is presented in Appendix 7.4. References to the 

literature are also provided. 

Experience from household surveys clearly shows that for a given sampling design 

there is no unique method but rather several ways to handle estimates of standard 

errors. The choice of variance estimation method is often a matter of taste: there are 

‘schools’ which give prominence to analytical methods, while other ‘schools’ consider 

that replication methods are better tailored to statistical production. The national 

approaches used to compute estimates of standard errors vary greatly from one country 

to another. For instance, in the EU-SILC, some countries (e.g. France, Italy) use 

analytical variance estimation methods, while others (e.g. Luxembourg, Spain) seem 

to have a preference for replication methods like bootstrap or jackknife.
28

 Thus, for 

national sampling designs which can be regarded as ‘similar’ (multi-stage sample 

selection, non-response adjustments, calibration to external sources, etc.), the variance 

estimation methods used at national level are quite different from one country to 

another, and yet they produce estimates which are ‘acceptable’ from a statistical point 

of view as they have been released in the national quality reports.  

 accuracy considerations; 

The most common accuracy criteria, also mentioned by Wolter (2007), are confidence 

interval coverage probabilities (the proportion of the times the interval contains the 

true value of the parameter over repeated samples), mean square error (MSE) (which 

                                                 
28 Source: National EU-SILC Quality Reports. 
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is also referred to as stability, see U.S. Census Bureau, 1993) and unbiasedness. 

Cochran (1977) states that an unbiased estimator has the property that its expected 

value (the average value of the estimate, taken over all possible samples of given size 

n) is exactly equal to the true unknown population value. 

These criteria interact in a way which seems to be unpredictable and which does not 

allow any generalisation about which method is best from the point of view of all 

criteria considered at the same time. Different studies seek to compare the accuracy of 

different variance estimation methods in terms of these criteria. Indeed, different 

variance estimation methods turn out to be the best, given different accuracy criteria. 

Since the most important purpose of a variance estimator will usually be to construct 

confidence intervals for the parameter of interest   or for testing statistical hypotheses 

about , Wolter (2007) suggests that the most relevant criterion of accuracy will 

usually be the confidence interval coverage probability. Moreover, the bias criterion, 

and to some extent the MSE criterion, do not lead to any definitive conclusions about 

the different variance estimators. This is because the biases of the RG, BRR, JK and 

TS estimators of variance are, in almost all circumstances, identical, at least to a first-

order approximation. Thus, we have to look to second- and higher-order terms to 

distinguish between the estimators. Since the square of the bias is one component of 

MSE, this difficulty also carries over to the MSE criterion of accuracy. The second 

component of the MSE, the variance, is under control as the survey methodologist can 

choose from a range of strategies about the number of random groups, partial versus 

full balancing etc. So the best estimator of variance is not obvious in terms of the bias 

and MSE criteria. 

Frankel (1971) and Kish and Frankel (1974) make a Monte Carlo comparison of the 

performance of three methods (JK, BRR and TS) for a two-per-stratum single-stage 

cluster sampling design of households. The types of estimates examined were: means 

(that were ratio estimators), differences of means, regression coefficients and 

correlation coefficients. Overall, the studies (which are described in Wolter (2007) and 

U.S. Census Bureau (1993)) show that: 

 BRR is clearly best in terms of the confidence interval criterion, while TS seems to 

be the worst; 

 the three methods, however, performed in the reverse order in terms of the stability 

of variance estimator; the MSE of the TS variance estimator was smallest; 

 TS and JK may have smaller biases than BRR, but the patterns are not very clear 

or consistent. 

A study undertaken by Bean (1975) (described in Wolter (2007)) and using a sampling 

design involving two PSUs per stratum selected by probability proportional to size 

with replacement sampling, shows that: 

 BRR tends to offer the best confidence intervals; 

 TS tends to have the smallest MSE; 

 no estimator of variance consistently and generally has the smallest bias. 

Wolter (2007) mentions that Mulry and Wolter (1981) and Dippo and Wolter (1984) 

come to similar conclusions that: 

 BRR and RG are better in terms of confidence intervals; 

 TS tends to have good properties in terms of MSE; 
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 actual confidence interval coverage probabilities tend to be too low in all cases. 

Wolter (2007) mentions that with adequate replication, bootstrap should have 

statistical properties similar to the other replication methods such as BRR and JK. 

Rao and Wu (1985) make an asymptotic second-order comparison of JK, BRR and TS 

for any stratified multi-stage design in which the primary sampling units (PSUs) are 

selected with replacement. When the design consists of two sampled PSUs per 

stratum, the TS variance estimator is shown to be identical (in second-order 

asymptotic expansions) to the BRR variance estimator and to the JK variance 

estimator for non-linear estimates such as ratio, correlation and regression coefficients. 

These results suggest that for two PSUs per stratum designs with a large number of 

strata, there is not much to choose between TS, BRR and JK variance estimators in 

terms of statistical criteria. It follows that practical considerations, such as available 

computing resources and computing costs, should dictate the choice of variance 

estimator. The results of the study are described in U.S. Census Bureau (1993). 

For non-linear statistics that can be expressed as functions of estimated totals, Krewski 

and Rao (1981) establish asymptotic consistency of TS, JK and BRR variance 

estimators as the number of strata increases (U.S. Census Bureau, 1993).    

Wolter (2007) notes that the bias and the MSE of the RG method will depend on both 

the number and size of the random groups. Generally speaking, he found that the 

variance of the variance estimator declines as the number of random groups increases, 

while the bias increases. However it was somewhat unclear what the net effect of these 

competing forces is in the MSE. These remarks also apply to the bias and MSE of the 

BRR, JK and TS variance estimators. 

To sum up, with respect to accuracy, different studies show very good results for BRR 

when it comes to confidence interval coverage probabilities (the most relevant 

accuracy criterion). Some studies show very good results for TS when it comes to 

stability (MSE). However, it is not obvious which is the best variance estimation 

method in terms of the stability and bias criteria. 

As regards GVFs there is very little theoretical justification and the estimators of 

variance are surely biased. However, survey practitioners who have used these 

methods feel that they bring some additional stability (lower variance) to variance 

estimates. The GVF method is clearly inferior to the other methods in terms of 

confidence interval criterion (Wolter, 2007). In conclusion, GVFs seek not to provide 

the best variance estimators possible, but to provide users with a sort of ‘black-box’ 

from which they can get a variance estimate for any survey statistic. 

 administrative considerations: cost, timeliness and simplicity (Wolter, 2007). 

The cost of calculating accurate variance estimates for each statistic may indeed turn 

out to be formidable when the publication load is quite heavy (with hundreds, perhaps 

thousands of statistics at stake). If so, cost-effective methods, though less accurate, are 

highly desirable as a means of handling such a situation. 

Timeliness obviously refers to the amount of time needed to produce the variance 

estimates, which should be set in accordance with the survey deadlines. 

Simplicity refers to the need for simple methods applicable to (although possibly not 

optimal for any of) the multitude of parameters that may need to be estimated from a 

survey’s data. It also refers to the need for methods which are (a) simple enough to 
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program and (b) simple enough to be understood by stakeholders of the survey, e.g. its 

main users. 

Wolter (2007) mentions that GVFs cannot be recommended for any but the very 

largest sample surveys, where administrative considerations prevail. If we are dealing 

with hundreds, perhaps thousands of indicators (also considering breakdowns) for 

which variance estimates are wanted, then given the time constraints, working out 

variance estimates one by one becomes unfeasible using direct variance computations 

(computation from the microdata, with analytical or replication methods). 

 

Summary 

For a given sampling design and type of statistic there is no one unique method but rather 

several methods of estimating standard errors. There is consequently also a broad range of 

variability in the methods used by countries to compute estimates of standard errors. The 

recommendation is to use variance estimation methods which are appropriate to the sampling 

design and type of estimator. Appendix 7.4 presents some recommendations on good and bad 

practices of using certain methods for certain sampling designs and types of statistics. The list 

of recommended and not recommended methods does not claim to be exhaustive. This 

appendix has been devised to help the survey manager choose the appropriate method, from 

the applicability point of view. 

Other criteria for the choice of methods are accuracy (confidence interval coverage 

probabilities, unbiasedness and stability) and administrative considerations (time, cost, 

simplicity). With respect to accuracy, different studies show very good results for BRR when 

it comes to confidence interval coverage probabilities (the most relevant accuracy criterion). 

Some studies show very good results for TS when it comes to stability (MSE). However, it is 

not obvious which is the best variance estimation method in terms of the stability and bias 

criteria. There is very little theoretical justification for GVFs and the estimators of variance 

are surely biased. However, survey practitioners who have used these methods feel that they 

bring some additional stability to variance estimates. The GVF method is clearly inferior to 

the other methods in terms of confidence interval criterion. With respect to administrative 

considerations, GVFs are suitable for the very largest sample surveys with hundreds, perhaps 

thousands of indicators (also considering breakdowns) for which variance estimates are 

wanted. 
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3.4 Some recommended variance estimation methods to account for 
different sources of variability 

Yves Berger (University of Southampton) and Ralf Münnich (University of Trier) 

 

This section presents some recommended variance estimation methods which can be used to 

estimate or incorporate the different sources of variability (presented in Section 3.2) in the 

variance as a whole. 

 

Estimating variance in the case of indirect sampling 

 

Indirect sampling is applicable to situations that involve two populations AU  and BU  that are 

linked by some relation, and where we want to produce estimates for one of them, say BU . 

Suppose that we have a sampling frame for AU  only. We select a sample from AU  in order to 

obtain a sample from BU  using the links between the two populations. For example consider 

AU  to be individuals and BU  households; then a sample of individuals may be selected from a 

population register, and a sample of households is obtained by taking all households that have 

at least one of their current members in the selected sample of individuals. The selected 

households are weighted by the Generalised Weight Share Method (GWSM) (Lavallée, 2007; 

Lavallée and Caron, 2001). Variance estimation for indirect sampling of households considers 

individuals (and not households) as the ultimate sampling units. However, to account for the 

unequal probabilities of selection of the households, the study variable is adjusted by 

household size. For example, suppose a sample As  of Am units is selected from the population 

AU  of AM  units using some sampling design. Let )( A

j  be the selection probability of unit .j  

Let the population BU  contain BM units. This population is divided into N clusters, where 

each cluster i contains iBM , units. We are interested in estimating the total 
 


N

i

M

k

ikB

iB

yY
1 1

,

 for 

some characteristic y over population BU . With GWSM, we make the following assumptions: 

1. There is a link between each unit j  of population AU  and at least one unit k  of 

cluster i of population BU . 

2. Each cluster i  of  BU  has at least one link with a unit j  of AU . 

3. There can be zero, one or more links for a unit k of cluster i of population BU . 

By using GWSM we assign an estimation weight ikw to each unit k  of an interviewed cluster 

i . To estimate the total BY  belonging to population BU  , we can use the estimator 


 


n

i

M

k

ikikB

iB

ywY
1 1

,

ˆ  ,   (3.4.1) 

where  n  is the number of selected clusters and ikw is the weight attached to unit k of cluster 

i . 

With the GWSM, the estimation process uses the sample As  together with the links between 

AU  and BU  to estimate the total BY . The links are in fact used as a bridge to go from 

population AU  to population BU  and vice versa. 
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The GWSM allocates each sampled unit a final weight established from an average of weights 

calculated within each cluster i  entering into Ŷ . An initial weight that corresponds to the 

inverse of the selection probability is first obtained for unit k of cluster i  of Ŷ  having a non-

zero link with a unit j belonging to As . An initial weight of zero is assigned to units not 

having a link. The final weight is obtained by calculating the ratio of the sum of the initial 

weights for the cluster over the total number of links for that cluster. This final weight is 

finally assigned to all units within the cluster. Note that allocating the same estimation weight 

to all units has the considerable advantage of ensuring consistency of estimates for units and 

clusters. 

In equation (3.4.1) we assign the final weight ik iw w  for all k i , which is 








iB

iB

M

k

ik

M

k

ik

i

L

w

w
,

,

1

1

'

   , (3.4.2) 

where ikL represents the number of links between the units of AU  and the unit k of cluster i of 

BU  , and the initial weights are 





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j

j

ikjik

t
Lw

1
)(,

'


.   (3.4.3) 

In the above equation, 1, ikjL   if there is a link between unit j  of population AU  and k of 

cluster i  of population BU   and zero otherwise, and 1jt   if Asj  and zero otherwise. 

Now let i
ik

i

Y
z

L
 for all k i , with  




iBM

k

iki yY
,

1

 and iL  being the number of links present in 

cluster i , 
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
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k

iki LL
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and the variance of Ŷ is directly given by 
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 where )(

'

A

jj  is the joint probability of selecting units j and 'j . See Särndal, Swensson and 

Wretman (1992) for how to calculate '

A

jj under various sampling designs. 
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Accounting for the variability caused by systematic sampling and implicit stratification 

Since a systematic sample can be regarded as a random selection of one cluster, it is not 

possible to give an unbiased, or even consistent, estimator of the design variance (Wolter, 

2007). 

o When there is no particular ‘structure’ in the sampling frame, that is, when it appears that 

units have been randomly ordered, then the standard variance estimator under simple 

random sampling can be used if we accept that random ordering is part of sampling 

design, because in this situation the sampling design is a simple random sampling design. 

Let us assume we want to estimate the population total of a study variable y . The 

following estimator of the variance of the population total can be used: 

   22

,1

11ˆˆ s
Nn

NYV i 







  ,    (3.4.6) 

where 
2s is the sample variance of the study variable y . Let jiy ,  denote the value of y  

for the j th
 individual ( nj 1 ) of the i th

 systematic sample. Let us assume the 

following super-population model: 

  jijiyM ,,1 :   , (3.4.7) 

where ji,  are random variables of null expectation, with variance 2  (independent of i  

and j ) and uncorrelated among themselves. We thus get (Ardilly and Tillé, 2005): 

     0ˆˆˆ
,11

 YVYVE iM ,   (3.4.8) 

where 
1ME  is the expectation under the model (3.4.7) and V  is the exact variance of the 

Horvitz-Thompson estimator of the population total (see Appendix 7.1). 

o If the frame is sorted according to an auxiliary variable correlated to y  (implicit 

stratification present), as specified by the following super-population model: 

    jiji jgiyM ,,2 :   , (3.4.9) 

where ji,  are random variables of null expectation, with variance 2  (independent of i  

and j ), uncorrelated among themselves and nNg / , this gives rise to (Ardilly and 

Tillé, 2005): 

    
12

ˆˆˆ
22

,12



n

N
YVYVE iM   , (3.4.10) 

where 
2ME  is the expectation under the model (3.4.9) and V  is the exact variance of the 

Horvitz-Thompson estimator of the population total. Thus, when  > 0, the naive 

variance estimator under simple random sampling overestimates the exact variance. 

o When implicit stratification is present, the following variance estimator (Wolter, 2007; 

Nikolaidis, 2010a) can be used. It means considering a systematic sample as a stratified 
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simple random sample with two units selected from each successive stratum. This yields 

an estimator based on non-overlapping differences: 

   
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Under the model (3.4.7) (population in random order), we get: 

     0ˆˆˆ
,21

 YVYVE iM  . (3.4.12) 

Under the model (3.4.9) (implicit stratification), we get (Ardilly and Tillé, 2005): 
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Thus, under implicit stratification, 2V̂  underestimates the true variance. If we now 

combine the estimators 1V̂   and 2V̂  by defining 
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we get:      0ˆˆˆ
,  YVYVE icomb . (3.4.15) 

o When implicit stratification is present, an alternative estimator based on overlapping 

differences (Wolter, 2007) that seeks to increase the number of ‘degrees of freedom’, can 

be used: 

   
 


















n

j

jiji

i
n

yy

Nn
NYV

2

2

1,,2

,3
12

11ˆˆ  . (3.4.16) 

Under the model (3.4.7) (population in random order), we also have: 

     0ˆˆˆ
,31

 YVYVE iM  . (3.4.17) 

Under the model (3.4.9) (implicit stratification), the formulae (3.4.13), (3.4.14) and 

(3.4.15) can be applied to 3V̂ instead of 2V̂ . 

The estimator (3.4.16) is used in the variance estimation software POULPE (Caron, 

1998; Ardilly and Osier, 2007). 

o When implicit stratification is present, the variance estimator proposed by Berger (2005) 

can be used. It takes systematic sampling into account by using the order of the units in 

the population. This produces a variance estimator with reduced bias under systematic 

sampling for a given (non-random) order of the population. This estimator can be used 

with any given population order. However, we need to know the order of the units in the 

population. Simulation based on the IBGE
29

 (Brazil) household surveys shows that this 

estimator has less bias than classical estimators. 

                                                 
29 The Brazilian Institute of Geography and Statistics. 
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o A jackknife variance estimator for systematic sampling requires pairing of the sampled 

clusters (PSUs), with adjacent clusters, in the systematic selection order, being paired. A 

replicate is formed by deleting one cluster from the sample, doubling the weight of its 

complementary pair member, and recalculating the estimator ̂ . In the case of stratified 

sampling, the procedure is carried out hn  times in each stratum  Hhh ,,2,1    , by 

dropping each cluster in turn. For implicit stratification, the variance estimator for ̂  is 

given by Burke and Rust (1995): 
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 hA̂  is the estimate obtained at the replication A  in stratum h  after deleting one cluster, 

doubling the weight of the complementary pair member, and recalculating the estimator 

̂ . 

o Similarly, there are many (biased) variance estimators which we can use in the event of 

unequal probability sampling (Wolter, 2007). By treating the sample as a stratified 

random sample with two units selected per stratum, we obtain the following estimators: 
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where jip ,  is the inclusion probability of the unit j  of the i th
 systematic sample. 

o To deal with systematic sampling with unequal probabilities, we can use approximate 

variance formulae, wherein double inclusion probabilities are not used. These 

approximate variance formulae are defined in the next section. 

 

Accounting for the variability caused by using unequal probability sampling 

Calculating the probabilities of selection of the order two, i.e. the probability πij that two 

distinct units i and j be selected in the sample, is difficult for certain sampling designs. For 

simple random sampling without replacement of size n from a population of size N, we have: 

πij = n(n-1) / N(N-1). On the other hand, when units are selected with unequal probabilities 

(e.g. probability proportional to size) and without replacement, it is not generally possible to 

fix any formula for the double inclusion probabilities. To overcome this, approximate 

variance formulae can be used, with the double inclusion probabilities not being used. The 
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joint inclusion probabilities πij are approximated in terms of first-order inclusion probabilities 

πi. 

Some variance estimators free of joint inclusion probabilities are: 
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Accounting for the variability caused by calibration  

Calibration consists of computing weights that incorporate specified auxiliary information and 

which are constrained by calibration equations. It is now common practice in household 

surveys to calibrate sampling weights to auxiliary data sources, thereby improving the 

accuracy of estimates. 

A calibration estimator uses calibrated weights which are as close as possible, according to a 

given distance function, to the original sampling design weights, while also complying with a 

set of constraints, the calibration equations. For every distance function there is a 

corresponding set of calibrated weights and a calibration estimator. 

Deville et al (1993) present four different ‘methods’ corresponding to four different distance 

functions, i.e. the linear, raking, logit and truncated linear methods. The estimators based on 

the linear calibration method, i.e. with quadratic distance function and linear calibration 

function, are generalised regression (GREG) estimators. 

A major result of calibration theory states that the variance of a calibration estimator is 

(asymptotically) equal to that of the estimator based on the non-calibrated weights, but where 

the study variable has been replaced by the residuals iu  of its regression on the calibration 

variables (Deville and Särndal, 1992). The following formula can be used: 
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iiw udVywVYV ˆˆˆˆ  , (3.4.24) 

where iw  is the sampling weight of i  after calibration, id  is the sampling weight of i  before 

calibration and iu  is the residual of i  from the regression of the study variable y  on the 

calibration variables. 

Thus, variance decreases strongly when calibration variables are more explanatory. 
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An important issue with the approximation of (3.4.24) is that it applies when the original 

statistic is linear (e.g. total, mean). If the statistic is non-linear it has to be linearised first; 

(3.4.24) can then be applied to the linearised estimator. A non-linear, smooth statistic (e.g. a 

ratio of totals) can be linearised with Taylor series approximation. A non-linear, non-smooth 

statistic (e.g. Gini coefficient) can be linearised using influence functions or estimating 

equations. 

Using calibration to compensate for non-response can be generally recommended only if the 

response probability of statistical units can be modelled or if the rate of non-response amounts 

to just a few percent (Särndal, 2007 and Bethlehem and Schouten, 2004). Although these 

conditions are rarely met nowadays, this kind of calibration use is still quite common and is 

accepted since stopping it would result in even greater bias than is currently the case. 

For regression estimation we recommend the ‘g-weighted’ variance estimator (Särndal et al, 

1989): 
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The estimator (3.4.25) uses an adjustment of the variance estimator based on first-order 

Taylor linearisation; it better accounts for the dispersion of the GREG weights. 

The form of equation (3.4.25) and the corresponding estimator of variance depend on the 

details of the sampling design (Wolter, 2007). For example, for stratified random sampling, 

the estimator of the variance is 
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For simple random sampling without replacement, the estimator is 
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For two-stage sampling (when primary sampling units are selected with probabilities 

proportional to size and secondary sampling units are selected by simple random sampling 

without replacement), the estimator is 
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Most general-purpose software packages do not take the impact of calibration into account in 

variance estimation. However, there are specific programs which can estimate variance 

correctly (see Section 3.5). A way of doing it would be for the user to first compute the 

regression residuals and then substitute these for the study variable. 

 

Accounting for the variability caused by unit non-response 

The main point is to build a variance estimator  ̂V̂  that takes into account unit non-

response. 
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o Unit non-response is generally viewed as an additional phase of sampling. So the overall 

variance  ̂V , taking into account both sampling design and unit non-response, can be 

split into two components, i.e. the first-phase variance  ̂SV  (sampling variance) caused 

by selecting a sample s  from a target population U , and the second-phase variance 

 ̂NRV  (non-response variance) caused by having a subset r  of respondents from s : 

      ˆˆˆ
NRS VVV   .    (3.4.29) 

Thus, unit non-response introduces extra variability in the form of an additional variance 

component  ̂NRV . The estimation of  ̂NRV  relies on further assumptions concerning 

the non-response mechanism (which is unknown). For example, the variance estimation 

software POULPE, developed by the French NSI (INSEE), treats unit non-response 

either as a Poisson sampling or a post-stratified sampling phase (Ardilly and Osier, 

2007). Särndal and Lundström (2005) proposed an estimator for  ̂NRV  in the case of 

calibration estimators. 

o Under the assumption that the set of respondents is a random sample from the original 

sample and the values of the study variable for the non-respondents are missing at 

random, the net sample size (the number of respondents) can be used in variance 

estimation formulae instead of the gross sample size (the number of units in the original 

sample). 

In simple random sampling, the gross sample size can be simply replaced by the net 

sample size. In stratified random sampling, the gross sample size in every stratum can be 

replaced by the corresponding net sample size. 

o If the values of the study variables for the non-respondents are not missing at random and 

the probability of response is related to the study variable, response homogeneity groups 

can be formed, within which net sample size can be used for variance estimation instead 

of gross sample size. Logistic regression models can be used to estimate the response 

probability for an individual (respondent or non-respondent) based on the individual’s 

characteristics (also called explanatory variables). Individuals are then divided into 

classes based on the size of their predicted response probability. 

o Fay’s approach (Fay, 1991; Shao and Steel, 1999) is another recommended approach. It 

has clear practical and theoretical advantages over the classic two-phase approach (Rao, 

1990; Särndal, 1990; Deville and Särndal, 1994): the variance estimator is simple, robust, 

unbiased under the real response mechanism and can be calculated using standard 

variance estimation packages. It is therefore not necessary to assume a response 

mechanism such as missing at random (MAR) or missing completely at random (MCAR) 

(Rubin, 1976). The usual assumption is that the finite population can be divided into J 

imputation cells. An additional assumption for the design-based approach is that in each 

imputation cell, the response probability for a given variable is a constant and the 

response statuses for different units are independent; imputation is carried out within 

each imputation cell and independently across the imputation cells. An additional 

assumption for the model-based approach is that in each imputation cell, the response 

mechanism is unconfounded in the sense that whether or not a unit responds does not 

depend on the variable being imputed (but may depend on the covariates used for 

imputation). Imputation is carried out independently across the imputation cells, and 
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within an imputation cell imputation is performed according to a model that relates the 

variable being imputed to the covariates used for imputation. 

 

Accounting for the variability caused by imputation  

o The Rao and Shao adjusted jackknife method (Rao and Shao, 1992) adjusts the imputed 

values for each jackknife pseudo-replicate. This method produces consistent variance 

estimators for smooth statistics. The Rao and Shao method is valid under simple random 

sampling. Berger and Rao (2006) propose a modified jackknife estimator which takes 

imputation and unequal probabilities into account. 

o The bootstrap method can incorporate imputation for both smooth and non-smooth 

statistics. A bootstrap for imputed survey data is given in Shao and Sitter (1996). They 

propose a bootstrap method for stratified multi-stage designs which avoids the adjusted 

imputed values used in the jackknife method of Rao and Shao (1992). The idea is to re-

impute the bootstrap data set in the same way as the original data set is imputed. This 

method therefore requires much more computation than the jackknife, although bootstrap 

provides an approximation to the entire distribution of the statistic. 

Saigo et al (2001) propose a modified bootstrap that does not require rescaling so that 

Shao and Sitter’s procedure can be applied to cases where random imputation is applied 

and the first-stage stratum sample sizes are very small. This gives a unified method that 

works irrespective of the imputation method (random or non-random), the stratum size 

(small or large) or the type of estimator (smooth or non-smooth). 

o The standard balanced repeated replication (BRR) method does not account for the 

increase in variance due to imputation. An adjusted BRR method can adjust the imputed 

values for each replication (pseudo-replicated data set). For several popular single-

imputation methods, this adjusted BRR method produces consistent variance estimators 

for functions of estimated totals and sample quantiles under certain regularity conditions 

(for the adjusted BRR method see e.g. Shao et al (1998)).    

o Multiple imputation methods (Rubin, 1987; Davison and Sardy, 2007) offer opportunities 

to derive variance estimators taking imputation into account. In multiple imputation each 

missing value is replaced, instead of a single value, by a set of plausible values that 

reflect the uncertainty about what is the right value to impute. The incorporation of 

imputation can be easily derived based on the variability of the estimates among the 

multiple imputed data sets. 

The procedure is described by Wolter (2007) on the basis of Rubin (1987). For the 

procedure developed by Rubin (1987) the imputations must be ‘proper’, which 

essentially means that they are drawn from Bayesian posterior distributions. In national 

statistical institutes the methods used for imputation seldom satisfy the requirement of 

being ‘proper’.
30

 Bjørnstad (2007) has given alternative combination rules for other 

methods of imputation. In this example we consider that missing values are imputed 

using hot-deck imputation. 

 Make D independent hot-deck imputations for each missing item. 

 Construct (conceptually) D complete data sets, each consisting of all reported 

data plus one set of the imputed data. 

                                                 
30 The variability in non-proper imputations is too small, and the between-imputation component must be given a larger weight in 

the variance estimate. 
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 Estimate the population total, say dŶ , using each complete data set d=1,…,D. 

 Estimate the variance of the estimated total, say )ˆ(ˆ
dYV , using each complete data 

set and a variance estimation method. 

 Estimate the variability between the complete data sets as an allowance for the 

imputation variance. 

 Estimate the total variance as the sum of the within-data-set variance (the average 

of the )ˆ(ˆ
dYV ) and the between-data-set variance. 

 Let nr be the non-response rate. 

The multiple imputation estimator of the variance is given by: 
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The second term in (3.4.30) is the between-data-set variance, which makes an allowance 

for the imputation variance. 

In the case of ‘proper’ imputation methods, the term 1/(1-nr) is replaced by 1. 

o Kim and Fuller (2004) propose fractional hot-deck imputation, which replaces each 

missing observation with a set of imputed values and assigns a weight to each imputed 

value. For example, three imputed values might be assigned to each non-respondent, with 

each entry allocated a weight of one-third of the non-respondent’s original weight. The 

paper shows that fractional hot-deck imputation is an effective imputation procedure 

under a model in which observations in an imputation cell are independently and 

identically distributed. The paper suggests a consistent replication variance estimation 

procedure for estimators computed by fractional imputation. Simulations show that 

fractional imputation and the suggested variance estimator are superior to multiple 

imputation estimators in general, and much superior to multiple imputation for estimating 

the variance of a domain mean. 

o Analytical methods for incorporating imputation, under the assumption of simple random 

sampling, are presented in Eurostat (2002) — for mean and hot-deck imputation, as well 

as for ratio imputation. To obtain better variance estimators, random imputation methods 

such as hot-deck methods are recommended (Ardilly, 2006) as they introduce extra 

variability due to the random component of the imputation model. 

o Deville and Särndal (1994) researched the issue of variance estimation for the regression 

imputed Horvitz-Thompson estimator under the classical two-phase approach (Rao, 

1990; Särndal, 1990). By assuming that the non-response mechanism is missing at 

random (MAR) or missing completely at random (MCAR) (Rubin, 1976), it was possible 

to divide the overall variance (taking both the sampling design and the imputation 

process into account) into a sampling variance and an imputation variance. The latter can 

be estimated from sample data. This framework underlies the software SEVANI 

(Beaumont and Mitchell, 2002), developed by Statistics Canada in order to estimate the 

variance due to non-response and imputation. 
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Accounting for the variability caused by coverage (frame) errors 

o Over-coverage: 

The methodology of domain estimation can be used, where the target population has to 

be defined as a domain of the frame population. 

In order to quantify the loss of precision due to over-coverage, we can calculate the ratio 

R  between the variance of the standard Horvitz-Thompson estimator
31

 under simple 

random sampling without replacement — for sample size n  and assuming that a 

proportion P  ( 10  P ) of the frame units is eligible — to that assuming no over-

coverage: 
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where PQ 1  and yCV  is the coefficient of variation of the study variable y , 

P

1
 represents the increase of variance due to an average reduction of sample size: 

basically, the lower the value of P , the more important the over-coverage and the greater 

the increase in variance, 

2
1

yCV

Q
  represents the increase in variance due to the random size of the final sample 

(Cochran, 1977; Särndal et al, 1992; Ardilly and Tillé, 2005). 

o Multiple listings: Since multiple listings can be viewed as a particular kind of over-

coverage (all duplications of population units form a set of non-eligible units), the 

amount of variability they create can be estimated using (3.4.31). Since multiple frame 

units have higher selection probabilities, an alternative option to taking multiple listings 

into account in variance calculations would be to use estimators for unequal probability 

designs. However, this option requires the (unequal) probabilities of selection to be 

known for each element in the population, which is unlikely to happen in practice. 

 

Accounting for the variability caused by measurement errors/ processing errors/ 

substitution errors 

Measurement errors arise because response values which are collected through a fixed survey 

procedure may differ from true values. Processing and substitution errors can be treated the 

same way as measurement errors (see Section 3.2). 

A simple model for response value is given by (Särndal et al, 1992): 

  iiiyM  :3  
,    (3.4.32) 

where iy  is the (random) response given by respondent i  to a study variable y , i  is the 

expectation of iy  under  3M  and i  is a random component, of mean 0 and variance 
2

i . 

The model assumes that the responses given by respondents i
 

and )( , jij    are not 

                                                 
31 See Appendix 7.1. 
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independent, and that the covariance between iy  and jy  )( ji   is equal to ij . To sum up, 

the model  3M  satisfies the following assumptions: 
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For simplicity, let us assume that the model  3M  is unbiased, that is, the expected value i  

is equal to the true value of the study variable, say iY  , for all i . The joint variance  HTYV ˆ
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design  0),( Ssspp   and the measurement model  3M  can be written as: 
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 HTp YV ˆ  is the sampling variance, 
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In practice, it is difficult to estimate the additional variance due to measurement errors as 

repeated measurements of the variable are needed. Each new set of measurements must be 

conducted under the same conditions as the others and, above all, must be uncorrelated with 

the other sets. This latter assumption is an important one.
32

 

Let us assume that we select a simple random sub-sample r , of size rn  from the original 

sample s , of size n . For each element in r , we observe the study variable y  a second time, 

under the same conditions as for the first round of observations. Then, the following provides 
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32 Unfortunately, recall effects may produce this kind of unwanted correlation over time. 
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where for all i  in r , iz  is the difference between the two measurements of the study variable 

y :  2,1, iii yyz   . 

 

Summary 

This section presents recommended variance estimation methods which can be used to 

estimate or incorporate different sources of variability in the total variance. The following 

sources of variability are accounted for in the methods: indirect sampling, implicit 

stratification, unequal probability sampling, calibration, unit non-response, imputation, 

coverage errors and measurement errors. Processing and substitution errors can be treated 

in the same way as measurement errors. 

 

 

3.5 Software tools for variance estimation: presentation 

 

Kari Djerf (Statistics Finland) 

 

There are many software packages available which can calculate variance estimates for linear 

and non-linear statistics under simple and complex sampling designs. In this section, we 

present the pros and cons of the software tools most frequently used for variance estimation. 

Given that software markets evolve quite rapidly, readers are advised to keep up to date with 

any changes that may affect such markets. Some outdated software tools (like the ones written 

for the DOS operating system) are excluded from this review. 

For multi-stage sampling designs, most of the software packages determine the overall 

sampling variance by calculating the variance of the estimated PSU totals between the 

primary sampling units (PSU): this is known as ultimate cluster approximation (Kalton, 

1979). The variance estimator thus determined underestimates the true variance (but 

overestimates the first-stage variance), though the underestimation is small when the sampling 

fraction at first stage is low. 

To deal with non-linear statistics, many software tools offer the option of using either the 

Taylor linearisation method or sample re-use approximation (replication methods). 

However, as mentioned in Section 3.3, the most common sample re-use method (replication 

method), namely the delete-one jackknife, should not be used in stratified sampling (see 

Wolter, 2007, pp. 172-173); nor should the delete-one or groups jackknife be used with non-

smooth statistics (e.g. median), except for the Gini coefficient. See Section 3.3 for more 

information. 

On the other hand, calibrated weights (Deville and Särndal, 1992) are often used in official 

statistics. Most general-purpose software products do not contain any proper variance 

estimator that takes the impact of calibration into account in variance estimation. However, 

there are dedicated software products capable of properly estimating variance. Some of these 

dedicated software products are presented in this section, under sub-section ‘Special sampling 

variance software for GREG’. In addition some R programs are available. 
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Comprehensive (commercial) statistical packages 

Three widely used commercial software packages include modules which can be used for 

complex survey data analysis: 

 SAS (v. 9.2.3 with STAT module); 

 IBM SPSS (v. 19 with Complex Samples module); 

 STATA (v. 11). 

Currently, SPSS offers only the Taylor linearisation method for variance approximation, 

while SAS and STATA also offer sample re-use (replication) methods: delete-one jackknife 

and balanced repeated replication. Bootstrap weights can also be provided for SAS and 

STATA. Multiple imputation is available in both SAS (proc MIANALYZE) and STATA but 

not directly in the survey sampling procedures. 

 

Other general statistical packages 

 R language 

Various authors have helped write programs with the R language for free; these programs are 

available for various platforms and operating systems. New procedures are envisaged since 

the R-community is developing new methods rapidly. A good reference on available packages 

in R for official statistics and survey methodology is ‘CRAN Task View: Official Statistics & 

Survey Methodology’ (http://cran.r-project.org/web/views/OfficialStatistics.html). There are 

several packages available for variance estimation: 

 Package sampling (http://cran.r-project.org/web/packages/sampling/index.html). There is 

a function ‘calibev’ for calibration estimator and its variance estimation; 

 Package survey (http://cran.r-project.org/web/packages/survey/index.html) enables a 

complex survey design to be specified. The resulting object can be used to estimate 

(Horvitz-Thompson) totals, means, ratios and quantiles for domains or the whole survey 

sample, and to apply regression models. The package also implements calibration. 

Variance estimation for means, totals and ratios can be done either by Taylor linearisation 

or replication (balanced repeated replication, jackknife, bootstrap or user-defined). 

Calibration, if applied, is also taken into account. The package (version 3.22) by and large 

includes modules that are similar to those in SAS and STATA; 

 Package EVER (http://cran.r-project.org/web/packages/EVER/index.html) provides an 

estimation of variance for complex designs by delete-a-group jackknife replication for 

(Horvitz-Thompson) totals, means, absolute and relative frequency distributions, 

contingency tables, ratios, quantiles and regression coefficients, even for domains; 

 Package Laeken (http://cran.r-project.org/web/packages/laeken/index.html) provides 

functions for estimating certain Laeken indicators (at-risk-of-poverty rate, income quintile 

share ratio, relative median risk-of-poverty gap, Gini coefficient), including their variance 

for domains and strata based on bootstrap resampling; 

 Package simFrame (http://cran.r-project.org/web/packages/simFrame/index.html) allows 

comparison (user-defined) to be made of point and variance estimators in a simulation 

environment. 

The biggest problem with R programs, i.e. capacity limitation with large data files, has been 

reduced by the recent release of R 3.0.0 (codename: ‘Masked Marvel’). This release includes 

some major updates such as the introduction of big vectors to R, which eliminates some big 

http://cran.r-project.org/web/views/OfficialStatistics.html
http://cran.r-project.org/web/packages/sampling/index.html
http://cran.r-project.org/web/packages/survey/index.html
http://cran.r-project.org/web/packages/EVER/index.html
http://cran.r-project.org/web/packages/laeken/index.html
http://cran.r-project.org/web/packages/simFrame/index.html
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data restrictions in the core R engine by allowing R to make better use of the memory 

available on 64-bit systems. See for more information R-announce mailing list 

(https://stat.ethz.ch/pipermail/r-announce/2013/000561.html). There are also several packages 

available for dealing with the problem of capacity limitation (for example: ff, bigmemory, 

biglm). For more information see ‘CRAN Task View: High-Performance and Parallel 

Computing with R’ (http://cran.r-project.org/web/views/HighPerformanceComputing.html). 

 S-Plus 

S-Plus was actually a commercial predecessor of the R programming language. There is a 

library of programs for survey sampling, and these are currently by and large included in the 

R software modules. 

 MicrOsiris 

A general-purpose statistical software, Osiris used to be the grandfather when it came to 

including complex sampling design analysis in comprehensive statistical software. The 

current new development MicrOsiris is based on Osiris IV, though the sample survey analysis 

part is taken from IVEware (see below), and therefore contains complex sampling design 

analysis and imputation. MicrOsiris can be downloaded for free from the website 

(http://www.microsiris.com/). 

 

Stand-alone software 

 SUDAAN 

SUDAAN is one of the oldest software products for complex sample data analysis. There are 

two versions of the software: a stand-alone and an SAS callable version (both licensed). The 

current version (10.0.1) calculates sampling variance with Taylor linearisation, delete-one 

jackknife, jackknife with multiple weights and balanced repeated replication (BRR). 

SUDAAN is capable of analysing multiply imputed data sets. More information can be 

viewed at http://www.rti.org/sudaan/. 

 WesVar 

WesVar (v.5.1) is stand-alone Windows software for survey data analysis. Its variance 

approximation is based on sample re-use techniques: delete-one, delete-two and delete-n 

jackknife, balanced repeated replication (BRR), and Fay’s BRR. WesVar is capable of 

analysing multiply imputed data sets and can be used to create different types of weights. 

WesVar can be downloaded for free from the Westat website: 

 http://www.westat.com/westat/expertise/information_systems/wesvar/index.cfm 

 IVEware/Srcware 

IVEware is a free imputation and survey data software package developed at the University of 

Michigan. It exists as SAS procedures and stand-alone software (name Srcware), see 

http://www.isr.umich.edu/src/smp/ive/.    

Variance approximation is based on Taylor linearisation. As the name suggests, it can handle 

different types of imputations properly. 

 

 

https://stat.ethz.ch/pipermail/r-announce/2013/000561.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.microsiris.com/
http://www.rti.org/sudaan/
http://www.westat.com/westat/expertise/information_systems/wesvar/index.cfm
http://www.isr.umich.edu/src/smp/ive/
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 Epi Info 

Epi Info is free stand-alone Windows software geared to aiding epidemiological research. It 

also contains some survey data analysis. Variance approximation is based on Taylor 

linearisation. The current (v. 3.5.1) or older versions can be downloaded from the website 

http://wwwn.cdc.gov/epiinfo/. 

 

Special Sampling Variance Software for GREG 

 BASCULA 

BASCULA (v. 4) is a software tool for weighting and sampling variance and was originally 

developed for the data collection system BLAISE. BLAISE (and BASCULA) are licensed 

products. Variance estimation in BASCULA also accounts for calibration. Information can be 

viewed on the Statistics Netherlands homepage (http://www.cbs.nl/en-

GB/menu/informatie/onderzoekers/blaise-software/blaise-voor-

windows/productinformatie/bascula-info.htm). 

 CALJACK  

CALJACK is an SAS macro program for GREG variance estimation using jackknife. Further 

information on the current version and licence policy can be obtained from Statistics Canada 

(e-mail: Pierre.Lavallee@statcan.ca). 

 CLAN  

CLAN (v. 3.4.3) is a SAS macro program for sampling variance estimation. It can also 

calibrate weights and estimate variances with the GREG estimator. CLAN can be ordered for 

free from Statistics Sweden (e-mail: claes.andersson@scb.se). 

 g-Calib 

g-Calib is a calibration and sampling variance estimation macro program for the SPSS 

environment. Please contact Mr Camille Vanderhoeft for additional information by e-mail: 

camille.vanderhoeft@economie.fgov.be. 

 GENESEES  

GENESEES (Generalised Software for Sampling Estimates and Errors in Surveys) is a 

calibration and sampling variance estimation software package written as an SAS macro. 

Sampling variances are approximated with Taylor linearisation, and it also provides the 

GREG variance estimator. It can be requested for free from the ISTAT homepage 

(http://www.istat.it/it/strumenti/metodi-e-software/software/genesees (Italian version only). 

 GES 

Generalised Estimation System (GES) is an add-on software package for SAS. It can handle 

various sampling designs and also the GREG estimation. Further information on the current 

version and the licence policy can be obtained from Statistics Canada (e-mail: 

Laurie.Reedman@statcan.ca). 

 

 

http://wwwn.cdc.gov/epiinfo/
http://www.cbs.nl/en-GB/menu/informatie/onderzoekers/blaise-software/blaise-voor-windows/productinformatie/bascula-info.htm
http://www.cbs.nl/en-GB/menu/informatie/onderzoekers/blaise-software/blaise-voor-windows/productinformatie/bascula-info.htm
http://www.cbs.nl/en-GB/menu/informatie/onderzoekers/blaise-software/blaise-voor-windows/productinformatie/bascula-info.htm
mailto:Pierre.Lavallee@statcan.ca
mailto:claes.andersson@scb.se
mailto:camille.vanderhoeft@economie.fgov.be
http://www.istat.it/it/strumenti/metodi-e-software/software/genesees
mailto:Laurie.Reedman@statcan.ca
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 POULPE 

POULPE is an SAS macro program for sampling variance estimation. It is very exact on 

applied formulae but quite demanding to use. POULPE takes into account the impact of 

calibration on variance estimation. Further information on the current version and the licence 

policy can be obtained from INSEE (e-mail: Nathalie.Caron@INSEE.fr or 

Olivier.Sautory@INSEE.fr). 

 SEVANI 

The System for Estimation of Variance due to Non-response and Imputation (SEVANI) is an 

SAS-based prototype system developed by Statistics Canada (Beaumont and Mitchell, 2002). 

Variance estimation is based on the quasi-multi-phase framework. In this framework, a non-

response model is required and an imputation model can also be used. Two types of non-

response treatment methods can be dealt with: non-response weighting adjustment and 

imputation. If imputation is chosen, SEVANI requires one of the following four imputation 

methods to be used: deterministic linear regression imputation, random linear regression 

imputation, auxiliary value imputation or nearest-neighbour imputation. 

 ReGenesees 

ReGenesees (R evolved GENESEES) is a fully-fledged R system for design-based and 

model-assisted analysis of complex sample surveys. It handles multi-stage, stratified, 

clustered, unequally weighted survey designs. Sampling variance estimation for non-linear 

(smooth) estimators is done by Taylor series linearisation. Sampling variance estimation for 

multi-stage designs can be done under ultimate cluster approximation or by means of an 

actual multi-stage computation. Estimates, standard errors, confidence intervals and design 

effects are provided for: totals, means, absolute and relative frequency distributions (marginal 

or joint), ratios and quantiles (variance via the Woodruff method). ReGenesees also handles 

complex estimators, i.e. any user-defined estimator that can be expressed as an analytic 

function of Horvitz-Thompson or calibration estimators of totals or means, by automatically 

linearising them. All the above analyses can be carried out for arbitrary sub-populations. 

ReGenesees is available at JOINUP — the European Commission open source software 

repository https://joinup.ec.europa.eu/software/regenesees/description and at 

http://www.istat.it/it/strumenti/metodi-e-software/software/regenesees (Italian version only). 

Further information can be found at: 

http://www1.unece.org/stat/platform/display/msis/ReGenesees. For other information please 

contact ISTAT (e-mail: zardetto@istat.it). 

Please also take a look at Appendix 7.5, which contains structured information on the 

appropriateness of some software tools to sampling designs and on their capacity to take into 

account different sources of variability in the overall variance estimation. 

 

Summary 
 

There are many software packages which can calculate variance estimates for linear and non-

linear statistics under simple and complex sampling designs. For multi-stage sampling 

designs, most of them determine the overall sampling variance by ultimate cluster 

approximation. To deal with non-linear statistics, many software tools offer the option of 

using either Taylor linearisation or replication methods. 

Available software tools are: 

mailto:Nathalie.Caron@INSEE.fr
mailto:Olivier.Sautory@INSEE.fr
https://joinup.ec.europa.eu/software/regenesees/description
http://www.istat.it/it/strumenti/metodi-e-software/software/regenesees
http://www1.unece.org/stat/platform/display/msis/ReGenesees
mailto:zardetto@istat.it
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 comprehensive (commercial) statistical packages — SAS, SPSS, STATA; 

 other general statistical packages – R, S-Plus, MicrOsiris; 

 stand-alone software — SUDAAN, WesVar, IVEware/Srcware, Epi Info (SUDAAN, 

WesVar and IVEware are capable of analysing multiply imputed data sets); 

 special sampling variance software for GREG — BASCULA, CALJACK, CLAN, g-

Calib, GENESEES, GES, POULPE, SEVANI, ReGenesees (these are dedicated software 

tools for calibration; some R packages are also available). Most general-purpose software 

products do not contain any proper variance estimator that takes the impact of calibration 

into account in variance estimation. 

 

 

3.6 Some examples of methods and tools used for variance estimation 

 

Statistics Latvia uses two-stage sampling design for most household surveys in Latvia. 

Stratified systematic sampling of areas (PSUs) is used at the first stage; and PSUs are selected 

with probability proportional to size. Simple random sampling of dwellings (secondary 

sampling units — SSUs) is used at the second stage. 

Self-made procedures
33

 in R language have been used at Statistics Latvia for variance 

estimation since 2012. The procedures are based on the paper by Osier (2012). Variance can 

be estimated for population parameter estimates like total and the ratio of two totals. 

Procedures for other types of population parameters are under development. The process of 

variance estimation is split into four main steps: 1) extra variables are computed if domain 

estimation is considered; 2) non-linear parameters (for example, the ratio of two totals) are 

linearised; 3) the residuals of linear regression are computed if calibration of weights has been 

used to estimate population parameters; 4) variance estimates are computed using the 

‘ultimate cluster estimate’ (Hansen, Hurwitz, & Madow, 1953, p. 257). Several estimates of 

precision measures are available in the output of the procedure – variance, absolute and 

relative standard error, the coefficient of variation, absolute and relative margin of error, 

confidence interval, and design effect. 

SUDAAN software used to be used for variance estimation, until it was decided to completely 

discard the use of SUDAAN in the production of statistics. The main reasons were — 

SUDAAN is closed-source software (R is an open-source software with great customisation 

and integration possibilities); SUDAAN is a pay ware (R is a free ware); it is good for the 

efficiency of statistical production to minimise the number of software items used in 

production (R is used also in other production steps, e.g. calibration of weights). 

ISTAT has been using both analytical and replication methods. GENESEES software, 

developed by ISTAT, is the main tool for variance estimation. Other references are: Moretti 

and Rinaldelli (2005), Rinaldelli (2006), Falorsi et al (2008). 

The Luxembourg NSI (STATEC) has, in collaboration with CEPS/INSTEAD, been applying 

the bootstrap method to yield variance estimates for the main EU-SILC target indicators. For 

more information, see the EU-SILC national quality report for Luxembourg (available on 

CIRCA). In particular, this approach takes into account the impact of imputation on variance. 

                                                 
33 Available at https://github.com/djhurio/vardpoor. 

https://github.com/djhurio/vardpoor
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INSEE uses POULPE, which is an SAS macro-based application for variance estimation in 

complex designs. POULPE can deal with the following sampling plans (Ardilly and Osier, 

2007): 

 The one-phase multi-stage plans, with one of the following at each stage: 

o simple random sampling without replacement; 

o balanced simple random sampling; 

o sampling with unequal inclusion probabilities (probability proportional-to-size 

sampling); 

o systematic sampling with equal inclusion probabilities. 

 The two-phase multi-stage plans, where the second phase is by either Poisson sampling 

or post-stratified sampling. 

 The three-phase multi-stage plans, where the second phase is by post-stratified sampling 

and the third by Poisson sampling. 

In particular, the impact of unit non-response on variance estimates can be included in the 

calculations by viewing a sample of respondents as the outcome of an additional phase of 

selection. POULPE can also take into account the impact of weight adjustments to external 

data sources. 

POULPE was also used in Eurostat for EU-SILC (Osier, 2009) first wave, but was found to 

be too demanding as it required a lot of metadata for the design and calibration to be redone at 

Eurostat. The rotating design was further complicating the processing by adding a second, 

third and fourth phase to the sampling design, which was practically untraceable. Then, EU-

SILC developed ad-hoc jackknife macros in SAS. The use of jackknife for EU-SILC was a 

feasibility study. See more details on the use of jackknife macros in Section 4.1. The next step 

was to test methods other than jackknife, i.e. bootstrap and linearisation. Comparative 

experiments were carried out on a limited number of countries, and the results of different 

methods are similar. The present choice is to work with linearisation (ultimate cluster 

approximation), which was discussed at the Net-SILC2 workshop on accuracy and validated 

by the SILC Working Group. This approach yields acceptable results given the administrative 

considerations. 

 

3.7 Sampling over time and sample coordination  

 

Martin Axelson (Statistics Sweden) and Ioannis Nikolaidis (EL.STAT) 

 

It is not uncommon for national statistical institutes to conduct continuing surveys, in the 

sense that the same population is sampled repeatedly over time. Such surveys are typically 

conducted for one or more of the following reasons (e.g. Duncan and Kalton, 1987): 

 to provide estimates of parameters at specific time points; 

 to provide estimates of parameters defined as averages over a period of time; 

 to provide estimates of net change between two time points, i.e. to estimate the difference, 

the ratio, or some other measure of change, between parameters at different time points; 

 to provide estimates of gross change, i.e. aggregates of change at the element level 

between time points. Gross change is often referred to as flows when the variable under 

study is categorical (see Section 3.7.3). 
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Considering the number of surveys done by statistical institutes every year, it is not surprising 

that many different sampling methods have been developed to address the above objectives. 

Although different, all sample surveys that use probability sampling methods for sampling 

over time belong to one of the following two classes: 

 surveys in which samples selected at different time points are statistically independent; 

 surveys in which samples selected at different time points are statistically dependent. 

Surveys belonging to the second class share the common feature that samples are coordinated 

by design over time. Typically, samples over time are positively coordinated, in the sense that 

a part of the sample selected at time t  is retained in the sample at time point t+1, though it 

has to be noted that negative coordination may also take place. Examples of surveys 

performed by EU countries in which positive sample coordination is used are the LFS, the 

ICT and the EU-SILC. 

Repeated and periodic surveys have many similarities to multinational and domain 

comparisons, but designs over time usually differ from the others in two special respects. 

Firstly, they are designed for and selected from the same population, which tends to retain its 

characteristics and structures; and secondly, those similarities permit and often encourage 

designs of overlapping samples, where covariance tends to reduce the variance of 

comparisons (Kish, 1994). Surveys are sometimes repeated at irregular intervals. However, 

periodic surveys, repeated at regular intervals, are becoming more common. The periods may 

be long, as for ten-yearly censuses or for annual surveys, or they may be short, as for the 

quarterly or monthly surveys (e.g. the LFS in many countries). 

Sample sizes and sampling methods may vary for different waves, except that they need to be 

fixed for the sample overlaps (of the same ultimate sampling units, but also of the same areas 

being used as primary sampling units). However, it is recommended that survey methods be 

kept similar for comparisons between waves. The variances of changes and sums in periodic 

surveys should take into account any overlapping correlations; the positive correlation 

between periods increases the variance of the sum of estimates over time but reduces the 

variance of changes. 

There is abundant literature on the design and analysis of surveys over time and sample 

coordination (e.g. Duncan and Kalton, 1987; Binder, 1998; Kish, 1998; Nordberg, 2000; and 

Steel and McLaren, 2009). Terms like repeated surveys, panel surveys, rotating panel surveys 

and split panel surveys appear frequently in the survey literature when positive sample 

coordination is being discussed. Unfortunately, not all authors assign the same meaning to the 

terms, a fact that complicates an already complex issue even further. 

Sampling over time makes it possible to analyse changes in variables of interest. Apart from 

design issues, we should also consider the frequency of sampling, the spread of surveyed units 

over time and the application of overlapping or non-overlapping samples over time. Surveys 

using sampling over time can be classified into: 

 repeated surveys; 

 longitudinal surveys:  

o panel surveys (fixed panel, fixed panel plus ‘births’);  

o repeated panel surveys; 

o rotating panel surveys; 

o split panel surveys;   



 

 

Best practices on variance estimation 3 

Handbook on precision requirements and variance estimation for ESS household surveys 73 

 rolling samples. 

The key factors which influence sampling design over time are the estimates of the main 

variables to be produced and the type of analyses to be performed. Of course, the interaction 

between sampling over time and design features, such as stratification and cluster sampling, 

also need to be decided (Steel and McLaren, 2009). 

The repeated surveys serve for comparison and for the production of time series. The analysis 

and creation of such time series involves seasonal adjustment, business cycle and time trend 

estimation. High-quality surveys are based on probability sampling methods that yield 

estimates of population characteristics and make it possible to analyse relationships between 

variables. Sampling frequency depends on the purpose of the survey. A repeated survey 

enables population change estimation and cross-sectional estimation. It is recommended that 

the population frame be updated to incorporate population changes as soon as possible. The 

sample should be updated to give the new units a chance of selection and to remove defunct 

units that may affect standard errors. In a repeated survey there is no need for any sample 

overlap on different occasions. 

Repeated surveys may be irregular, but periodic surveys are repeated at regular intervals and 

are becoming more common. The periods may be long, as for annual surveys (e.g. Structural 

Business Surveys), or they may be short, as for quarterly or monthly surveys (e.g. survey for 

compiling monthly industrial production indices, survey for compiling quarterly turnover 

indices, etc.). 

A longitudinal survey is a survey that collects data from the same sample elements on 

multiple occasions over time. An initial sample is selected, and at each occasion or wave an 

attempt is made to include units of the initial sample. A longitudinal survey may be used to 

provide estimates of changes at aggregate levels, but these estimates refer to the population at 

the time of the initial sample selection unless the sample has been updated to make it 

representative of the current population. The main purpose of a longitudinal survey is to yield 

estimates and analyses of changes at the unit level (gross changes). 

Five broad types of longitudinal survey designs can be identified (Lynn, 2009): 

o A panel survey is a kind of longitudinal survey in which an initial sample is selected 

and interviewed for several time periods. Panel surveys are needed to detect dynamics 

of gross (micro) changes of units (individuals, households etc.). 

A panel survey may be fixed panel or fixed panel plus ‘births’. For a fixed panel 

survey, statistical data are collected from the same units at multiple time periods. These 

panel surveys have problems of attrition and mortality, since no additions to the sample 

are made after initial sample selection. On the other hand, in the fixed panel plus 

‘births’ surveys, at each wave of data collection, a sample of units which are born since 

the previous wave is added. This type of panel survey may be used when there are 

significant ‘births’ in the population during the life of the survey and there is a desire to 

represent the cross-sectional population at the time of each wave as well as the 

longitudinal population of wave 1 ‘survivors’. Most household panel surveys have this 

design. 

o A repeated panel takes the form of a series of panel surveys which may or may not 

overlap in time. Typically, each panel is designed to represent an equivalent population, 

i.e. the same population definition applied at a different point in time. 

o In a rotating panel survey, predetermined proportions of sample units are replaced on 

each occasion. This type of survey enables gradual changes of sampling units and 
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partial overlapping between successive fieldwork occasions. Typically, each unit will 

remain in the sample for the same number of waves. Rotating panel designs are often 

used when the main objectives are cross-sectional estimates and short-term estimates of 

net and gross change. Labour Force Surveys have a rotating panel design in many 

countries. It is often applied at dwelling level, which means that people and households 

are not followed when they leave a selected dwelling. People and households moving 

into a selected dwelling are included in the survey. This approach is suitable when the 

main objective is to provide unbiased aggregate estimates. However, any overlapping 

sample can also be used to analyse change at the micro-level. The resulting sample of 

individuals for whom longitudinal data are available may be biased due to people who 

move permanently out or are temporarily absent from the selected households. The total 

time period and the time interval between observations are determined by the rotation 

pattern. 

o An alternative to a rotating panel survey is a split panel survey, which involves a panel 

survey supplemented for each reference period by an independent sample (Kish, 1987). 

This approach permits longitudinal analysis from the panel survey for more periods 

than would be possible in a rotating panel design. It also enables cross-sectional 

estimates to be obtained from the entire sample (Kish, 1998). 

This is only a broad typology which does not fully describe the range of possible designs. For 

example, each panel in a repeated panel design may or may not include an additional regular 

sample of births. 

It is important to distinguish between longitudinal surveys and longitudinal data. 

Longitudinal surveys are a source of longitudinal data, as the resultant data include items that 

refer to different points in time. But there are other ways of obtaining longitudinal data, 

including diary methods and the use of retrospective recall within a single survey instrument 

(Lynn, 2009). The OECD Glossary of Statistical Terms (OECD) refers to panel data as 

synonymous to longitudinal data. 

When estimates are focused on population totals, an independent sample may be used for each 

reference period, which is often the case when the interval between surveys is quite large (e.g. 

annual surveys or surveys every two years). In this case, a non-overlapping design exists, 

according to which sampling units are changed deliberately for each time period. For monthly 

or quarterly surveys, the sample is often designed with considerable overlap between 

successive periods. Some overlaps may be built into the samples to gain advantages from 

positive correlations between periods. Standard errors of the estimate of changes over time are 

minimised by using complete overlap of samples (Kish, 1965). Respondent load, attrition, 

non-response and generally declining response rate usually lead to some degree of 

replacement or rotation of the sample from one period to the next (Steel and McLaren, 2009). 

Rolling samples are samples that have been deliberately designed to cover (roll over) the 

entire population in several or even many periodic surveys, and are taken by moving to 

different primary sampling units (PSUs) in each wave (Kish, 1990). One example of a rolling 

sample of households is where the 52 weekly samples are designed to cover the whole 

country instead of being confined within the same sample of PSUs. 

To sum up, rolling samples are a separate category from longitudinal surveys. While rolling 

samples are taken by moving to different PSUs each wave, longitudinal surveys include units 

of the previous sample in the new sample. On the other hand, repeated surveys may or may 

not be rolling samples and may or may not be longitudinal surveys. 
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Any discussion of design and analysis of surveys over time would most likely benefit from 

having a clear, unambiguous terminology. There are many important aspects that need to be 

considered. In particular, a good terminology should clearly address the fact that different 

sampling designs allow for sample coordination at different levels. For example, under one-

stage element sampling, sample coordination may be only at the element level. However, if 

one-stage cluster sampling is used to select the initial sample, then for the following time 

point it is possible to achieve sample coordination at (a) the cluster level, (b) the element level 

or (c) a combination of (a) and (b). Although (a) — (c) all result in sample coordination, they 

require different mathematical treatment of the data to obtain valid point and variance 

estimates. 

An inventory of the rotation schemes used in the LFS, ICT and EU-SILC household surveys 

shows that: 

o The EU-SILC is generally characterised by a rotation pattern with a periodicity of one 

year. The sample at a given year consists of four rotation groups which have been in the 

survey for 1-4 years. Any particular rotation group remains in the survey for four years; 

each year, one of the four rotation groups from the previous year is dropped and a new 

one is added. Between year t and t+1 the sample overlap is 75 %; the overlap between 

year t and year t+2 is 50 %; it is reduced to 25 % from year t to year t+3, and to zero for 

longer intervals. The rotation seems to be done either within the PSUs selected in the 

previous survey waves or is totally independent of the PSUs of previous waves. 

o The LFS is characterised by a rotation pattern with a periodicity of one quarter. There are 

six rotation schemes, which means a wider diversity of sampling designs used by 

countries and a more complex design compared to the EU-SILC. The panel component is 

meant to introduce more efficiency into measuring changes in indicators. Increasing the 

quarter-on-quarter overlap of the sample would enhance the precision of estimates of 

changes between consecutive quarters and estimates of quarter-on-quarter flows. In 

general, rotation seems to affect the ultimate sampling units within the previously selected 

PSUs. 

o For ICT, it seems that there are ten countries whose sample is affected by rotation 

procedures:
34

 the ICT sample is either embedded in the LFS, embedded in the EU-SILC 

or uses a panel that is independent of other surveys.  

Statistics estimated from the EU-SILC, and in particular the indicators on social exclusion 

and poverty, are usually estimated for cross-sectional samples and published annually. Simply 

comparing point estimates tables might lead to an over-interpretation of the data because any 

observed changes might be due only to sampling variances. It is therefore useful to provide 

variance estimates for changes in (cross-sectional) point estimates. This requires accounting 

for covariance between cross-sectional estimates among consecutive measuring points — 

something that is introduced through the rotating sampling scheme. Furthermore, if estimates 

are non-linear, which most indicators on social exclusion and poverty are, then linearisation 

techniques have to be used for variance estimation (Münnich et al, 2011b). 

The consideration of covariance in surveys based on panels is a research topic. The project 

‘Advanced Methodology for European Laeken Indicators’,
35

 which was funded under the 

Seventh Framework Programme of the European Commission, worked on advanced 

recommendations for variance estimators of the Laeken indicators. They take into account not 

                                                 
34 According to the quality reports for 2008. 

35 See http://ameli.surveystatistics.net. 

http://cordis.europa.eu/fetch?CALLER=FP7_PROJ_EN&ACTION=D&DOC=1&CAT=PROJ&QUERY=011df4d30328:d7f7:0094ed42&RCN=88428
http://cordis.europa.eu/fetch?CALLER=FP7_PROJ_EN&ACTION=D&DOC=1&CAT=PROJ&QUERY=011df4d30328:d7f7:0094ed42&RCN=88428
http://ameli.surveystatistics.net/
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only the various countries’ different sampling schemes but also practical problems, such as 

data peculiarities which may lead to the inappropriate use of indicator outcomes. This would 

enable better use of indicators in policy making. 

Although the consideration of covariance in surveys based on panels is a research topic, there 

is a strong need to improve variance estimation under rotation procedures and to get countries 

to provide the best possible sampling variance approximation. 

 

3.7.1 Variance estimation for annual averages  

 

Ioannis Nikolaidis (EL.STAT) 

 

 

One of the goals of a quarterly survey is to calculate annual averages, e.g. the total 

unemployed persons over one year. If qŶ  is the estimated total of unemployed at quarter 

 41qq , the annual total is given by: 
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The variance of totŶ is given by: 
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A rotation group is often replaced by a group selected from the same geographical ‘sector’, 

thus causing covariance as well (Place, 2008). For example, rotation may take place within 

PSUs, as in the case of the Australian Labour Force Survey (cf. Steel and McLaren, 2009). In 

order to estimate the difference 1, qqD  of parameters of variable y  between two consecutive 

waves q and q+1, we have to take into account not only the covariance caused by the ‘panel’ 

component (that is, the sub-sample which remains between q and q+1) but also that caused by 

the renewal of any rotation group. 

An additional complication arises from the fact that rotation groups are often created by 

dividing the first wave sample into a fixed number of sub-groups of equal size. These sub-

groups are generally not independent of each other. For example, assuming that a simple 

random sample is selected at first wave and then divided into two rotation groups 1 and 2 by 

taking a simple random sub-sample from the whole sample, then the covariance between the 

sample means 1y  and 2y  of a variable y  over the rotation groups 1 and 2 can be written as 

(Tam, 1984; Ardilly and Tillé, 2005): 

 
N

S
yyCov

y

2

21,  ,   (3.7.1.3) 

where N  is the population size and 2

yS  is the variance of the study variable y  over the 

population (see Appendix 7.1). More generally, if another variable z  is measured on the 

rotation group 2, we obtain: 
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 
N

S
zyCov

yz
21, ,   (3.7.1.4) 

where yzS  is the covariance between y  and z  over the total population: 

  






Ui

iiyz ZzYy
N

S
1

1
.    (3.7.1.5) 

Thus, if we ignore the covariance term (3.7.1.3) or (3.7.1.4) in variance calculations, the 

variance of the sample means y  over the whole sample 1 + 2 will be overestimated (Steel and 

McLaren, 2009). 

However, some authors (Kish, 1965) assume that the rotation groups are independent because 

they are disjoint. Also, in practice it is usually assumed that the different rotation groups are 

nearly independent, and covariance is computed through correlation on the overlapping 

samples with the additional hypothesis that design effects are roughly the same for the three 

variables qy , 1qy  and qq yy 1  (Place, 2008). Thus, a simple method for calculating the 

covariance )ˆ,ˆ( 'qq YYCov  consists of assuming that the non-overlapping parts between q  and 

'q  are independent. Hence, we obtain (Steel and McLaren, 2009; Salonen, 2008): 

 

    )ˆ,ˆ(ˆˆˆˆˆ)ˆ,ˆ( ''','

^

qqqqqqqq YYYVYVoYYCov  ,      (3.7.1.6) 

 

where 

)ˆ,ˆ(ˆ
'qq YY  is the correlation coefficient between qŶ  and '

ˆ
qY  

36
 , 

',qqo  is the proportion of overlapping units between q  and 'q  . 

 

For an annual average estimate totŶ , an alternative method of variance estimation is the 

Inflation Coefficient approximation (Salonen, 2008). The Inflation Coefficient can be defined 

by  
R

T

resp

resp
IC   , (3.7.1.7) 

where 

Tresp  = theoretical respondent group over four quarters; 

Rresp = real respondent group over four quarters (influence of overlapping). 

 

The variance of the average over four quarters can be given as 

 

)ˆ(ˆ)ˆ(ˆ
_

2

_ GREGtotICtot YVICYV  , (3.7.1.8) 

where  )ˆ(ˆ
_ GREGtotYV  is the variance of the generalised regression estimator (GREG) over four 

quarters, estimated with the assumption that the quarters are independent (there is no sample 

overlap between quarters). See Section 3.4 for estimating variance for the GREG estimator. 

                                                 
36 In general, )ˆ,ˆ( 'qq YY  is not the same as the correlation at the element level between the study variable y  at time  q and 

1q  . 
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3.7.2 Variance estimation for estimators of net change 

 

Martin Axelson (Statistics Sweden) and Ioannis Nikolaidis (EL.STAT) 

 

This section discusses variance estimation for estimators of net change, with some attention 

being given to problems encountered when samples are coordinated over time. 

Estimation of net change 

A finite population parameter is typically defined in terms of a numerical expression in order 

to summarise values of some study variable(s) for elements in a target population. Given that 

the composition of a target population typically varies over time, just like the values of study 

variable(s) at element level, the time dimension should be taken into account when defining 

finite population parameters. Clear, unambiguous definitions of the reference period, at both 

object level and variable level, are therefore necessary so that parameters are uniquely 

defined. This becomes even more important when discussing estimation of change over time. 

Let tU  denote a target population at time t . That is, tU  consists of all elements of the same 

type, which at time t  qualify for inclusion in the target population according to some 

predefined criteria. Let y  denote a study variable of interest, and let kty ,   denote the value of 

y  which at time t  is associated with element k . The parameter of interest at time t  is 

 


tUk ktt yY , . At time point 1t , the parameter of interest is 
  

1
,11

tUk ktt yY .The 

greater part of the discussion in this section will focus on estimating tt YYD  1 , as this is 

the measure of net change that is perhaps most often encountered in practice. The following, 

somewhat simplified, setup will be considered: 

 Time point t : 

o A probability sample ts  of elements is selected from tU , according to the 

sampling design )|( 1 tt sp . The notation )|( 1 tt sp  is used to indicate that 

the choice of sampling design at time t  may be conditioned by the sample 

selected at time 1t . 

o An estimator for tY  is given by tŶ . The estimator tŶ : 

(a) appropriately reflects the sampling design used to select ts ; 

(b) is non-response-adjusted; 

(c) may incorporate auxiliary information. 

 Time point 1t : 

o A probability sample 1ts  of elements is selected from 
1tU , according to the 

sampling design )|(1 tt sp  . 

o An estimator for 1tY  is given by 1
ˆ
tY . The estimator 1

ˆ
tY : 

(a) appropriately reflects the sampling design used to select 1ts ; 

(b) is non-response-adjusted; 

(c) may incorporate auxiliary information. 
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Let us consider 
tt YYD ˆˆˆ

1    
as an estimator of tt YYD  1 . If tŶ  and 1

ˆ
tY  are 

approximately unbiased estimators for tY  and 1tY , then D̂  is an approximately unbiased 

estimator for D . 

 

Variance estimation for estimators of net change 

The variance of D̂  is given by: 

)ˆ,ˆ(2)ˆ()ˆ()ˆ( 11   tttt YYCovYVYVDV ,
   

(3.7.2.1) 

where )ˆ( tYV  and )ˆ( 1tYV  denote the unconditional variances of tŶ  and 1
ˆ
tY  respectively, and 

)ˆ,ˆ( 1tt YYCov  denotes the unconditional covariance between tŶ  and 1
ˆ
tY . It is important to 

realise that under the setup considered above, )ˆ( tYV  depends not only on the sampling design 

)|( 1 tt sp  but also on the sampling designs )|( )1(   htht sp , ,...2,1h  Analogously, )ˆ( 1tYV  

and )ˆ,ˆ( 1tt YYCov  depend not only on the sampling design )|(1 tt sp 
 but also on the sampling 

designs )|( )1(   htht sp , ,...2,1,0h . An alternative expression for )ˆ(DV  is given by: 

)ˆ,ˆ()]ˆ()ˆ([2)ˆ()ˆ()ˆ( 1

2/1

11   tttttt YYYVYVYVYVDV  ,
   

(3.7.2.2) 

where )ˆ,ˆ( 1tt YY  denotes the unconditional correlation between tŶ  and 1
ˆ
tY , i.e. 
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(3.7.2.3) 

Clearly, when ts  and 1ts  are statistically independent, i.e. when )()|( 1111   ttttt spssp  for 

all possible ts , then the same is true for tŶ  and 1
ˆ
tY , and therefore the variance is given by: 

)ˆ()ˆ()ˆ( 1 tt YVYVDV .
     

(3.7.2.4) 

Typically, ts  and 1ts  are positively coordinated. One major reason for this is of course that 

positive sample coordination implies that a large part of the elements included in ts  will be 

retained in 1ts , which in turn implies that tŶ  and 1
ˆ
tY  has to be positively correlated. When 

this is the case, it follows that: 

)ˆ()ˆ()ˆ,ˆ(2)ˆ()ˆ()ˆ( 111   tttttt YVYVYYCovYVYVDV .
      

(3.7.2.5) 

That is, under positive sample coordination such that 0)ˆ,ˆ( 1 tt YYCov , D̂  is more efficient 

than it would be under independent sampling at time points t  and 1t . To see the extent of 

the efficiency gain when tŶ  and 1
ˆ
tY  are positively correlated, consider a situation in which 

)ˆ()ˆ( 1 tt YVYV . Then it follows that: 

)ˆ(2)ˆ()ˆ( 1 ttt YVYVYV        
(3.7.2.6) 

and 
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)]ˆ,ˆ(1)[ˆ(2)ˆ,ˆ(2)ˆ()ˆ( 111   ttttttt YYYVYYCovYVYV 
 
.
     

(3.7.2.7) 

Therefore, 
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(3.7.2.8) 

Clearly, a considerable gain in efficiency is achieved if tŶ  and 1
ˆ
tY  are positively correlated. 

Under independence, an estimator for the variance of D̂  is given by 

)ˆ(ˆ)ˆ(ˆ)ˆ(ˆ
1 tt YVYVDV

 
.
      

(3.7.2.9) 

Deriving appropriate estimators for )ˆ( tYV  and )ˆ( 1tYV  under independence is normally not a 

major problem. However, when tŶ  and 1
ˆ
tY  are statistically dependent due to sample 

coordination, then estimating )ˆ( tYV  and )ˆ( 1tYV  may become far from trivial. Nevertheless, in 

what follows it is assumed that working estimators for )ˆ( tYV  and )ˆ( 1tYV  are readily 

available. Hence, we need to find a working estimator for the covariance term )ˆ,ˆ( 1tt YYCov . 

Under certain choices of sampling designs )|(1 htht sp    ,...2,1,0h , estimation of 

)ˆ,ˆ( 1tt YYCov  is straightforward, but in general covariance estimation under sample 

coordination is not an easy task. Unfortunately, there is no universally applicable method 

which can be used to solve this problem. However, Berger (2004) proposes an ingenious 

approach which can be used under a broad class of sampling designs used for positive sample 

coordination at the element level. The approach discussed by Berger (2004) is to use: 
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(3.7.2.10) 

where )ˆ,ˆ(ˆ
1tt YY is an estimator for )ˆ,ˆ( 1tt YY , as an estimator for )ˆ,ˆ( 1tt YYCov . This 

approach has the advantage that using 
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(3.7.2.11) 

guarantees non-negative estimates of the covariance matrix. 
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(3.7.2.12) 

That is, any estimate produced by ])ˆ,ˆ[(ˆ
1


tt YYV  is a positive semi-definite matrix. 

However, great caution should be exercised when this approach is used. For )ˆ,ˆ( 1

^

tt YYCov to 

be a valid estimator, )ˆ,ˆ(ˆ
1tt YY should be a valid estimator for )ˆ,ˆ( 1tt YY . In particular, the 

estimator for )ˆ,ˆ( 1tt YY should be such that it properly reflects the correlation between tŶ  

and 1
ˆ
tY . For example, )ˆ,ˆ( 1tt YY is not generally the same as the correlation at the element 
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level between the study variable y  at time t  and 1t . Hence, using an estimate of the 

correlation at the element level between the study variable y  at time t  and 1t  instead of 

)ˆ,ˆ(ˆ
1tt YY in the above formula will not produce a valid general covariance estimator. In 

practice, )ˆ,ˆ( 1tt YY is sometimes estimated from the sample overlap, i.e, from 1 tt ss . 

Uncritical use of such an approach may very well result in an estimator for )ˆ,ˆ( 1tt YY which 

has a positive bias. When this is the case, the estimator 

)ˆ,ˆ(ˆ)]ˆ(ˆ)ˆ(ˆ[2)ˆ(ˆ)ˆ(ˆ)ˆ(ˆ
1

2/1

11   tttttt YYYVYVYVYVDV       
(3.7.2.13) 

will have a negative bias. Berger (2004) argues that for the large positive correlations 

)ˆ,ˆ( 1tt YY that are often encountered in practice, even a small positive bias in )ˆ,ˆ(ˆ
1tt YY may 

lead to a severe negative bias in )ˆ(ˆ DV . Hence, if the approach outlined above is to be used, 

special care should be taken to ensure that )ˆ,ˆ(ˆ
1tt YY is a valid estimator for )ˆ,ˆ( 1tt YY . 

Note also that the above discussion can be extended to cover more complex measures of net 

change. Consider a more general setting, in which the study variable has a vector value rather 

than a scalar one, and the parameter of interest at each time point is defined as a function of 

the population total of the study variable. Let ),...,(y 1
 Qyy  denote the study variable of 

interest, let )Y( tt f  (where f  is a rational function and  


tUk ktt ,yY  denotes the 

parameter of interest at time t  ) and let )Y( 11   tt f . Then for any measure of change 

defined as ),( 1ttg  , where g  is a rational function, an estimator is given by )ˆ,ˆ( 1ttg  , 

where )Ŷ(ˆ
tt f  and )Ŷ(ˆ

11   tt f . Since f  and g  are both rational functions, it follows 

that )ˆ())ˆ(),ˆ(()ˆ,ˆ( 11 YhYfYfgg tttt   , where h  is in itself a rational function and 

)''Ŷ,'Ŷ(Ŷ 1 tt . Hence, using the first-order Taylor linearisation (e.g. Andersson and 

Nordberg, 1994), the variance of )ˆ,ˆ( 1ttg   may be approximated by an expression to give: 

)Y()Ŷ() 'Y() ]ˆ,ˆ([ 1  VgV tt   ,
       

(3.7.2.14) 

where )Y(  is the gradient of )Ŷ(h  at )''Y,'Y(Y 1 tt  and )Ŷ(V  is the covariance matrix 

of Ŷ . If )Ŷ(V̂  is an estimator for )Ŷ(V , then an estimator for )]ˆ,ˆ([ 1ttgV   is given by 

)Ŷ()Ŷ(ˆ) 'Ŷ() ]ˆ,ˆ([ˆ 1  VgV tt 
 
,
     

(3.7.2.15) 

where )Ŷ(  is an estimator for )Y( . 

Berger and Priam (2010) propose an estimator for the covariance between estimates at two 

different waves. This estimator is valid under stratified, two-stage sampling designs, which 

involve unequal probabilities and non-response. The proposed estimator can also handle a 

wide range of measures of change. Berger and Priam (2010) show how their proposed 

estimator can be used to estimate correlation between complex estimators of change. The 

estimator is based on a multivariate linear regression approach to estimate covariance. This is 

not a model-based estimator, as it is valid even if the model does not fit the data. Berger and 

Priam (2010) show that the regression approach gives a design-consistent estimator for the 

correlation when finite population corrections are negligible. The multivariate regression 

approach is simple to apply as it can be easily implemented in most statistical software tools. 
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Not surprisingly, the estimator proposed by Berger and Priam (2010) is equivalent to Tam’s 

(1984) estimator under simple random sampling design. However, for more complex designs, 

the proposed estimator is more accurate than (3.7.1.3), as (3.7.1.3) is based on the assumption 

that the sample is selected with simple random sampling. 

The following section gives some practical guidance on how to estimate variance of the 

difference of estimates from two different time points, for stratified multi-stage sampling. If 

12
ˆˆˆ YYD 

 
is the net change of estimates 2Ŷ  and 1Ŷ  of a variable y  , between two time 

periods, then the problem is how to estimate variance of D̂ .   

Large-scale surveys often employ stratified multi-stage designs with a large number of strata 

H and relatively few primary sampling units (clusters: e.g. areas, blocks, municipalities or 

local government areas) are selected within each stratum h . 

At time period t , let tn   be the number of selected PSUs and let htijw
 
(>0) stand for a survey 

weight attached to a sample’s ultimate element j ( htimj ,...,1 ), belonging to the selected 

cluster (PSU) i  and stratum h . Then htijw  is the product of three factors: a) the inverse of the 

inclusion probabilities of the ultimate sampling units, b) the inverse of the response rate htr
 
 

in the stratum h  and c) a factor htijk , which makes weighted sample estimates conform to 

external total values (values from known totals from censuses, administrative sources, 

population projections, etc.). 

At time period t , let htijy  be the value of the characteristic y of the ultimate unit j , belonging 

to the hi  primary sampling unit (cluster). Moreover, tY
 
stands for the population total at time 

point t . We assume that the strata are response homogeneity groups. The form of the 

estimator on the basis of the two-stage design is thus: 
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ywY
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. (3.7.2.16) 

 

Let ts be the sampled ultimate units at time t . Let us also consider estimating the change in 

totals between two quarters. Then the basic estimator will be given by: 

ijh
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, (3.7.2.17) 

where subscripts 1 and 2 refer to the two quarters and the variance of this change is given by: 

),(2)ˆ()ˆ()ˆˆ( 11221212
**

ijh

h si j

ijhijh

h si j

ijh ywywCovYVYVYYV

hh

 


,

 

(3.7.2.18) 

where
*

hs  is the sub-sample of clusters in stratum h  for which data are available in both 

quarters. Essentially, 
*

hs  denotes cn  PSUs, which are common in both quarters. So, the third 

component is calculated on the basis of the dwelling data taken from the common PSUs 
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surveyed in both quarters. The first two components are obtained in a simple manner from the 

variance estimates of level at each quarter, as follows (Rao, 1988):     
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where 

htiŶ    is the estimator of the total of the characteristic y  for a PSU i  at stratum h . That is 

htij

m

j

htijhti ywY
hti


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1

ˆ

 

 (3.7.2.21). 

 

We have assumed here that the first-stage sampling fraction is small and that the first-stage 

sample is drawn with replacement, so that the variance estimation depends only on the first-

stage sampling. 

The covariance ),(
^

1

^

2 YYC o v , which is the third component of the relation (3.7.2.18), is 

calculated on the basis of the selected data from the common PSUs surveyed in both quarters, 

as follows: 
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In order to reduce the cost of quarterly surveys, any ultimate units (e.g. individuals) newly 

selected in the sample for all time points (e.g. quarters) are taken from the same PSUs. But 

again, there is only partial overlapping in the ultimate units, between time points. In this case 

the variance of 12
ˆˆˆ YYD   is given by: 
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where 

ihihhi YYD 12
ˆˆˆ     is the estimator of the change of the total in PSU  i  at stratum h . 

 

Let hijx be the value of the characteristic x  for an ultimate unit j , belonging to the hi  

primary sampling unit (cluster). Moreover, X stands for the total of x  in the population. The 

form of the estimator R


on the basis of the two-stage design will then be represented by: 
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Let 12
ˆˆˆ RRD   be the estimate of the net change of ratios between the two time periods. 

Then the problem addressed here is the estimation of the variance. 

One possible approach to obtaining a design-based variance estimate of D̂  is Taylor 

linearisation. According to this approach the variance of D̂  is given by (Roberts and 

Kovacevic, 1999): 

 

         12121212
ˆ,ˆ2ˆˆˆˆˆˆ)ˆ( ZZCovZVZVZZVRRVDV   , (3.7.2.27) 
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



12

112212
ˆˆ

Shij

ijhijh

Shij

ijhijh zwzwZZ and 

t

htijthtij

htij
X

xRy
z

ˆ

ˆ
 , 2,1t . 

 

The quantities  tZV ˆˆ  and  12

^
ˆ,ˆ ZZCov  are calculated by applying the above formulae for linear 

statistics. 
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A mass of papers and books have been written over recent decades on the subject of 

replication methods for variance estimation. However, there has been virtually no discussion 

on replication methods for variance estimation of estimators of net change under sample 

coordination. One exception is Canty and Davidson (1999), who discuss replication-based 

variance estimation within the context of the LFS. 

 

3.7.3 Estimation of gross change 

 

Martin Axelson (Statistics Sweden) 

 

Introduction to gross change and flows 

This section discusses the concept of gross change. Gross change refers to aggregates of 

change between time points at element level. When a study variable is categorical, the 

parameter of interest is typically a table that reflects how elements have transferred or 

‘flowed’ between categories over time. Consequently, gross change is typically referred to as 

flows when the study variable is categorical. 

Let tU  and 
1tU  denote the target populations at times t  and 1t  respectively, and let 

1 tt UUU . Following Nordberg (2000), let bpd UUUU  , where 

1 ttp UUU , 
ptd UUU  , and 

ptb UUU  1
. Moreover, let tCt UU ,  

denote a domain of interest at time t , and let 1,1   tCt UU  denote the corresponding domain 

of interest at time 1t . For example, tU  and 1tU  may denote the resident population at 

time t  and 1t  respectively, and 
CtU ,

 and CtU ,1  may be the subset of people who are 

unemployed at the corresponding time points. When estimation of flows is being discussed, 

the parameter of interest is typically a table based on some function of the vector: 

  CCpCCpCCpCCpp NNNN ,,,,
N  

where 
CCp

N
,

 denotes the number of elements in the set CtCtp UUU
,1, 

 , i.e. 








CtCtp UUUk

CCp
N

,1,

1
,  , 

_

,Ct

U  and _

,1 Ct

U


 denote the subsets of people who are employed at the corresponding time 

points, and 
CCp

N
,

, 
CCp

N
,

, and 
CCpN ,

 denote the sizes of the corresponding 

sets CtCtp UUU ,1,  , CtCtp UUU
,1, 

  and CtCtp UUU ,1,  . Sometimes, 

the parameter of interest is a table based on a function of the vector 

  CbCbCdCdp NNNN ,,,,
NN  
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where 
Cd

N
,

, 
CdN ,

, 
Cb

N
,

, and 
CbN ,

 are the sizes of the corresponding sets 
Ctd UU

,
 , 

Ctd UU , , 
Ctb UU

,
 and Ctb UU , . Hence, each cell in N  corresponds to the size of a 

particular domain. 

Let 
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and let 
kty ,1
 and

ktz ,1
 be analogously defined for time 1t . Then, using the variables 

kty ,
, 

ktz ,
, 

kty ,1
, and 

ktz ,1
, each element in N   may be expressed as a sum over the elements in 

U  for an appropriately defined summation variable. For example, let 

)1( ,1,1,,, ktktktktCCk
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In practice, the matrices N and pN  are often of larger dimensions, due to the fact that tU  and 

1tU  are partitioned into more domains of interest. In the above notation, the variables ty  and 

1ty  are indicator vectors rather than scalar indicator variables. 

 

Estimating gross change under sample coordination 

As is evident from the vector N , estimating gross change typically gets reduced to estimating 

domain sizes. A pre-requisite for design-based estimation of gross change is that the values of 

both ty  and 1ty  are recorded for a subset of elements in 1 tt UUU . In theory, this may 

be achieved in many different ways. For example, one possibility would be to select a 

probability sample s from U  at time 1t , and then observe kty ,  and kty ,1  for all responding 

elements. However, when sampling over time is considered, typically ty  is recorded for the 

responding elements at time t  and 1ty  is recorded for the responding elements at time 1t . 

Hence, as there must be an overlap between the two response sets for estimation of gross 

change to take place, positive sample coordination is often used to guarantee estimation of 

gross change. 

For example, by using the positive sample coordination property of certain surveys like EU-

SILC or EU-LFS, we are able to use the sample data to study transitions from one status to 

another: 

 Longitudinal poverty rates are based on union and/or intersection of an individual’s 

poverty status at a series of cross-sections (Eurostat, 2010a). The ‘persistent at-risk-of-
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poverty rate’ is actually the main EU-SILC longitudinal indicator. For a four-year panel, 

it is defined as the share of persons who are at risk of poverty at the fourth wave of the 

panel and at two of the three preceding waves. The at-risk-of-poverty threshold at wave 

i (i={1,2,3,4}) is set at 60 % of the median income at wave i. 

 Although collection of longitudinal data is not laid down in the EU Regulation, many 

national LFS samples have a panel dimension which makes it possible to estimate flows 

into and out of employment, unemployment, the labour market, etc. 

 

General considerations on variance estimation for gross change  

Let pN̂  denote an estimator for pN . Even though the construction of pN̂  may be far from 

trivial, it is assumed that  pN̂ : 

(a) appropriately reflects the sampling design used to select  1 tt ss ; 

(b) is non-response-adjusted; 

(c) may incorporate auxiliary information. 

Let )N̂( pV  denote the covariance matrix of pN̂  and let )N̂(ˆ
pV  denote an estimator for 

)N̂( pV . Depending on the method used for sample coordination and the construction of pN̂ , 

different ways, such as analytical methods or replication methods, can be considered for 

estimation of )N̂( pV . Whether or not an existing software tool can be used depends on the 

choice of )N̂(ˆ
pV . However, for )N̂(ˆ

pV  to be considered as a valid estimator for )N̂( pV , it 

should properly reflect the implications of points (a) — (c) above. 

Precision requirements for flow estimators can also be expressed using precision thresholds. 

For instance, we may want a standard error of 0.5 percentage points for EU-SILC’s persistent 

at-risk-of-poverty rate. Precision requirements for estimators of flows can alternatively be 

expressed in terms of the minimum sample size to be achieved between any pair of 

consecutive waves. See Appendix 7.6 for more details. 

 

Summary 

It is usual for NSIs to conduct continuing surveys, where the same population is sampled 

repeatedly over time. A possible classification of the surveys that use sample over time is 1) 

repeated surveys, 2) longitudinal surveys (panel surveys, rotating panel surveys, repeated 

panel surveys, split panel surveys) and 3) rolling samples. Rolling samples are a separate 

category from longitudinal surveys. While rolling samples are taken by moving to different 

PSUs each wave, longitudinal surveys include units of the previous sample in the new sample. 

On the other hand, repeated surveys may or may not be rolling samples and may or may not 

be longitudinal surveys. 

Such surveys are typically conducted to meet one or more of the following objectives: 

 provide estimates of parameters at specific time points; 

 provide estimates of parameters defined as averages over a period of time; 

 provide estimates of net change between two time points; 
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 provide estimates of gross change. 

It is recommended to take into account covariance effects in the estimation of variance for the 

averages over a period of time and for the net change between two time points (estimates of 

change). In general, covariance estimation under sample coordination is not straightforward. 

Covariance estimation in surveys based on panels is a research topic. In practice it is usually 

assumed that the non-overlapping parts are nearly independent, and covariance is computed 

through correlation of the overlapping samples. However, this assumption has to be assessed. 

This chapter proposes an analytical method to compute variance for annual averages. The 

method can be applied by using the indications from this chapter and Section 3.4, in cases 

where the sampling design is simple random sampling without replacement, stratified random 

sampling or two-stage sampling (when primary sampling units are selected with probabilities 

proportional to size and secondary sampling units are selected by simple random sampling 

without replacement). The handbook also proposes an analytical method to compute variance 

for estimators of net change for stratified multi-stage sampling. The sampling designs are 

rotating panel designs with at least some common PSUs between successive periods. 

Estimation of gross changes typically gets reduced to estimation of domain sizes, while 

variance for gross changes uses the variance estimation methodology used for domains. 
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4. Computing standard errors for national and European 
statistics 

This chapter identifies possible approaches to increasing the availability of variance of EU 

statistics, lists the pros and the cons of the various approaches, and recommends the integrated 

approach — applying replication methods and generalised variance functions. These methods, 

which were generally described in Section 3.3, are presented in this chapter as possible 

solutions for the integrated approach.   

4.1 Recommendations for improving computation of standard errors for 
national and European statistics 

 

Denisa Camelia Florescu and Jean-Marc Museux (Eurostat) 

 

A common current practice is for NSIs to compute standard errors for a limited list of 

indicators and national population breakdowns and then report the figures to Eurostat. 

Nevertheless, standard errors are needed for all relevant indicators and breakdowns, and not 

just for those for which they have been computed. This means we need to develop appropriate 

methodologies for variance estimation in order to make information on standard errors more 

accessible to data users. There are three important constraints, however. The first is that the 

diversity of results that are of interest to data users is often so large that individual variance 

computations statistic-by-statistic may be time-intensive. This issue is even more acute at EU 

level, with thirty or so countries being systematically handled. The variance estimation 

method therefore has to be fast. The second constraint is that data users do not always have 

statistical expertise, so the approach has to be made as easy and straightforward as possible 

for non-statisticians. Finally, confidentiality issues generally place restrictions on the 

variables which are available in public microdata files. In particular, design-related variables 

like stratum or primary sampling unit (PSU) codes are often removed from the files as their 

disclosure power is generally considered to be high. As a result, data users are unable to 

perform variance calculations by taking the whole sampling design into account, and this 

could lead to severely biased estimates. In extreme cases, users have no access to microdata, 

the access being restricted to the parameters of generalised variance functions that model the 

relationship between the variance or the relative variance of an estimator and its expectation. 

On the other hand, the estimation method has to be as ‘accurate’ as possible in the sense that it 

has to reflect most of the sampling design components. 

Seeking to boost the availability of standard errors for EU statistics requires extra efforts, and 

these may be shared by Eurostat and the NSIs. This chapter assesses the delegation by NSIs to 

Eurostat of variance estimation tasks. Such delegation of tasks centralises some of the work 

and depends on the accuracy with which Eurostat is able to reproduce the actual standard 

errors of the NSIs. 

Three main approaches are presented and discussed: decentralised, fully centralised and 

integrated. These approaches are possible with aggregated data and/or microdata transmission 

from the NSIs to Eurostat. 
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The decentralised approach 

This is the most common approach; it is linked to the transmission of aggregated data. NSIs 

compute standard errors for all relevant indicators and national breakdowns and report them 

to Eurostat. NSIs use their own methods and tools for variance estimation. There is neither a 

common method nor a tool. 

In practice, Eurostat defines the indicators and breakdowns for which point and variance 

estimates have to be calculated by NSIs. Then, the national partners have to come up with the 

estimates, by taking into account at least: 

 the main sampling design components (stratification, clustering, etc.); 

 non-response adjustments; 

 other weighting effects (especially weight calibration (Deville and Särndal, 1992)). 

Eurostat then computes the point and variance estimates for the ESS statistics, by considering 

countries as technical strata. 

There is a requirement at Eurostat level to monitor national processes. In this respect, a 

decentralised approach requires sound statistical expertise in the NSIs in order to carry out 

variance calculations and to provide Eurostat with the requisite information to enable it to 

monitor compliance of process and output. 

A decentralised approach should rely on NSIs using suitable methods and tools for the 

different sampling designs (guidance on some suitable and unsuitable methods is provided by 

the matrix in Appendix 7.4) and on ensuring that such methods are actually followed by each 

NSI (guidance provided by the metadata template in Appendix 7.3). 

The advantages of this approach are: 

 it meets the requirement of a standard delivery of an aggregated table; 

 Eurostat involvement is minimal. 

The weak points are: 

 The use of different variance estimation methods leads in principle to negligible 

differences in the results. However, the results lack comparability if the methods and 

tools do not account for exactly the same sources of variability, which is difficult for 

Eurostat to monitor. 

 This strategy yields standard errors for a limited list of indicators and breakdowns. It 

does not meet the need for standard errors for all relevant indicators and breakdowns 

and is not flexible: if Eurostat needs estimates of standard errors for extra/unforeseen 

indicators and breakdowns, the only possibility is to ask the countries to provide them. 

A decentralised approach in which the NSIs calculate and transmit standard errors for all 

relevant indicators and breakdowns may impose a considerable burden on NSIs, especially, or 

disproportionally so, for smaller ones. 

 

The fully centralised approach 

Under this approach, Eurostat sets up a common methodology for variance estimation and 

computes standard errors for all indicators and breakdowns on the basis of the sampling 

design information provided by NSIs. Even though countries use different sampling designs, a 
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common variance estimation method is needed at EU level, to take into account the different 

national-level strategies. 

We might consider using replication methods (bootstrap, jackknife, balanced repeated 

replication, etc.) as standardised methods. These methods are flexible enough for most of the 

commonly used sampling designs. They are also able to take into account the complex 

structure of a sample in order to yield estimates for the whole population and diverse sub-

populations (breakdowns). 

This approach is linked to the transmission of microdata. 

EU-SILC developed ad-hoc jackknife macros in SAS that required NSIs to send Eurostat not 

only the file containing the microdata but also a file with the following additional variables at 

record level (Ghellini et al, 2009): 

 the stratum to which the ultimate sampling unit belongs; 

 the primary, the secondary, etc. sampling units to which the ultimate sampling unit 

belongs; 

Self-representing primary sampling units are treated as primary strata, and their 

secondary sampling units are treated as primary sampling units. 

 where systematic sampling is used at any sampling stage, the order of selection of the 

primary, the secondary, etc. sampling units;  

This information allows the effect of implicit stratification on the overall variance to be 

taken into account. 

 the final sampling weight of the units used in the estimation and adjusted for non-

response and calibration. 

This file had to make it possible to identify the stratum to which each primary, secondary etc. 

sampling unit belongs, the primary, secondary etc. sampling unit to which each household 

belongs, and the household to which each individual belongs. 

Design weights could also be transmitted although they are not necessary for the macros; they 

serve to enable the impact of non-response and calibration on weights to be assessed. 

Eurostat was then able to calculate replicate weights, replicate estimates and variance. 

In EU-SILC, the SAS macros took into account the effect of implicit stratification on the 

variance. However, calibration and imputation effects were not fully taken into account and 

the method was not validated in-depth. Eurostat could have re-calculated the imputed value 

for each replication using random imputation methods.
37

 The variability of the imputed values 

between replications would have served to incorporate the variance due to imputation in the 

overall variance. Implementing this approach was found nevertheless highly time-consuming. 

The use of jackknife for EU-SILC was a feasibility study. The subsequent step was to test 

other methods than jackknife, i.e. bootstrap and linearisation. Comparative experiments were 

carried out on a limited number of countries; the results of different methods are similar. The 

present choice is to work with linearisation (ultimate cluster approximation), which was 

discussed at the Net-SILC2 workshop on accuracy and was validated by the SILC Working 

Group. This approach provides acceptable results given the administrative considerations. 

                                                 
37 This approach would have resulted in duplication of the NSIs’ imputation work.  However, the random imputation by Eurostat 

would have been merely to incorporate the variability of imputation into the whole variance, and the imputed values would 
have not been used for any other purpose, e.g. the estimation of point estimates.  
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Experience with EU-SILC demonstrated that the quality reports collect descriptions of (for 

instance) sampling designs which vary greatly from one NSI to another. Many clarifications 

and exchanges were needed with NSIs on the number of stages of the sampling design, 

whether there are self-representing PSUs, whether systematic sampling allows for implicit 

stratification, etc. If the fully centralised approach were to be implemented, the metadata 

template (Appendix 7.3) would be particularly useful and is recommended as a means of 

collecting clear and detailed information on the sampling designs. 

The advantages of this approach are: 

 Contrary to the decentralised approach, this one achieves full flexibility in terms of 

estimating standard errors for all relevant indicators and breakdowns, including 

extra/unforeseen indicators and breakdowns, without the need to ask the NSIs to 

provide them. 

For replication methods, domain estimation can be viewed as a particular case of 

national estimation where the target variable takes value 0 for units outside the domain. 

So any breakdown needed can be handled by using the same method as long as 

national weights are available.  

 It drastically reduces the burden on NSIs. 

 It enables Eurostat to fully control the estimation of standard errors needed for 

compliance assessment. 

 It facilitates full harmonisation of the way standard errors are computed. 

On the other hand, there are weak points too: 

 A main one is that Eurostat is now burdened with the preparation and use of full 

design/estimation information (calibration, rotation of sample, imputation) and with 

the likely difficulties related to unavailable information required for weighting and the 

complexity concerning rotation schemes (derivation of approximated variance that 

takes the panel covariance into account). The information needed by Eurostat can be 

technically complex to acquire and requires sampling expertise and knowledge of 

details which are country-specific. This approach requires very sound statistical 

expertise from Eurostat and is burdensome, in terms of personnel and computing 

power. The average number of records in the LFS (i.e. ultimate sampling units) per 

quarter in 2007 was almost 1.4 million. If we take into account stratification (32 

countries*country wise strata) and differences between the various element and cluster 

sampling designs, then any overall variance estimation experiment becomes very 

cumbersome. This approach is clearly not feasible for the LFS, which is a continuous 

short-term survey. 

 NSIs will compute and publish their own precision estimates and continue to use their 

own methods (at least in the short run), irrespective of whether Eurostat publishes 

precision estimates under a fully centralised approach. This is because NSIs have their 

own data requests from data users. A comparability problem between precision 

computed by NSIs and Eurostat (using different methods) therefore arises if the 

methods and tools do not account for exactly the same sources of variability. 
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The integrated approach 

Under this approach, NSIs compute certain required statistics and report them to Eurostat, 

which uses them to compute standard error estimates for any relevant indicator and 

breakdown. These statistics can be as follows: 

 Using a common replication method, NSIs report replicate weights and full sampling 

weights to Eurostat. On the basis of this information and the file containing the 

microdata, Eurostat then calculates the replicate estimates and the overall variance. 

This is done from the variability of the replicate estimates around the estimate based 

on full sampling weights, over all replications. 

 This option is linked to the transmission of microdata. 

Replicate weights are already calculated by NSIs by taking into account the main 

sampling design features (stratification, multi-stage selection, calibration, etc.), so 

sample structure variables are not needed at Eurostat. 

See Section 4.2 for more information. 

 Under the use of generalised variance functions, NSIs first calculate a set of standard 

errors using direct methods (analytical or replication). They then use the results to 

estimate parameters of generalised variance functions. NSIs transmit such parameters 

to Eurostat, which uses them to calculate standard errors for all indicators and any 

breakdowns needed. 

This option is linked to the transmission of aggregated data. 

See Section 4.2 for more information. 

The integrated approach requires sound statistical expertise at Eurostat; nonetheless, the 

success of this task also relies on the statistical expertise in NSIs and on the quality of the 

estimation of national statistics, which is closely linked to the actual national sampling design. 

Advantages of this approach are: 

 It has good flexibility, and allows Eurostat (and other data users) to estimate standard 

errors for all relevant indicators and breakdowns. 

For replication methods, standard errors can be estimated for extra/unforeseen 

indicators and breakdowns, without any need to ask the NSIs for them. 

For replication methods, domain estimation can be viewed as a particular case of 

national estimation, where the target variable takes the value 0 for units outside the 

domain. So as long as national weights are available, any breakdown needed can be 

handled by using the same method. 

 The replication methods take account of the sampling design while simultaneously 

enabling users of secondary survey data (e.g. Eurostat) to estimate standard errors 

without knowing the detailed sampling design. 

 It enables sampling design information to be integrated at source. 

 The approach based on the use of a common replication method supports the 

comparability of national standard error estimates, assuming that the common 

method/tool used by the NSIs accounts for exactly the same sources of variability.   
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Disadvantages of this approach are: 

 NSIs will still compute and publish their own precision estimates, using their own 

methods, even if Eurostat publishes precision estimates under an integrated approach, 

using the common method. This is because NSIs have their own data requests to deal 

with from data users. This disadvantage is more likely to occur with generalised 

variance functions than with replication methods. (In the latter case, it is assumed that, 

in the long run, NSIs will change their own methods with the common replication 

method.) A comparability problem therefore arises between precision computations by 

NSIs and Eurostat (using different methods) if the methods and tools do not account for 

exactly the same sources of variability. 

 Under replication methods, the burden on NSIs and expertise requirements of NSIs are 

no less than with the decentralised approach. However, the same replicate weights can 

be used to estimate variance for any indicator and domain needed, including 

extra/unforeseen indicators and domains.   

 The use of generalised variance functions reduces but does not eliminate the need for 

NSIs to calculate variances using direct methods. However, the parameters of the 

GVFs can be carried over from one data collection to another with similar features (in 

terms of sampling design, survey variables, etc.). 

There may also be problems with the validity of national calculations of statistics 

required by Eurostat in connection with generalised variance functions (i.e. the validity 

of the parameters of generalised variance functions). 

In the long run, the objective and a main challenge are for Eurostat and NSIs to converge and 

use the same (replication) method. This will allow Eurostat (and other data users) to estimate 

standard errors for all relevant indicators and breakdowns, including for extra/unforeseen 

ones. It will also prevent comparability problems when different national methods and tools 

do not account for exactly the same sources of variability. Guidelines and training sessions 

can be organised at Eurostat level to train the people in charge at country level. 

Unlike the decentralised approach, the integrated approach meets the objective of increasing 

the availability of standard errors for Eurostat. As against the fully centralised approach, the 

integrated approach shares the burden between NSIs and Eurostat. The integrated approach 

tends to be the most feasible and is recommended. 

 

Summary 

The portfolio for policy-making indicators is becoming broader and more detailed with time. 

The need to provide standard errors for them is increasing. 

A customary practice is for NSIs to transmit standard errors for national estimates to Eurostat 

for a limited list of indicators and breakdowns; Eurostat then computes standard errors for 

European estimates for the same indicators and breakdowns. This is incompatible with the 

requirement described above because of ever changing needs. 

There are three main approaches (options) that enable standard errors to be computed and 

disseminated for national and European estimates for all relevant indicators and breakdowns. 

Under the decentralised approach, the option is to ask NSIs to estimate and report standard 

errors for national estimates, for all relevant indicators and breakdowns. This is very 

burdensome for NSIs since the needs may change over a short period of time and lead to 
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duplication of efforts (the stovepipe approach). Furthermore, standard errors computed by 

NSIs using different methods and tools may raise concerns about the comparability of results 

if the methods and tools do not account for exactly the same sources of variability. 

In any case, a decentralised approach should rely on NSIs using suitable methods and tools 

for the different sampling designs (guidance on some suitable and unsuitable methods is 

provided by the matrix in Appendix 7.4) and on ensuring that such methods are actually 

followed by each NSI (guidance provided by the metadata template in Appendix 7.3). 

Under a fully centralised approach, Eurostat would develop a methodology and regularly 

estimate standard errors for national and European estimates based on information provided 

by countries. The promising option for Eurostat is the use of replication methods based on 

design information provided in microdata files and external contextual information (totals for 

calibration, etc.). However, Eurostat would need to put in a considerable amount of work and 

expertise to develop a methodology and regularly estimate standard errors on the basis of 

information provided by countries. This is not very feasible, especially for short-term surveys 

like the LFS. 

However, if the fully centralised approach with the use of replication methods is applied, the 

metadata template (Appendix 7.3) would be particularly useful and is recommended for 

collecting clear and detailed information on the sampling designs. 

An integrated approach, where the burden is shared between Eurostat and NSIs, tends to be 

the most feasible option and is therefore recommended. A major drawback is however the 

burden for the NSIs having to estimate certain statistics required by Eurostat which might not 

be produced with current methods and tools used by NSIs. However, guidelines and training 

sessions can be organised to train those in charge at country level. In the long run, the 

objective is for Eurostat and NSIs to converge and use the same method.  

 
 

4.2 Possible methods for implementing the integrated approach of 
variance estimation 

 

Loredana Di Consiglio, Stefano Falorsi (ISTAT) and Ioannis Nikolaidis (EL.STAT) 

 

This section describes methods which can be used to implement the integrated approach 

presented in the previous section. The purpose is to increase the availability of standard errors 

for all relevant indicators and breakdowns, in order to meet the needs of Eurostat (and other 

data users). 
 

Generalised Variance Functions 

Generalised Variance Functions (GVFs) attempt to model the relative variance
38

 )ˆvar(Re Yl  

of a survey estimator Ŷ  as a function F  of its expectation )ˆ(YEY   (Wolter, 2007): 

    ,,;ˆvarRe YFYl   .   (4.2.1) 

                                                 
38 The relative variance of an estimator is defined as the ratio between its variance and the square of its expectation. Put 

another way, the relative variance is equal to the square of the coefficient of variation (relative standard error) of the 
estimator. 
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For each planned domain level, once the model parameters ...,,    have been determined 

from a subset of estimated statistics of interest and their variances, the expression (4.2.1) can 

be used to estimate the variance of any other statistic of interest of the same type (totals, 

means or ratios) in the same (or similar) context (sampling design). 

Hence, GVFs provide a quick and easy way of estimating variance of a statistic without 

resorting to direct variance computations which, as far as analytical methods are concerned, is 

more difficult and more complex. Besides, direct variance computations (analytical and 

replication methods) usually need microdata files with variables related to the sampling 

design (e.g. stratum identification codes, calibration variables), which data users generally do 

not have access to. Thus, GVFs might turn out to be an efficient strategy for making 

information on standard errors more accessible to data users: data producers can provide the 

parameters for a predefined set of GVFs (e.g. for each planned domain) from which data users 

are able to estimate variance for any statistic they may be interested in. 

There are other benefits of using GVFs instead of direct variance computations: 

 although there is no theoretical evidence for this, GVFs would generate variance 

estimates that are generally more stable than variances which are estimated one 

statistic at a time; 

 GVFs can be carried over from one data collection to another with similar features (in 

terms of sampling design, survey variables, etc.); 

 in particular, GVFs may be useful when dealing with repeated surveys (e.g. EU-SILC, 

LFS), as direct computations may provide variance estimates for the first wave of data, 

while GVFs based on first-wave results can be valuable instruments for estimating 

variances from second wave onwards; 

 presentation of variance estimates statistic-by-statistic would considerably increase the 

size of survey reports, making them less easy to read. On the other hand, a summary 

table with estimated parameters from different variance models would be a more 

tractable option (Swanepoel and Stoker, 2000). 

In many of its practical applications, GVFs model the relative variance of an estimator
39

 as a 

decreasing function of its expectation: 

 
Y

Yl


 ˆvarRe  ,    (4.2.2) 

where the model parameters   and   are unknown and have to be estimated from a set of 

variance estimates )ˆ),ˆ(varRe(
^

YYl  obtained through direct computations. Ordinary Least 

Squares (OLS) may be used as a natural fitting methodology. In order to smooth out the effect 

of outliers, Weighted Least Squares (WLS) may also be used, with weights being taken as a 

decreasing function of the relative variance. 

The U.S. Census Bureau has been using this model for its Current Population Survey (CPS) 

since 1947. Another major survey in the United States that uses (4.2.2) is the National Health 

Interview Survey (NHIS) (Valliant, 1987). 

A distinguishing feature of variance estimation based on GVFs is that the approach is mainly 

empirical: there is no irrefutable scientific evidence to guide the choice of a variance model. 

                                                 
39 In most cases, GVFs deal with estimators of population and sub-population totals. 



 

 

Computing standard errors for national and European statistics 4 

Handbook on precision requirements and variance estimation for ESS household surveys 97 

Nevertheless, the use of model (4.2.2) can be justified under certain assumptions. Let Ŷ  be an 

estimator of the total number Y of individuals who fall into a certain category (e.g. the total 

number of individuals aged 50-64, the total number of unemployed people, the total number 

of individuals who live in a certain geographical region). And let 
N

Y
P   be the proportion of 

the total population, of size N , in the category. Assuming an arbitrary sample selection 

leading to a sample of size n, the relative variance of the estimator Ŷ  of the population size Y  

is given by: 

 
YnY

DeffN

n

Deff

nP

P
DeffYl


 






1ˆvarRe  ,        (4.2.3) 

 

where 
n

Deff
 and 

n

DeffN 
    and Deff  is the ‘design effect’ (Kish, 1965). 

Let V   be the group of statistics to which the variance model is fitted. Assuming that the 

design effect Deff  and n vary little from one statistic to another in group V, then the model 

(4.2.2) should work on the basis of relationship (4.2.3). This rule is often applied by 

practitioners (Ghangurde, 1981). 

Alternative variance models may also be considered (Wolter, 2007): 

 
2

ˆvarRe
YY

Yl


       (4.2.4) 

    1ˆvarRe


 YYl       (4.2.5) 

    12ˆvarRe


 YYYl      (4.2.6) 

    YYl ˆvarRe .        (4.2.7) 

Model (4.2.7) is the one that the Hellenic Statistical Authority (ELSTAT) has been using to 

generate variance estimates for the Greek Labour Force Survey. 

More precisely, the relationship between the estimated number Ŷ of people (in thousands) 

who fall into the ‘employment/unemployment’ category (e.g. total number of unemployed 

people, total number of employed men aged 20-24) and the estimated coefficient of variation 

)ˆ(
^

YCV   is given by: 

 

461818.0

^

ˆ

264864.35
)ˆ(

Y
YCV  . (4.2.8) 

 

For instance, if we estimate the total number of unemployed females at 150 000, the 

relationship (4.2.8) leads to an estimated coefficient of variation of 3.49 %. 
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Figure 4.2.1: Relationship between estimate of the size of a class and CV 
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Moreover, by applying the logarithm on both sides in (4.2.7), we get the following equivalent 

relationship: 

   )log(ˆvarRelog ' YYl   ,   (4.2.9) 

where    log'  . 

The model (4.2.9) has been used by the Australian Bureau of Statistics and by Statistics 

Canada. 

This is also applied by the GENESEES software for qualitative variables; hence it is used in 

all ISTAT surveys on households such as the Italian Labour Force Survey and the Italian 

Consumer Expenditure Survey. 

Use of log transformation is generally recommended as it tends to reduce the impact of 

extreme values on the model, thus making residuals more symmetric and homoscedastic 

(Johnson and King, 1987). 

Johnson and King (1987) also examined the effect of adding further variables to the variance 

model, particularly information about the ‘sign’ of the design effect (lower than 1/greater than 

1). They showed that inclusion of this new variable significantly improved the model. They 

also suggest measuring the goodness of fit of a model by comparing the actual and the 

predicted standard errors: they recommend evaluating the goodness of fit by the percentage of 

variances which are underestimated by more than 20 %. As underestimation is considered 

more serious than overestimation, they also recommend that underestimated observations be 

over-weighted. 

The GVF procedure has to be flexible enough to fit most of the commonly used sample 

strategies. Though this has interesting implications, there is no scientific evidence for this 

claim. For instance, weight calibration (Deville and Särndal, 1992) should not affect the 

model, although the procedure might result in extreme observations in terms of variance of 

the estimators. In order to fit a ‘good’ variance model, outliers should be deleted. An 

alternative is to weight the observations so as to reduce the influence of the most extreme 

ones, or to use log transformation (see model 4.2.9). 
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Some feasibility studies of GVFs in sample surveys can be found in Johnson and King (1987), 

Bieler and Williams (1990), Finamore (1999), Swanepoel and Stoker (2000), Cho et al 

(2002). 

Success of the GVF technique critically depends on the grouping of survey statistics, i.e. on 

whether all statistics within a group behave according to the same mathematical model 

(Wolter, 2007). According to equation (4.2.3), this means that all statistics within a group 

have to share the same Deff and the same planned sample size. For instance, the Current 

Population Survey (CPS) statistics have been divided into six groups, with GVF fitted 

independently to each of them (Wolter, 2007): 

o agricultural employment, 

o total or non-agricultural employment, 

o males only in total or non-agricultural employment, 

o females only in total or non-agricultural employment, 

o unemployment, 

o unemployment for black and other races. 

In general, the GVF procedure will only work if Deff  is the same for all statistics within a 

group. Each group should therefore include statistics coming from the same sample survey, 

regardless of the survey wave (unless sampling design has been modified from one wave to 

the next), and dealing with the same domain of interest (e.g. region, unemployed people). 

Another important requirement is that all statistics within a group be of the same type (total, 

means, ratios, etc.): the GVF method is ‘indicator-specific’. In fact, in most cases, GVFs deal 

with estimators of population and sub-population totals. Finally, it has to be borne in mind 

that country-specific variance models are needed for cross-national surveys, as sample 

selection procedures generally vary between countries.    

To justify the use of GVFs, Valliant (1987) introduced a class of super-population models for 

which relative variance has the same form as in (4.2.2). He also discussed the properties of 

Weighted Least Squares as a fitting methodology for the variance model. A condition for 

relative variance to be the same as in (4.2.2) occurs when the model-based variance can be 

expressed as a linear combination of the model-based mean and its square. This condition is 

satisfied in the ‘binary case’ (target variable is a dummy variable) and in the ‘Poisson’ case 

(model-based variance is equal to the mean).   

If we assume stratified two-stage sampling, then for a set V of survey statistics that follow the 

same model, we need further requirements from the predictive perspective: sub-populations 

should be evenly spread among clusters in the same stratum, and intra-cluster correlation 

coefficients should be approximately constant from one cluster to another within the same 

stratum. The latter two requirements may be difficult to satisfy with rare sub-populations and 

some care is therefore required with model (4.2.2) when applied to rare sub-populations. 

Valliant also proved the consistency of the GVF estimator when all statistics in group V 

provide the same values for the model parameters   and   and if consistent point estimators 

of the relative variance are used in estimating such parameters. Finally, an empirical study 

supports the choice of model (4.2.2), with model parameters estimated by Weighted Least 

Squares (WLS) when specific conditions hold (see Valliant, 1987). 

When it comes to quantitative variables, there is no analogous theory that supports the use of 

Generalised Variance Functions. However, the Italian Statistical Office (ISTAT) has used the 
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following relationship. Let Ŷ  be the estimator of the total Y  of a quantitative variable. Then 

we get: 

  2ˆ YYYV   .    (4.2.10) 

Note that variance of Ŷ  can be written as: 
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By using the relation:

 

 








 N

i

N

ii

ii

N

i

i

N

i

i yyyy
1

'

1

2

2

1

2 ,    (4.2.13) we get the following:  

 

  


















 

 

N

i

N

ii

ii yyAAY
N

N
DeffYV

1

'

2  2
)1(ˆ ,    (4.2.14) 
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Thus, under the assumption that Deff  is approximately constant for all estimators in V, we 

can formulate the following model: 

  u
Y

Yl 
2

ˆvarRe


 , (4.2.16) 

where u  designates an error term. Furthermore, in order to take into account  
 

N
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ii

ii yy
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'  it is 

possible to introduce a heteroscedasticity component in the model: 
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          ,...,1 .  (4.2.17) 

Hence Weighted Least Squares (WLS) has to be used when using this component 
2
  

  ,...,1 , or an estimate has to be provided, thereby increasing the computational burden 

of the method. 

It may therefore be preferable to adopt an empirical relationship that shows good fit, as in the 

model introduced above: 

  2ˆ ˆ ˆ     V Y Y Y u . (4.2.18) 
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An in-depth analysis of the fit is required in all cases. For qualitative variables we should 

check the Deff  associated with all variables to see if they can fit the model. And of course in 

the quantitative case, data analysis can suggest an alternative formulation for the appropriate 

GVF model, so a customary analysis of the model should be applied. 

The variance estimation software GENESEES, developed by ISTAT, contains a module for 

analysing models. This helps in selecting proper relationship between errors and estimates 

that need to be provided to data users together with the planned disseminated statistics 

(Pagliuca, 1995). For all household surveys, ISTAT produces annexes containing the 

estimated coefficients for models (differentiated by areas) and R
2
 (coefficients of 

determination) together with examples of target amounts (corresponding to specified 

proportions) and their respective coefficients of variation (percent). 

An example of the regression model as used to provide measures of associated variances can 

be found in the Labour Force Volume (in Italian) 

http://www.istat.it/dati/catalogo/20100217_00/forze_di_lavoro_media_2008.pdf. 

 

Replication methods  

Replication methods have already been described in the previous Section 3.3.  

Under the integrated approach, the advantage of using replicate weights is that a single 

formula can be used to calculate the standard error of many types of estimates. Contrary to the 

approach based on generalised variance functions, the use of replicate weights provides a 

direct way of computing standard errors. This specifically means that there is no longer the 

need for grouping statistics. Standard errors are estimated statistic-by-statistic from replicate 

weights. Direct variance estimates are often expected to be more accurate than ‘indirect’ ones 

based on variance functions, although they may be more inconvenient for some users to 

calculate since they require some extra programming and, more generally, technical 

assistance.
40

  

Many statistical bodies release files with replicate weights along with public use microdata 

files, thus enabling data users to perform variance calculations. For instance, the U.S. Census 

Bureau releases each fall a public use data file for the Current Population Survey (CPS) and a 

public use replicate weight file (U.S. Census Bureau, 2006). Similarly, several Statistics 

Canada surveys, like the Survey of Labour and Income Dynamics (SLID) and the National 

Population Health Survey (NPHS), provide bootstrap weights, or variants thereof, with their 

microdata for the purpose of variance estimation. 

Whatever the replication method used, calculating the variance of an estimator is done in a 

somewhat similar fashion, with only minor changes depending on the exact method used. 

Let ̂  be an estimator for a parameter  . The latter can have a linear or a more complex 

form. Broadly speaking, by using a given set of replicate weights, an estimate  ˆˆ V  of the 

variance of the estimator ̂  is given by (Eurostat, 2002; European Central Bank, 2010; 

Asparouhov and Muthén, 2010): 

   



A

a

aicCV
1

2

)()(
ˆˆ)ˆ(ˆ  ,    (4.2.19) 

                                                 
40 In addition to replicate weights, syntax files (under SAS and SPSS) may be provided to data users to help them with this 

issue. A quick user guide may also be desirable in this respect. 

http://www.istat.it/dati/catalogo/20100217_00/forze_di_lavoro_media_2008.pdf
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where 

)(
ˆ

a  is the weighted estimate of   based on the same formula as ̂ , obtained in replicate 

sample A , 

)(
ˆ
  is the mean of the A values )(

ˆ
a , 



c i and 



C  are method-specific constants, whose values are given in the following table, 

hn  is the number of sampled units in stratum h, and n is the sample size. 

Table 4.2.1 Replication methods 

Method 



C  



c i 

JK1 nn /)1(  ; AA /)1(   1 

JKn 1 
hh nn /)1(   

Bootstrap )1/(1 A  1 

BRR A/1  1 

RG )1(/1 AA  1 

 

Confidentiality issues may arise from the release of replicate weights with public use 

microdata files (Yung, 1997). A possible solution consists of averaging the bootstrap weights 

over a fixed number D  of bootstrap samples. Statistics Canada used this approach for many 

of its surveys (Phillips, 2004). For example, in the General Social Survey (GSS), Statistics 

Canada produced A=5000 bootstrap weight variables. These were then averaged in groups of 

size D=25 in order to obtain 200 mean bootstrap weights that accompany the microdata. 

Similarly, Statistics Canada’s Workplace and Employee Survey (WES) provides 100 mean 

bootstrap weights, each of which is the mean of D=50 bootstrap weights. 

Modifying the bootstrap variance estimator presented in (4.2.19), and taking A  instead of 

1A  as the denominator, we obtain the ‘mean bootstrap variance estimator’ as follows: 

  

a

a
BS A

D
V

2

)()(
ˆˆ)ˆ(ˆ  ,    (4.2.20) 

where each a
th

 mean bootstrap sample set of weights is equal to the means of D bootstrap 

weights. In this specification, the term )(
ˆ

a  is obtained using the a
th

 mean bootstrap weight 

variable as opposed to the standard bootstrap weight variable used in equation (4.2.19). 

An adjustment is made by inserting the integer D into the numerator of the variance estimator, 

which re-introduces the variability that had been removed by using an average weight. See 

Chowhan and Buckley (2005). 

Finally, the choice of method for the integrated approach should be made after the possible 

methods have been analysed under the criteria of applicability, accuracy and administrative 

considerations (Section 3.3). 
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Summary 

A generalised variance function (GVF) is a mathematical model that describes the 

relationship between a statistic (such as a population total) and its corresponding variance. 

Data producers can provide the parameters for a predefined set of GVFs (for a group of 

survey statistics) so that data users are then able to estimate the variance for any national and 

European statistic (from that group) they may be interested in. To determine parameters, data 

producers apply direct computations of variance (with analytical, linearisation, replication 

methods). Then, the parameters and the GVFs can be carried over from one data collection to 

another with similar features (by assuming that sampling design remains unchanged). 

Success of the GVF technique critically depends on the grouping of survey statistics, i.e. on 

whether or not all statistics within a group behave according to the same mathematical 

model. This means that design effect should be the same for all statistics within a group. All 

statistics should refer to the same domain of interest. The statistics within a group should be 

of the same type because the GVF method is indicator-specific. 

GVFs may be very useful and provide quick results when dealing with repeated surveys that 

produce short-term statistics (e.g. LFS quarterly surveys) since direct computations may 

provide variance estimates for the first wave of data, while GVFs based on first-wave results 

can be valuable instruments for estimating variances from the second wave onwards. 

A distinguishing feature of variance estimation based on GVFs is that the approach is mainly 

empirical, especially when it comes to quantitative variables. 

The GVF procedure should be flexible enough to fit most of the commonly used sample 

strategies; there is however no scientific evidence for this claim. 

Contrary to the approach based on generalised variance functions, the use of replicate weights 

in replication methods provides a direct way of computing standard errors. 

Direct variance estimates are often expected to be more accurate than ‘indirect’ ones based on 

variance functions, although they require some extra programming and technical assistance. 

The advantage of using replicate weights is that a single formula is used to calculate the 

standard error of different complex sampling designs and many types of indicators. 

Replication methods can deal with complex statistics, unlike the approach based on variance 

functions, which often deals with linear estimators. 

Confidentiality issues may arise from the release of replicate weights with public use 

microdata files. A possible solution consists of averaging the bootstrap weights over a fixed 

number of samples. 

The choice of method for the integrated approach should be made after the possible methods 

have been analysed under the criteria of applicability, accuracy and administrative 

considerations (Section 3.3). 
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5. Possible ways of assessing compliance with precision 
requirements 
 

Denisa Camelia Florescu and Jean-Marc Museux (Eurostat) 

 

This chapter sets out and explains the different approaches to assessing compliance with 

precision requirements from a Eurostat and NSI perspective. It underlines the need for 

tolerance and regular monitoring. It also introduces the metadata template (in Appendix 7.3) to 

support one of the approaches. 

The objective of compliance monitoring is to detect major failures of target objectives that are 

defined in the legal acts. 

Non-compliance can result from the following features: 

 a badly designed statistical instrument; 

 badly conducted survey operations (non-response, failure in editing system, low quality of 

micro records). 

Compliance monitoring should target these features, especially when their nature is liable to 

hamper ESS statistics quality by producing lower precision  at reporting domains 

(breakdowns) or a lack of comparability of indicators across countries. 

In addition, compliance monitoring requires a minimum degree of harmonisation of, for 

instance, methods for computing the actual standard errors. 

The essential features of compliance monitoring are: 

 transparency of procedure and predictability; 

 detection of major defects; 

 warning system that triggers correction measures; 

 assurance of overall output quality. 

A monitoring system should allow smooth handling of conjunctural (non-structural) defects. It 

should not lead to a continuous redesign of the system but should be part of a rolling review 

strategy. It should not be sensitive to changes in the estimated phenomena. 

Compliance monitoring is not an easy task because: 

 best/standard practices are not widespread and accepted with respect to variance 

estimation; 

 the way requirements are phrased in legal texts is not always clear-cut; 

 Eurostat does not have the resources to monitor compliance by taking on board all survey 

design specificities. 

The following three strategies for assessing compliance are possible: 

1. The first strategy consists of estimating output quality on the basis of closed and ad-hoc 

formulae whose parameters are frozen for a period of time.  

For instance, precision can be estimated on the basis of formulae under simple random 

sampling, by including a design effect that is specific to a country and to a class of 
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estimators. These parameters are evaluated at the beginning of the period by Eurostat and 

Member States according to best practices. The validity of the approximation should be 

tested on training data sets. 

The design effect can be: 

 estimated by NSIs and then reported to Eurostat; 

 estimated by Eurostat on the basis of the actual standard errors transmitted by 

countries for a limited list of indicators. 

However, estimating the design effect is a not straightforward task. Please see more 

details on design effect in Appendix 7.2. 

 

2. With regard to the second strategy, under the assumption that the standard errors are 

produced regularly and timely, for instance through quality reports, only systematic 

deviations should be traced. The actual precision of survey results can be used for 

assessment, i.e. by considering a design effect which changes in time. 

Compared to the first strategy, this second strategy for compliance assessment seems to be 

more feasible in that it addresses the actual design effect and not the expected one. 

NSIs use different methods and tools to compute precision estimates (decentralised 

approach, see Section 4.1), whereas Eurostat relies only on information provided by 

countries in their quality reports. 

Compliance monitoring plays a key role in ensuring that the precision reported by 

countries accords with the proper methodology (process). In relation to this, a metadata 

template (checklist) is recommended in Appendix 7.3. This requires NSIs to report on their 

national sampling designs, survey processes (e.g. non-response adjustment, imputation, 

calibration) and the variance estimation methods and tools used. The aim of the metadata 

template is to assess the soundness and appropriateness of the variance estimation 

method and tool, in relation to the sampling design used and the type of indicators (some 

related guidance being provided by the matrix in Appendix 7.4). The template also 

requires information on whether the effects of different procedures used in the survey 

process, e.g. non-response adjustment, imputation, calibration, have been accounted for 

in precision estimation. 

The metadata template was conceived to be as comprehensive as possible, so as to be 

relevant for several statistical domains. In order to use it as an element in a compliance 

assessment strategy for a specific statistical domain (survey), it should be adapted to the 

specific features of that domain. 

The following remarks concern the relationship between the metadata template and the 

standard for quality reports: 

o The standard for quality reports provides recommendations for preparation of 

comprehensive quality reports, for a full range of statistical processes and their 

outputs. There are six statistical processes, two of which are sample survey and 

census (Eurostat, 2009a). The metadata template is relevant to sample surveys and 

can be adapted for censuses. 

o The standard for quality reports requires information on relevance, accuracy, 

timeliness and punctuality, accessibility and clarity, coherence and comparability, 

user needs and perceptions, performance, cost and respondent burden etc. The 
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metadata template has a more restricted scope, i.e. the precision part of accuracy 

(the metadata template does not cover bias). 

o The metadata template collects information in a more structured, clear and detailed 

manner on issues like sampling design and variance estimation methods and tools, 

to feed into the previously specified objective. It is not always easy to understand 

the features of national sampling designs from quality reports, especially when the 

information provided is not structured and detailed. The metadata template helps to 

standardise the reporting of specific information. 

Eurostat coordinators for specific statistical domains/surveys may decide to detail the 

relevant part of the quality report according to the metadata template to ensure that NSIs 

do not report the same amount of information twice.   

 

3. National precision estimates can be computed centrally by Eurostat, through replication 

methods or generalised variance functions (see chapter 4 for more details). Using a 

common method to compute national precision estimates greatly facilitates compliance 

assessment. 

However, this strategy holds true only when a fully centralised or integrated approach to 

the estimation of standard errors has been set up (see Section 4.1). 

It is recommended that the compliance assessment strategy be based on the principles of 

transparency and tolerance. 

Transparency is needed on how an assessment is carried out, so that everybody can verify 

whether agreed procedures have been observed. Transparency concerns both NSIs and 

Eurostat. They should accurately provide each other with all relevant information. An 

explanation of all elements in the precision requirements should be made available, together 

with an explanation for why those choices were made. 

In addition, some tolerance should be accepted when comparing the estimated standard 

errors with benchmarks indicated in the precision requirements. Tolerance should be 

accepted for the following reasons: 

 the results produced by different, though suitable, methods may not perfectly match under 

a decentralised approach where NSIs use different variance estimation methods (which 

may use different degrees of approximation, and may account for different sources of 

variability); 

 what can be computed is not the ‘true’ standard error for a given estimate but only an 

estimated standard error, which in turn has its own variance. Thus, the estimated standard 

error can be higher than the true one (which is unknown); 

 the regulation may set up a threshold for estimating standard error, but the estimate 

depends on the value of the estimated percentage. Therefore, to be on the safe side and to 

ensure that NSIs avoid continuous adjustment of the survey design, some tolerance should 

be used to assess design efficiency in cases where the upper threshold is surpassed but the 

estimated percentage is, say, exceptionally high within the range 0 %-50 % (for instance 

when the estimated percentage of unemployed people in the working age population is 

exceptionally high). 

The requisite tolerance may be reflected either directly in the requirements or in the 

compliance assessment strategy. The LFS Group of Experts discussed the pros and cons of 

both approaches and agreed on the latter. The Group preferred to have a stricter rule in the 
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requirement. In fact, the former would in practice be perceived as a relaxation of the 

requirements, which may lead to requests to reduce the sample size of the LFS (Eurostat, 

2010d). 

A distinction should be made between occasional deviations and systematic deviations. The 

TF strongly recommends taking into account only systematic deviations and not occasional 

deviations when ruling on non-compliance. Whenever precision thresholds are repeatedly or 

systematically not met, countries should provide measures (e.g. for a better survey design) to 

improve the degree of compliance in/on subsequent survey waves/occasions. However, 

compliance assessment should focus on the design features of national surveys. Non-

compliance should arise from insufficient sample size, high non-response, ineffective 

stratification, systematic imbalances in the actual samples, etc. An increase in standard error 

arising only from the change in the value of the estimated percentage should not be 

considered as non-compliance. Likewise, a higher value of the estimated variance that arises 

because of the variability of the variance estimator should not be considered as non-

compliance. For example, let us consider a rotating panel survey with two-stage sampling 

design, where the primary sampling units are localities and the secondary sampling units are 

dwellings. Let us also consider that between successive waves, the part of the sample which is 

replaced consists of dwellings selected from the same localities (only the sample of dwellings 

is rotated). The sampling variance of an estimator from such a sample has two sources — the 

first-stage and the second-stage variance. Given that the sample of localities is stable over a 

long time, the contribution of the first-stage variance to the overall sampling variance is stable 

as well. If the sample of localities, because of an unlucky draw, causes the estimated variance 

of the first-stage to be higher than the true variance, even if the deviation is systematic, this 

deviation should not be considered as non-compliance. 

In the case of the LFS, the Group of Experts agreed that the compliance assessment strategy 

should be spelled out, jointly by Eurostat and NSIs, in a gentlemen’s agreement, as a means of 

ensuring that assessment is based on agreed rules and common understanding. Elements to be 

included in the gentlemen’s agreement are (Eurostat, 2010d): 

 reference to methods and tools for estimating variance for the different sampling designs. 

This is an element in ensuring that standard errors are correctly estimated. Some reference 

can be provided by the matrix on methods for variance estimation prepared by the DIME 

TF (Appendix 7.4); 

 information on the way standard errors are estimated. This is another element in ensuring 

that standard errors are correctly estimated. The metadata template (Appendix 7.3) 

prepared by the DIME TF (which should be adapted to the specific needs of the LFS) is to 

make it possible to assess whether standard errors are correctly estimated for a specific 

sampling design; 

 definition of the principle of tolerance and how it should be applied. This is crucial to 

determining when a country should be considered as non-compliant with the 

requirements. 

 

Summary 

The chapter reviews three strategies for assessing compliance: 

 fixed normative rules (closed and ad-hoc formulae whose parameters — e.g. design effect 

— are estimated once for a period of time) which are agreed in advance between NSIs and 

Eurostat. The shortcomings of this approach are that it may differ significantly from the 



 

 

Possible ways of assessing compliance with precision requirements 5 

Handbook on precision requirements and variance estimation for ESS household surveys 108 

actual precision (depending on progress over time and the quality of estimates) and that 

the design effect is not easy to calculate; 

 systematic deviations can be traced on the basis of information from quality reports. Use 

of the metadata template in Appendix 7.3 of the handbook is recommended when 

assessing whether the variance estimation method and tool used are appropriate in 

relation to sampling design and type of indicators. The purpose of the template is also to 

assess whether the effects of the different procedures used in the survey process, e.g. non-

response adjustment, imputation, calibration, have been accounted for in the estimation of 

precision; 

 national precision estimates are computed centrally by Eurostat, through replication 

methods or generalised variance functions (see chapter 4). 

It is recommended that the compliance assessment strategy be based on the principles of 

transparency and tolerance. Tolerance may be granted either directly in the requirements or 

in the compliance assessment strategy. The second approach may be preferred, as the former 

would in practice be perceived as a relaxation of the requirements, with a spurious effect such 

as an artificial reduction of sample size. 

The TF strongly recommends taking into account only systematic deviations and not 

occasional deviations when ruling on non-compliance. Non-compliance is characterised by 

precision thresholds that are repeatedly or systematically surpassed and should arise from 

insufficient sample size, high non-response, ineffective stratification, systematic unbalances in 

the actual samples, etc. An increase in standard error arising only from the change in the 

value of the estimated percentage should not be considered as non-compliance. Likewise, a 

higher value of the estimated variance that arises because of the variability of the variance 

estimator should not be considered as non-compliance. In the event of non-compliance, 

preference should be given to investigating the source of the increased variability and to 

taking measures to improve the degree of compliance in/on subsequent survey 

waves/occasions. 
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7. Appendix 
 

7.1 Glossary of statistical terms 

 

This glossary proposes definitions and related notations for technical terms that are closely 

linked with precision requirements and estimation, with a view to ensuring a common and 

clear understanding of the concepts. 

 

Population, survey variables, parameters and sample 

 

U  
Population (or universe) of the survey, for which estimates are wanted. 

The population U  is supposed to be finite and composed of N elements 

Nuuu 21,  which are clearly defined, identifiable and observable. 

For the sake of simplicity, we generally represent the element iu   with its 

numerical label i :      NuuuU N  2,1, 21  . 

hU  

 
In case of stratified sampling, subset of the population elements in stratum 

h  )2,1( Hh  . 

dU  Subset of the population elements in domain d  )2,1( Dd  . 

iy  Value taken by a variable of interest y  on population unit i  )2,1( Ni  . 

Broadly speaking, y  can be one-dimensional (scalar) or multi-dimensional 

(vector). 

  
A population parameter, that is, a quantitative measure of a population.   is 

a function f  of values Nyyy ,,, 21  :   Nyyyf ,,, 21  . 

s  
Sample, of size n , that is, a partial list of population units: 

 niiis 21 ,  

where niii 21,  are the labels of the n  sample units. For the sake of 

simplicity, we may identify the sample unit ji   with the numerical label j :   

   niiis n  2,1, 21  . 

A sample is said to be with replacement when population units may appear 

more than once in the sample, while a sample is said to be without 

replacement when population units may appear only once. 

A sample is selected from a population using either a so-called ‘probability’ 

sampling scheme (all population units have a known, fixed in advance, 

probability of being selected) or not. 
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0S  The set of all possible samples of the population. 

 sp  Probability for a sample s  to be selected. The probability distribution 

 0),( Ssspp  provides a probability-based description of the sampling 

design: this is a random mechanism which assigns the selection probability 

 sp  to a specific sample s  in 0S . 

For a given sampling design  .p , we can regard any sample s  as the 

outcome of a set-valued random variable S
~

, whose probability distribution 

is specified by the function  .p . Then, we have: 

   spsS 
~

Pr , for all s  in 0S . 

̂  
Estimator of the population parameter ̂ , that is, a function of the random 

set S
~

:  )
~

(ˆˆ S  . 

The term ‘statistic’ may also be used instead of estimator. An estimator is a 

stochastic variable in that it takes different values from one realisation of S
~

 

to another. 

s̂     
Value taken by the estimator ̂  on a realised sample s : this value provides 

an estimate (and not an estimator) of the parameter . 

A clear distinction should be made between an estimator, that is, a function 

of the random set S
~

 and an estimate, which is a particular outcome of the 

estimator: an estimator is a stochastic variable, while an estimate is a 

numerical value. 

However, for simplicity’s sake, an estimator is generally noted as a function 

of the sample s  (see previous). In fact, such a notation is not rigorously 

correct as s  is a particular realisation of the sample selection random 

mechanism, and not the mechanism itself. 

)ˆ(E   
Expected value of the estimator ̂ , that is, the average value over all 

possible samples: 

    s

Ss

spE  ˆˆ

0




 . 

nyyy 21,  
Values taken by the variable of interest  y  on sample units i  )2,1( ni  . 

i , ij  
i : First-order inclusion probability of i . This is the a priori probability for 

a population unit i  )2,1( Ni   to be selected in the sample. This is the 

sum of the selection probabilities of all samples which contain i : 

 






is

Ss

i sp
0



 

. 

ij : Second-order inclusion probability for selection of i  and j . This is the 
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a priori probability for population units i  and j  to be selected together in a 

sample. This is the sum of the selection probabilities of all samples which 

contain both i  and j : 

 






jis

Ss
i j sp

&

0

 . 

id
 

Design weight of i , that is, the inverse probability of selection i . 

iw  Sampling weight of i . In general, sampling weights arise from adjusting the 

design weights for total non-response and possibly calibrating them to 

external data sources. 

Sampling weights are used to draw inference from sample s  to the target 

population U . For example, a standard estimator of the population total Y  
of variable y  is given by: 

  



n

i

ii yws
1

̂ . 

HT̂  The Horvitz-Thompson estimator, defined as: 





n

i i

i
HT

y

1

ˆ


 . 

Assuming full response to the survey, HT̂  provides a design-unbiased 

estimator of the population total of y , in the sense that: 

  



N

i

iHT yE
1

̂  . 

w̂  A linear estimator, that is, a weighted sum of the sample values: 





n

i

iiw yw
1

̂ , 

where iw  is the sampling weight of i . w̂  provides an estimator of the 

population total of y . 

2

yS  Dispersion of the variable of interest y  over the population U : 

 






N

i

i Yy
N

S
1

22

1

1
, 

where Y   designates the population mean of y : 



N

i

iy
N

Y
1

1
. 

2

ys  Dispersion of the variable of interest y  over the sample s , of size n : 
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 






n

i

i yy
n

s
1

22

1

1
, 

where  y  designates the sample mean of y : 



n

i

iy
n

y
1

1
. 

2

ys  provides an unbiased estimate of the population dispersion 2

yS  under 

simple random sampling. 

*  Intra-cluster correlation coefficient. It measures the degree to which 

members of a cluster resemble each other. Members of a cluster resemble 

each other more than elements of the population in general. When the intra-

cluster correlation coefficient for a variable in a population is large, it may 

be necessary to select a much larger sample of elements and clusters. 

Mathematically, let the population consist of N elements, grouped into 

M clusters, with cluster Mii ,,2,1   ,  , consisting of iN  elements. 

Moreover, let Y  be the population mean of the variable of interest and iY  

be the corresponding mean of the elements of cluster i . * is given by: 

2

2
* 1

y

W

S

S
 ,   

where  
 





M

i

N

j

iijW

i

Yy
MN

S
1 1

22 1
 denotes the variance within clusters 

and  
 





M

i

N

j

ijy

i

Yy
N

S
1 1

22

1

1
 the total population variance. 

 
 

Sampling designs 

 

Simple 

random 

sampling 

without 

replacement 

of size n  

Every sample of size n  receives the same probability of being selected: 

 


















otherwise      

 n   sizeof is  sif   
n

N

sp

0

1  

Simple 

random 

sampling with 

replacement 

of size n  

Ordered design that gives the same selection probability 
nN1  to every 

ordered sample of size n : 

    




 


otherwise      0

  n m if  1/N
iiipsp

n

m21,  

Stratified 

simple 

random 

sampling 

The population U  is divided into H   non-overlapping parts 
HUUU 21,  

called strata, of sizes 














NNNNN
H

h

hH

1

21,  . Then a simple random 



 

 

Appendix 7 

Handbook on precision requirements and variance estimation for ESS household surveys 124 

sample hs  without replacement of size hn  is selected in each stratum h . 

The selections are assumed to be independent: 

 


















otherwise      

 n  sizeof is  sif   
n

N

sp hh

h

h

h

0

1  

Proportional-

to-size (ps) 

sampling of 

size n  

In ps sampling, a sample of size n  is selected without replacement so that 

the first-order inclusion probability i  of a unit i  is proportional to an 

auxiliary variable ix : 


U

iii xnx . 

ps sampling generally leads to more accurate estimators if the auxiliary 

variable ix  is correlated with what the survey intends to measure. 

Systematic 

sampling of 

size n  with 

equal 

probabilities 

The units in the population are numbered in some order. To select a sample 

of n  units, we select a unit at random from the first k  units and every k
th

 

unit thereafter. For instance, if k  is 15 and if the first unit drawn is 13, the 

subsequent units are numbers 28, 43, 58 and so on. In fact, the selection of 

the first unit determines the whole sample. 

Systematic 

sampling with 

unequal 

probabilities 

Generalisation of the above to accommodate unequal probabilities of 

selection. 

Single-stage 

cluster 

sampling 

The population U  is divided into M  non-overlapping parts 
MUUU 21, , 

called clusters. A random sample of m  clusters is selected and then all 

eligible units in the selected clusters are interviewed.    

If the elements from a cluster tend to be similar to each other with respect to 

the main survey target characteristics (more homogeneity), cluster sampling 

will be less accurate (i.e. result in higher sampling errors) than simple 

random sampling of the same size. 

Indirect 

cluster 

sampling 

A sample of clusters is obtained from a sample of other units. For example, 

a sample of individuals is selected from a population register and then a 

sample of households is obtained by taking all the households having at 

least one of their current members in the original sample of individuals. 

Multi-stage 

element 

sampling 

Multi-stage sampling refers to sampling designs in which the population 

units are hierarchically arranged and the sample is selected in stages 

corresponding to the levels of the hierarchy. The sampling units for the 

different stages are different. Sampling units are selected in various stages 

but only the last sample of units is studied.  

Two-stage 

element 

sampling 

This is a particular case of a multi-stage element sampling, when there are 

two sampling stages. 

The population is first grouped into disjoint sub-populations, called Primary 
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Sampling Units (PSUs). A random sample of PSUs is drawn (first-stage 

sampling). In the second stage, a random sample of Secondary Sampling 

Units (SSUs) is drawn from each PSU in the first-stage sample.     

Multi-phase 

sampling 
Multi-phase sampling refers to sampling designs in which the same type of 

sampling unit (e.g. individuals) is sampled multiple times. In the first phase, 

a sample of units is selected and every unit is measured on some variable. 

Then, in a subsequent phase, a subsample of units of the same type is 

selected only from those units selected in the first phase and not from the 

entire population. The sample of units selected in each phase is adequately 

studied before another sample is drawn from it. Sampling information may 

be collected at the subsequent phase at a later time, and in this event, 

information obtained on all sampled units of the previous phase may be 

used, if this appears advantageous. 

Multi-stage sampling is a particular case of multi-phase sampling arising by 

imposing the requirements for invariance and independence of the second 

phase designs. See Särndal et al (1992), Section 4.3.1.   

Two-phase 

sampling 
This is a particular case of a multi-phase element sampling, when there are 

two sampling phases. 

Two-phase sampling is sometimes called ‘double sampling’.  

 

Survey errors 

 

Sampling 

errors 
Sampling error is a measure of the variability between estimates from 

different samples, which disregards any variable errors and biases that result 

from the measurement and sample implementation process. Sampling error 

occurs only in surveys based on samples. 

Of course, sampling error represents only one component of the total survey 

error. For estimates based on small samples, this component may be the 

dominant one. In other situations, non-sampling errors may be much more 

important. 

Non-sampling 

errors 
Non-sampling errors are errors in the estimates which cannot be attributed 

to sampling fluctuations. 

Non-sampling errors may be categorised as: 

- coverage errors; 

- non-response errors; 

- measurement errors; 

- processing errors; 

- model assumption errors. 

Non-sampling errors occur in sample surveys and also in censuses. 

Non-sampling errors can be random and systematic. Random non-sampling 

errors are a source of variability in estimates and should be taken into 

account when estimating total variance. Systematic non-sampling errors are 
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a source of bias in estimates. 

Non-response 

errors 
Non-response refers to the failure to obtain a measurement on one or more 

study variables for one or more sample units. When a whole unit is missed, 

we have unit non-response. When a unit is included but information on 

some items for it is missed, we have item non-response. Non-response 

causes an increase in variance due to decreased effective sample size and/or 

due to weighting and imputation introduced to control its impact. More 

importantly, it causes bias in so far as non-respondents are selective with 

respect to the characteristic being measured.  

Coverage 

(frame) errors 
Coverage errors arise from discrepancies between target and frame 

populations, and also from errors in selecting the sample from the frame. 

The condition of ‘probability sampling’ is violated if: (a) the survey 

population is not fully and correctly represented in the sampling frame; (b) 

the selection of units from the frame into the sample is not random with 

known non-zero probabilities for all units; or (c) not all units selected into 

the sample are successfully enumerated.  

Measurement 

errors 
These arise from the fact that what is measured about the units included in 

the survey can depart from the actual (true) values for those units. These 

errors concern accuracy of measurement at the level of individual units 

enumerated in the survey, and centre on the substantive content of the 

survey: definition of survey objectives and questions, ability and 

willingness of the respondent to provide information sought and quality of 

data collection, recording and processing. This group of errors can be 

studied in relation to various stages of the survey operation. 

Processing 

errors 
Processing errors are of the same nature as measurement errors. Possible 

sources of processing errors are data entry, data editing (checks and 

corrections) or coding. 

Model 

assumption 

errors 

Errors that occur with use of methods such as model-based (model-

dependent) estimation, benchmarking, seasonal adjustment, forecasting and 

other methods that rely on assumptions that the model holds.  

 

 

Precision measures, their estimators and specific estimates 

 

The delineation between these concepts relies on contributions made by Martin Axelson, Kari 

Djerf, Mārtiņš Liberts, Ioannis Nikolaidis and Guillaume Osier. 

 

Precision 

 

 
The amount of random error in the estimation. It is measured by variance 

and other precision measures derived from variance. 
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Variance 

 

)ˆ(V  
The variance of the estimator ̂ , that measures the expected variability of ̂  

over all possible samples s , is given by: 

          222 ˆˆˆˆˆ

0

 EEEspV
Ss

s 


. 

 

It incorporates sampling variability (sampling errors) and (random) 

variability from non-sampling errors. 

)ˆ(ˆ V  
Estimator of the variance )ˆ(V , is a function of the random set S

~
. 

)ˆ(ˆ sV  
Value taken by estimator )ˆ(ˆ V  on a specific sample s : this value provides 

an estimate (and is not an estimator) of the variance )ˆ(V : 

    sVVs  ˆˆˆˆ  . 

)ˆ(ˆ sV  is a numerical value (having no variance), while )ˆ(ˆ V  (the estimator) 

is a function of the random set S
~

. 

 

Standard error  
    

)ˆ(SE  
Standard error of the estimator ̂ , defined as the square root of the variance: 

  ˆ)ˆ( VSE  . 

It incorporates sampling variability (sampling errors) and (random) 

variability from non-sampling errors. 

)ˆ(
^

SE  Estimator of standard error )ˆ(SE , is a function of the random set S
~

. 

)ˆ(
^

sSE  Value taken by estimator )ˆ(
^

SE  on a specific sample s : this value provides 

an estimate (and is not an estimator) of standard error )ˆ(SE . )ˆ(
^

sSE  is 

one single numerical value which does not vary; as the variance of )ˆ(
^

sSE  

is zero, one should avoid formulations like: ‘the variance of )ˆ(
^

sSE ’ or ‘the 

variance of the estimate’. 

)ˆ(ˆ)ˆ(
^

 ss VSE  . 

Unlike coefficient of variation (see below), the estimate of standard error is 

often not quite useful for comparing precision between estimates with 

different measurement units or widely different means, without additional 

specification of the estimate. 
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Coefficient of variation 

 

)ˆ(CV  
Coefficient of variation of the estimator ̂ . 

Measure of the expected variability of ̂ , over all possible outcomes of ̂  

based on all possible samples. 

A parameter in itself. 

The ratio of the standard error of the estimator ̂  to its expected value. 

A traditional quality indicator. 

)ˆ(
^

CV  Estimator for )ˆ(CV . 

)ˆ(
^

sCV  Value taken by the estimator )ˆ(
^

CV  on a specific sample s : this value 

provides an estimate (and is not an estimator) of the coefficient of variation 

)ˆ(CV . )ˆ(
^

sCV  is one single numerical value which does not vary; as the 

variance of )ˆ(
^

sCV  is zero, one should avoid formulations like: ‘the 

variance of )ˆ(
^

sCV ’ or ‘the variance of the estimate’. 

100
ˆ

)ˆ(
100

ˆ

)ˆ(
)ˆ(

^^

^



s

s

s

s
s

VSE
CV








 . 

It is a dimensionless number and allows comparison of precision between 

estimates with different measurement units or widely different means. It also 

allows drawing conclusions on precision of estimates, without necessarily 

looking at the estimates. 

However, one should be careful when the estimate is close to zero or 

binomial or multinomial. In the latter cases, the coefficient of variation 

depends on the value of the estimate, and hence is high for low values of the 

estimate (i.e. close to 0 in binomial (0,1) case) and low for high values of the 

estimate (i.e. close to 1, respectively). 

 

Using the data set of a specific sample s , specific estimates for the following precision 

measures can be derived: 

 

Confidence interval 

 

CI 
The random interval, which is likely to contain the unknown true value of a 

population parameter. The wider the confidence interval, the lower the 

precision (under a fixed confidence level). If a large number of independent 

samples tending to infinity are taken repeatedly from the same population, 

and a confidence interval is calculated from each sample, then a certain 

percentage (close to the chosen confidence level) of the intervals will 

contain the unknown true value of a population parameter. Confidence 
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intervals are usually calculated so that this percentage is close to 95 %, but 

we can produce confidence intervals with 90 %, 99 %, 99.9 % (or other) 

confidence levels for the unknown parameter: 

     
















 ˆˆ,ˆˆˆ

^

2
1

^

2
1

^

sassass SEzSEzCI , where: 

  
the confidence level; 

2
1

az


 
the quantile value at 

2
1


 of the standard normal distribution; could be 

replaced by 
2

1,1


n
t  (the quantile of t  distribution at 

2
1


  with 1n  degrees 

of freedom) for small sample sizes to improve the coverage rate of 

confidence interval (Särndal et al, 1992, p. 281). 

 

Absolute margin of error 

 

d  The ‘radius’ (or half of the width) of the confidence interval: 

 ̂
^

2
1

sa SEzd


 . 

Like confidence intervals, the absolute margin of error can be defined for 

any desired confidence level, but usually a level of 90 %, 95 %, 99 % or 

99.9 % is chosen (typically 95 %). 

 

Relative margin of error 

 

%d  
The absolute margin of error as a percent of the estimate: 

 
100

ˆ

ˆ

%

^

2
1




s

sa SEz

d




. 

For example, if the estimate is equal to 50 percentage points, and the statistic 

has a confidence interval ‘radius’ of 5 percentage points, then the absolute 

margin of error is 5 percentage points. 

The relative margin of error is 10 % (because 5 percentage points are ten 

percent of 50 percentage points). Often, however, the distinction is not 

explicitly made, yet usually is apparent from the context. 

Just like in the case of confidence intervals, the relative margin of error can 

be defined for any desired confidence level, but usually a level of 90 %, 

95 %, 99 % or 99.9 % is chosen (typically 95 %). 
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Mathematically, all the above-mentioned precision measures hold the same information about 

precision. If we know the values of s̂ , 
2

1
az


 and any of the precision measures, we can 

compute all other precision measures (except if s̂  =0). 

 

Other terms used in practice are relative standard error and percentage standard error. 

Relative 

variance 

This is the square of the coefficient of variation, according to the glossary 

of statistical terms of the International Statistical Institute. 

Relative 

standard 

error  

The glossary of statistical terms of the International Statistical Institute 

considers the term relative variance as synonym for square of the 

coefficient of variation (see previous). Thus, relative standard of error 

becomes an equivalent term for coefficient of variation.  

Percentage 

standard 

error 

The same glossary mentioned above specifies that the term percentage 

standard deviation is the coefficient of variation. Therefore, percentage 

standard error should be understood as coefficient of variation or relative 

standard error (see above). 

 

7.2 Design effect 

 

This section relies on contributions from Loredana Di Consiglio, Stefano Falorsi and 

Guillaume Osier. 

The concept of design effect was first introduced by Kish (1965) in order to measure the gain 

or loss of sampling efficiency resulting from the use of a ‘complex’ design. Basically, a 

complex design is any design which significantly differs from simple random sampling 

(Ganninger, 2009). This happens when units are selected with unequal probabilities, or when 

sampling design includes several stages. 

The effect of these complexities on sample accuracy is well known. For example, a cluster 

sample is generally less accurate (i.e. has more sampling errors) than a simple random sample 

of the same size. The reason is that units in a cluster generally tend to be similar to each other 

with regard to survey characteristics. As a result, collecting information from the same cluster 

would cause a loss of sample accuracy compared to collecting information from units selected 

independently from the whole population. Although the design efficiency of a multi-stage 

cluster sample is generally lower than for a simple random sample of the same size, multi-

stage samples have other advantages in terms of economy and operational efficiency that 

make them the commonly used samples in practice. 

The design effect Deff  is the ratio of the variance of an estimator ̂  under the actual 

sampling design to the variance that would have been obtained from a hypothetical simple 

random sample without replacement of the same size: 

)θ(V

)θV(
Deff

*
SRSWOR

ˆ

ˆ
  .         (7.2.1) 
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*̂  is an ‘equivalent’ estimator of   under simple random sampling without replacement. 

Deff compares two strategies. One consists of a sampling design, that is, a probability 

distribution   0, Sssp   over all possible samples, and an estimator ̂  of the population 

parameter  . The formula (7.2.1) compares the strategy consisting of the actual sampling 

design and the estimator ̂  with another consisting of simple random sampling without 

replacement of same size and the estimator *̂ . The latter raises an issue regarding the 

denominator of (7.2.1) as, in theory, there is more than one possible estimator 
*̂  of   under 

simple random sampling. However, according to Gabler et al (2003), the estimator *̂  should 

be chosen as ‘equivalent’ to the estimator used for the numerator ̂ , that is, it should have 

the same structure. The estimator *̂  at the denominator is different, for instance, for linear 

statistics and ratio type statistics. 

When   is a linear parameter, for instance, the population total of a variable y : 

      



N

i

i

Ui

i yyY
1

 ,      (7.2.2) 

then a linear estimator of   is given by the weighted sum of the sample values of the variable 

y . The ‘equivalent’ linear estimator that would be obtained under simple random sampling 

without replacement and of size n  is given by: 

       yN*̂ ,       (7.2.3) 

where N  is the size (number of elements) of the population, and y  is the sample mean of y . 

Therefore, Deff  can be written as: 

       
 
 

 
  nSfN

V

yNV

V
Deff

ySRSWOR

22 1

ˆˆ





 ,         (7.2.4) 

where Nnf   is the sampling rate, f1  is called the finite population correction (Cochran, 

1977). 

For stratified simple random sampling with proportional allocation, the design effect is given 

by (Cochran, 1977): 

  










H

h

hh

H

h

hh

H

h

hh

SNYYN

SN

Deff

1

2

1

2

1

2

,   (7.2.5) 

where hN  is the size (number of elements) of the population in stratum h , 



Y h  and 2

hS  are the 

population mean and variance respectively of stratum h , and Y is the overall population 

mean. It is clear that Deff is approximately the share of within-stratum variance in total 

variance. So the more homogenous the strata, the more efficient stratified SRS is to 

SRSWOR. 

In the case of simple random sampling with non-response, the conditional variance of the 

estimator of Y  given the number Rn  of respondents is (Lohr, 1999): 
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 
R

yR
R

n

S

N

n
NnYV

2

2 1|ˆ 







 .    (7.2.6) 

The unconditional variance, i.e. after averaging over Rn , contains additional terms of order 

2

1

Rn
 . Therefore the design effect is approximately: 

N

n
N

n

n

n
Deff

R

R 





1

1

       (7.2.7) 

and if the sampling fraction is small, then   1
rate response




Rn

n
Deff . 

Therefore the smaller the response rate, the larger the design effect. 

Let us assume now that   is a non-linear parameter — for instance, the ratio of the 

population totals of two variables y  and x  . The most common way to estimate   is to 

estimate the totals of y  and x   individually using a linear formula, and then take the ratio of 

the two estimators as an estimator of   (Särndal et al, 1992). 

Under simple random sampling, this leads to an estimator 
*̂  which can be expressed as the 

ratio of the sample means y  and x  of y  and x , respectively: 

x

y
*̂  . (7.2.8) 

The variance of 
*̂  under simple random sampling without replacement of size n  can be 

calculated by the Taylor linearisation technique (Wolter, 2007): 

    nSfN
x

y
VV USRSWORSRSWOR

22* 1ˆ 







  ,       (7.2.9) 

where 





N

i

iU u
N

S
1

22

1

1
 and   iii xy

X
u 

1
. 

According to Lehtonen and Pahkinen (1996), the reference design to which we compare the 

actual one can be simple random sampling with or without replacement. For simple random 

sampling with replacement, and assuming that the estimator ̂  has a linear form, the design 

effect can be written as: 

 
 

 
nN

V

V

V
Deff

ySRS

22*

ˆ

ˆ

ˆ








 ,     (7.2.10) 

where  



N

i

iy Yy
N 1

22 1
 . 
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2

y  is an alternative measure of the dispersion of the variable of interest y  over the reference 

population U . Assuming that Nyyy ,,, 21   are independent realisations of random variables 

with the same mean and variance (‘super-population’ model), the use of N  in the 

denominator (rather than 1N ) makes 
2  slightly biased as an estimator of variance. 

When the population size N  is large enough we have: 
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. (7.2.11) 

Therefore, (7.2.10) and (7.2.4) lead to almost the same results. In practice, however, we 

recommend using (7.2.4) as this Deff is not affected by population size. 

We usually refer to the square root of Deff as Deft. This is the ratio of standard errors between 

two strategies: an actual one and a hypothetical one that consists of simple random sampling 

without replacement and of the same size. Verma (1982) proposed that Deff  be referred to as 

‘design effect’ and Deft as ‘design factor’, though Lê and Verma (1997) noted that this 

proposal has not been widely adopted. Kish (1995) used ‘design effect’ as a generic term to 

encompass not only both Deff and Deft, but also more general concepts in relation to the 

effect that a design might have on accuracy. It is also possible to define Deff as a ratio of 

Mean Square Errors (MSEs) rather than variances. 

Kish (1995) pointed out that design effects are only tools, rather than a theory or even a 

method. However, since its first introduction, Deff has been used extensively in the field of 

survey sampling, at both design and analysis stages. According to Gabler et al (2003), the 

primary use of these tools is to convey information about survey design. For this, we need 

somehow to estimate (predict) the likely design effects. 

A model-based design effect may be used for this purpose. In general, for a multi-stage 

cluster sampling design, Deff can be predicted directly as follows:   
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 ,     (7.2.12) (Gabler et al, 1999) 

where 

l = weighting class  Ll 1 , 

ln  = number of sample observations in weighting class l , 

* = intra-cluster correlation coefficient (see Appendix 7.1), 

b = mean number of sample observations per cluster, 



n nlwl

2

l1

L

 nlwl

l1

L












2












 Deff

^

w
ˆ   is the design effect due to unequal weighting, 



1 b 1   Deff
^

c
ˆ    is the design effect due to clustering. 

The above formula (7.2.12) expresses the overall design effect as a product of the design 

effect due to unequal weighting and the design effect due to clustering. Ganninger (2006) 
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presents the calculation of the design effect due to unequal weighting and of the design effect 

due to clustering and illustrates it by numerical examples. Calculation of the design effect due 

to unequal weighting requires the inclusion probabilities of each sampling unit to be known at 

every sampling stage. On the other hand, calculation of the design effect due to clustering is 

based on the above model-based estimator, which needs data on average cluster size (or, if 

cluster size shows great variation, then an alternative measure of size is used) and on the intra-

cluster correlation coefficient, which requires the selection of specific core variables. 

Basically, the design effect due to clustering depends on: 

 the variable under study, i.e. the same sampling design may lead to different design effects 

that depend on the degree of autocorrelation or similarities of units within a cluster, as 

measured by the intra-cluster correlation coefficient * . We can even imagine some 

extreme cases where *  is positive with respect to one variable, thus leading to a 

Deff with a value higher than 1, and negative for another variable, so that Deff would be 

less than 1. Values of design effect can differ greatly across variables and sub-populations 

within the same survey (Eurostat, 2010a); 

 the mean number of sample observations b  per cluster. 

The formula (7.2.12) does not take into account the effect of stratification on accuracy. 

However, in most cases, stratification improves the accuracy, so not taking it into account 

would result in a more conservative estimator. This might turn out to be a problem, though, 

when we oversample certain small sub-populations, as the overall accuracy might deteriorate. 

However, loss of accuracy is generally limited. 

If we consider the value of autocorrelation of the main variables of interest as transferrable 

information, then using formula (7.2.12) makes it easy to derive the design effect associated 

with a given cluster design structure, and consequently permits us to calculate the variance for 

the estimator for the new sampling strategy. 

With a view to calculating the design effect for general multi-stage sampling designs with 

stratification of primary sampling units and selection of units at different stages with 

probability proportional to size without replacement (pswor) mostly adopted in large scale 

surveys, it is not unusual to consider just the variability between primary sampling units 

(PSUs). This choice is based on the hypothesis of selecting PSUs with probability 

proportional to size and with replacement (pswr). This means that simple estimation 

formulae for sampling variances that do not involve the second-order inclusion probabilities 

between PSUs can be applied in this simplified framework. Each stratified multi-stage 

sampling design can be approximated with a pswr selection in each stratum, whereby PSUs 

are considered as ultimate clusters, i.e. the aggregate of all elementary units selected from the 

same PSU. Therefore, all second, third and successive stage units selected from the PSU are 

treated as a single unit (Särndal et al, 1992). 

Then, in this simplified but general multi-stage sampling context in which larger PSUs are 

certainly selected, let us denote h  as a generic stratum, with srH  as the total number of self-

representing
41

 (sr) strata, nsrH  as the total number of non self-representing (nrs) strata and 

H as the overall number of strata. Index i  will then denote a generic PSU, where for stratum 

h , hN  and hn   represent population and sample size of PSUs in the strata, being for sr strata 

1 hh nN , while index j  denotes a generic elementary unit. For stratum h : 

                                                 
41 Strata in which no sub-sampling takes place at the first stage. 
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where hisr,M , hisr,m , hinsr,M  and hinsr,m  are the population and sample sizes of elementary 

units clustered in the i -th PSU of stratum h  for sr and nsr respectively. 

If the same number of elementary units in each PSU is selected and under the hypothesis that 
22

, SS hsr   for 
srHh ,,1  and 

22
, SS hnsr  for nsrHh ,,1 , then the design effect 

depends on the intra-class correlation coefficients hsr,  and hnsr, for sr and nsr. It is given 

by: 
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where hsr,m
 
and hnsr,m  are the mean number of elementary units at PSU level for the h

th
 

stratum in sr and in nsr domain. In large scale surveys, the design effect takes into account the 

impact of non-response. If we denote   as the overall response rate and h  as the h
th

 stratum 

response rate, then the design effect formula is given by: 
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  (7.2.14). 

The expression )ˆ(
^

YDeff  depends on some known quantities that are related to the planned 

sampling design, i.e. hnsrhsrhnsrhnsrhsrhsr mmMmMm m, ,,,,,, and,,,, , and on some parameters 

that are unknown in the planning stage and which depend on the characteristics of the target 

population, i.e. hsr,  and hnsr,  , and on the response rates, i.e.   and h , for  )ˆ(
^

YDeff  . 

Under the hypothesis that the values of these unknown quantities are stable over time, these 

can be estimated using data from previous surveys. For this reason, the difference between 

estimates and actual values should be evaluated once the survey has been carried out. 

Nikolaidis (2008) specifies that the design effect measures the impact of the sampling design 

(clustering, stratification) and unequal selection probabilities (random weighting) on the 

variance of estimates. Park and Lee (2004) mention that Kish (1965) considered cases where 

the unequal weights arise from ‘haphazard’ or ‘random’ sources such as frame problems or 

non-response adjustments. Kish (1987) proposes a decomposition model of the overall design 

effect as a product of two individual components — clustering and unequal weighting — 

while Park et al (2003) consider a three-factor decomposition model. 

Such prediction has to be distinguished from estimating the design effect subsequent to a 

survey, on the basis of data collected. In that case, the survey data can be used to input 
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information into the model. Often, the model is entirely discarded and a design-based estimate 

of the design effect is calculated. 

A design-based estimation of the design effect relies on separate calculations of the 

numerator and the denominator. Standard methods can provide a design-based estimator of 

the numerator, that is, the variance under the actual sampling design. 

When it comes to estimating the variance that would be obtained under simple random 

sampling without replacement with the same sample size n , a common mistake is to apply 

the classical variance estimator under simple random sampling: 

   
n

s
fNVSRSWOR

2
2* 1ˆˆ  ,     (7.2.15) 

where 2s  refers to the sample variance of the study variable
42

 and Nnf   is the sampling 

rate. The problem with (7.2.15) is that the formula provides a design-unbiased estimator of the 

variance under simple random sampling only when the sample is a simple random one. In line 

with Gabler et al (2003), if the sample units had unequal inclusion probabilities (e.g. with 

disproportionate stratification), then (7.2.15) could no longer be applied as it would lead to 

biased estimators of the variance under simple random sampling, that is, the denominator of 

Deff . Although the denominator of Deff  accounts for the variance under simple random 

sampling, it generally has to be estimated from a sample, which may be far from a simple 

random one. 

However, when the sample is self-weighted, that is, all units in the population have the same 

probability of selection (e.g. stratified sampling with proportional allocation), then (7.2.15) 

still provides a consistent and asymptotically unbiased estimator of the variance (Ardilly and 

Tillé, 2005). When sample units have unequal selection probabilities, the following should be 

used (Ardilly and Osier, 2007): 
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where 
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y = weighted sample mean of the study variable. 

When the size of population is large enough, (7.2.16) leads to an almost unbiased estimator of 

the variance under simple random sampling. (7.2.16) is used in the POULPE variance 

estimation software, developed by the French NSI (INSEE), in order to yield Deff  estimates. 

The formula is valid even for multi-phase sampling. For more information, see Ardilly and 

Osier (2007). While this is easy to implement for means and totals, it is difficult to find the 

right formula for the denominator of the design effect for any other type of estimate, e.g. 

ratios, regression coefficients and difference of proportions. 

                                                 
42 If the estimator is not linear, the study variable is replaced by the ‘linearised’ variable, that is, the variable which results from a 

linear approximation of the estimator (Osier, 2009). 
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In the design effect formula, the variance at the denominator should be calculated in the same 

units (individuals or households) as for the variance at the numerator in household surveys. 

This is done for those sampling units which are relevant for statistics (e.g. in the LFS: 

unemployment indicators for individuals and job-related indicators for households). 

Di Consiglio and Falorsi (2010) introduced the concept of the estimator effect, which seeks 

to measure the efficiency of an estimator with respect to the Horvitz-Thompson estimator. For 

example, calibration estimators (Deville and Särndal, 1992) are often used in practice to deal 

with unit non-response, thereby increasing sample efficiency (reducing standard errors), or for 

coherence purposes with external sources. 

Consider an estimator ̂  of a parameter  . Let us assume that ̂  is a linear estimator, that is, 

a weighted sum of the sample values. The extension to non-linear estimators can be achieved 

by linearisation (Osier, 2009). Basically, the estimator effect of ̂  is the ratio between its 

variance under the actual sampling design and the variance of the Horvitz-Thompson 

estimator HT̂  under the same sampling design. It measures the increase (or decrease) in 

efficiency obtained with the proposed final estimator: 
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To obtain a better evaluation of the actual variance with the proposed sampling strategy, we 

also need to estimate the effect of using a different estimator. Based on (7.2.17), the overall 

design effect can be written as: 
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(7.2.18)
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is the estimator effect of θ̂ . 
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Deff   is the sampling design effect, that is, the effect of sampling features 

(stratification, unequal weighting, clustering) on accuracy.
 

If successive waves of the same survey use the same auxiliary variables for calibration and if 

between these waves the relationship between the auxiliary variables and the target variable 

remains constant, then we can also suppose the estimator effect to be constant over the 

successive waves, and so we are able to apply a previously estimated value. After the survey 

wave is carried out, we can check whether the estimated estimator effect based on the new 

sample data is close to the assumed (previous) value, and correct the assumed value if 

necessary. 

Liberts (2012) disaggregated Deff into three components, 1 2 3  Deff Deff Deff Deff  with 

1Deff and 2Deff as before and 

)1)(1(

1
^^3

rr NROC

Deff



 to represent the effect of non-

sampling errors (such as non-response and over-coverage).  3Deff  is always greater than 1, 

because non-sampling errors are unavoidable. In the last equation, rOC
^

 is the expected 
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unweighted over-coverage rate (Eurostat, 2010e, p.5) and rNR
^

 the expected unweighted non-

response rate (Eurostat, 2010e, p.8). 

Measurement and processing errors also affect Deff but it is difficult to quantify their impact. 

Moreover, processing errors are unlikely to be clustered, so they may reduce the Deff , 

whereas coverage errors may be clustered, so they may increase the Deff . 

In the European Social Survey, design effects are mainly used to calculate the minimum 

required sample size. The European Social Survey requires a minimum effective sample size 

of 1500 in countries having more than two million inhabitants, 800 otherwise. Countries have 

to estimate Deff prior to the survey, by using (7.2.12) for instance, and then use that value as 

an inflator for the minimum effective sample size, in order to obtain the minimum required 

sample size (Ganninger, 2006). 

The design effect can be determined under the model-based approach (7.2.12 or 

7.2.13/7.2.14) or under the design-based approach. However, we recommend using the term 

‘design effect’ with its coverage clearly defined in terms of clustering, unequal weighting, 

etc., and in terms of whether it considers full response — theoretical situation or a variance 

adjusted for non-response, etc. Using the term ‘design effect’ without a clear definition will 

lead to misunderstandings and very different interpretations. The precision requirements of 

EU-SILC (EP and Council Regulation No 1177/2003 of 16 June 2003 and accompanying 

technical documents) suffer from precisely this lack of a clear definition of the ‘design effect’. 

 

7.3 Metadata template for variance estimation 

 

This metadata template has been prepared for surveys based on samples. In case of censuses, 

only a part of the questions of the metadata template are relevant and have to be answered. 

The metadata template was conceived to be as comprehensive as possible, in order to be 

relevant for several statistical domains. As mentioned in chapter 5, in order to use it as an 

element of compliance assessment strategy for a specific statistical domain (survey), it should 

be adapted to the specific features of that statistical domain. 

In case the fully centralised approach is implemented, the metadata template would be 

particularly useful and is recommended in order to collect clear and detailed information on 

the sampling designs. 

 

A. Frame population 

 

1. What is the frame population used? 

Please mention the frame population and the units listed therein (e.g. districts, municipalities, 

addresses, households, persons, telephone numbers, etc.). 

If the sample is selected from a sample of another survey, from a micro-census or from a 

master sample (in the case of multi-phase sampling designs), then please mention the frame 

population used for the other survey/the micro-census/the master sample. 

If more than one sampling frame is used e.g. a sampling frame for each sampling stage or a 

sampling frame for each national region, then please mention all of them. 
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Please describe if different frames are used to draw the sample and to gross up. 

Please mention if RDD (Random Digit Dialling) is used. 

      

 

2. Is the sample drawn from another survey sample? 

 Yes 

If yes, please name the survey        

If yes, then the sampling stages used to select the other survey sample have to be 

further included in the description of sampling design. 

If yes, then we have a case of multi-phase sampling (see Section 3.1 and Appendix 7.1 

for more information). 

 No 

 

3. Is the sample drawn from the micro-census? 

 Yes 

If yes, then the sampling stages used to select the micro-census have to be further 

included in the description of sampling design. 

If yes, then we have a case of multi-phase sampling (see Section 3.1 and Appendix 7.1 

for more information). 

 No 

  

4. Is the sample drawn from the master sample? 

 Yes 

If yes, then the sampling stages used to select the master sample have to be further 

included in the description of sampling design. 

If yes, then we have a case of multi-phase sampling (see Section 3.1 and Appendix 7.1 

for more information). 

 No 

 

5. What are the main errors in the frame? 

Frame errors refer to under-coverage, over-coverage and multiple listings. Over-coverage 

and multiple listings are sources of additional variability of the estimator (see Section 3.2 and 

Appendix 7.1 for more information). 

If more than one sampling frame is used e.g. a sampling frame per sampling stage/phase or a 

sampling frame for each national region, then please mention the errors in all of them. 

In the first column (Y/N), please mention whether or not the specified error (over-

coverage/multiple listings) occurs. In the second column (%), please indicate the error rate 

(or an estimate thereof) as a percentage of the total number of records in the frame. If not 

possible, please provide a qualitative assessment in the third column. 

                              Y/N           %                          Qualitative assessment 

 

Over-coverage                                           
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Multiple listings                                         

 

B. Target indicators and reporting domains 

 

6. What are the main target indicators for which precision estimates are required? 

Please specify the type of each indicator e.g. total, mean, proportion, ratio, other smooth non-

linear statistics e.g. regression coefficients, correlation coefficients, non-smooth statistics e.g. 

quantiles, poverty rates, etc. For proportions and ratios, please see those definitions given for 

the variance estimation context in Section 2.2. 

 

Main target indicator Type of indicator 

 

                                                                                                                             

  

                                                                              

 
(insert additional rows if needed) 

 

7. Are the precision estimates required over domains? 

In this case, please consider both planned and unplanned domains. See Section 2.3 for 

definitions of planned and unplanned domains. 

 Yes 

          If yes, what are these domains? Please specify if domains are planned or unplanned. 

 

Domain Planned/unplanned 

                                                                                                                             

  
(insert additional rows if needed) 

 

 No 

 

C. Sampling design 

 

8. Is the sampling design a probability sampling design? 

A probability sampling design ensures known probabilities for units selected. In practice, 

non-response generally makes samples depart from the probability ones. However, the point 

here is to report on whether or not the gross sample (net sample plus non-respondents) has 

been selected in a probability way. 

 

 Yes 

 No 

 

 

9. What is the number of sampling stages? 

If the survey sample is selected from a sample of another survey, from the micro-census or 

from the master sample, then please include the number of sampling stages from all sampling 
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phases into the total number of sampling stages.   

If there are differences in the same country with regard to the number of sampling stages for 

different population groups, e.g. one-stage sampling in urban areas and two-stage sampling 

in rural areas, then report the number of sampling stages for each of the population groups.   

 

      

 

10. What is the sampling unit at stage 1 (the primary sampling unit PSU)? 

Examples: census enumeration areas, sections, municipalities, communes, villages, 

settlements, households, individuals, etc. 

If there are differences in the same country with regard to the type of PSUs, e.g. households 

as PSUs in urban area and villages as PSUs (and households as SSUs) in rural areas, then 

report the relevant sampling unit at stage 1 for each of the population groups. Please do this 

also for the sampling units at further stages at the next questions. 

 

      

 

11. What is the sampling unit at stage 2 (the secondary sampling unit SSU)? 

Examples: dwellings, households, individuals, etc. 

 

      

 

(Please insert additional rows when needed for additional stages) 

 

12. What is the sampling unit at the ultimate stage? 

Examples: dwellings, households, individuals. 

 

      

 

13. What are the interviewed units? 

Interviewed units are units from which data are collected. The interviewed unit can be 

different from the ultimate sampling unit. 

For instance, the sampling unit at an ultimate stage can be a household and the interviewed 

unit can be an individual (all eligible individuals in the household are interviewed — this is a 

cluster sampling). 

Furthermore, the sampling unit at the ultimate stage can also be an individual and the 

interviewed unit can be all eligible individuals in the same household. This is an indirect 

cluster sampling. See Section 3.1 and Appendix 7.1 for more information. 

 

      

 

14. Is there (explicit) stratification at stage 1? 

If there are differences as regards stratification at stage 1 between population groups (e.g. 

rural/urban, etc.), then please answer separately for each case. 
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 Yes 

          If yes, what are the stratification variables at stage 1?              

          Examples: 

           -region/ province/ county/ district/ code of administrative territories; 

           -size/ population density/ degree of urbanisation; 

           -type of municipality/ settlement; 

           -type of residence: urban/ rural; 

  -age, gender, etc. 

 No 

 

15. What is the sampling method at stage 1? 

The sampling method (for the sampling units) refers to the way the sample is selected. For 

example, the sampling method can be a simple random sampling, whereby all samples are 

given the same probability of selection. Other possible methods include systematic sampling 

with equal or unequal probabilities, other proportional-to-size sampling (ps), etc. 

Please mention if the systematic sampling has stratification effect (gives rise to implicit 

stratification). See Section 3.4 for more information about implicit stratification. If there are 

differences as regards the sampling design at stage 1 between population groups (e.g. 

rural/urban, etc.), then please answer separately for each case. 

 Exhaustive selection 

 Simple random sampling 

 Systematic sampling with equal probabilities 

      With stratification effect, please mention the related auxiliary variable       

      Without stratification effect 

 Systematic sampling with probabilities proportional-to-size 

      With stratification effect, please mention the related auxiliary variable       

      Without stratification effect 

 Other proportional-to-size (ps) sampling, please indicate       

 Other, please indicate       

 

For stage 1 it is important to know if there are self-representing primary sampling units (with 

probability of selection equal to 1). Please mention if this is the case:       

(Please insert additional rows when needed for intermediate stages, for the questions on 

explicit stratification and sampling method.) 

 

16. Is there (explicit) stratification at the ultimate stage? 

If there are differences as regards stratification at the ultimate stage between population 

groups (e.g. rural/urban, etc.), then please answer separately for each case. 

 

 Yes 

          If yes, what are the stratification variables at the ultimate stage?              

 No 

17. What is the sampling method at the ultimate stage? 

If there are differences as regards the sampling method (for the sampling units) at the 

ultimate stage between population groups (e.g. rural/urban, etc.), then please answer 

separately for each case. 
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 Exhaustive selection 

 Simple random sampling 

 Systematic sampling with equal probabilities 

      With stratification effect, please mention the related auxiliary variable       

      Without stratification effect 

 Systematic sampling with probabilities proportional-to-size 

      With stratification effect, please mention the related auxiliary variable       

      Without stratification effect 

 Other proportional-to-size (ps) sampling, please indicate       

 Other, please indicate:       

 

18. What is the sample allocation among strata? 

In case the sample has been stratified, then sample allocation among the strata can be either 

equal, proportional to the stratum sizes, or optimal (Neyman) in that it yields estimators with 

the lowest standard error for certain variables of interest. Compromise allocations can also 

be used, in order to ensure an acceptable level of accuracy both for national and regional 

estimates. 

If there are differences as regards to allocation between population groups (e.g. rural/urban, 

etc.), then please answer separately for each case. 

 Equal allocation, for stratification at stage(s)       

 Proportional allocation, for stratification at stage(s)       

 Optimal (Neyman) allocation, for stratification at stage(s)       

 Compromise allocation, for stratification at stage(s)       

 Other (please mention)        , for stratification at stage(s)       

 

19. Does the survey have a longitudinal component (i.e. the survey collects data from the 

same sample elements on multiple occasions over time)? 

 Yes, please indicate:       

      If the survey sample is based on rotation groups, please specify: 

How many rotation groups are considered? 

                                              

Are the rotation groups of equal sizes? 

                                       Yes 

                                       No, please provide more information:       

What is the frequency of rotation of groups? 

 Monthly 

 Quarterly 

 Annual 

 Other, please specify:       

How are new rotation groups selected?       

Please specify if the selection of a new rotation group is made from the same e.g. 

primary sampling units used in the previous wave or a selection of new e.g. primary 

sampling units is made for each wave. Please provide any additional relevant 

information. 

If the survey sample is drawn from another survey sample/micro-census/master 

sample, then does the rotation take place at the level of the other survey 

sample/micro-census/master sample?   
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 Yes 

                                        No 

 

 No 

 

20. Please provide any additional information on the sampling design. 

 

      

 

D. Weights 

 

21. How are design weights calculated? 

Design weights are defined as the inverse of the units’ selection probabilities. Under full 

response, design weights provide unbiased estimates for linear parameters. This point aims at 

collecting textual information on the way design weights are calculated. In case the approach 

departed from the usual one that consists of taking the inverse of the inclusion probabilities, 

then the latter should be explained. 

 

      

 

22. Is balanced sampling used? 

A sampling design is called balanced if it ensures that the Horvitz-Thompson estimators of 

some ‘balancing’ variables are equal to the known totals. 

 

 Yes 

          If yes, what are the balancing variables?              

          Please describe the method:                                  

 No 

 

23. Are there very low numbers of respondents for specific strata which make it difficult 

to calculate precision measures? 

 Yes 

          If yes, please give more details and specify the techniques used (e.g. collapse of strata, 

          etc.)        

 No 

 

24. Has re-weighting for unit non-response been performed? 

 Yes 

           Which method has been used?        

If yes, the method used to determine the correction factors should be explained: re-

weighted Horvitz-Thompson estimator, ratio estimation, regression estimation, etc. 

Please indicate if response homogeneity groups have been created. 

 No 

 

25. Has adjustment to external data sources been performed? 

Generally, samples are adjusted to external data sources in order to make their accuracy 

better. For instance, the calibration technique aims at calculating new weights which provide 

error-free estimates for a certain number of characteristics. If the characteristics are strongly 
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correlated with the variables of interest, then the level of accuracy for most of the survey 

estimates is improved. 

 

 Yes 

If yes, please list the calibration variables used and their sources: 

      

Examples of calibration variables: 

-region/province/administrative territories, degree of urbanisation, settlement 

size/type, household size, household composition/structure, place of residence 

(urban/rural), etc. (for households); 

-region, settlement size, urban density, place of residence (urban/rural), gender, type 

of settlement/family, age (band), marital status, level of education, employment status, 

professional activity, gross income, nationality, citizenship, etc. (for individuals). 

Example of sources: population register, updated population register, etc. 

 No 

 

26. Has any other adjustment been performed? 

Further adjustments might be done to correct coverage errors or measurement errors. 

Besides, in order to avoid extreme weights, the distribution might be trimmed or top-coded: 

trimming refers to the removal of observations that are greater than a certain threshold, 

while top-coding consists of recoding observations greater than a given maximum to this 

maximum value. 

 

 Yes 

            If yes, please describe the adjustment:       

 No 

 

27. Is the sample self-weighted? 

The elements of a self-weighted sample have the same probability of selection. For instance, 

simple random samples are self-weighted. In practice, however, non-response generally 

makes samples depart from self-weighting ones. The point here is to report on whether or not 

the sample is nearly self-weighted (subjective assessment). In this regard, summary measures 

on the weight distribution might be useful (e.g. the coefficient of variation of the weight 

distribution). 

This question is relevant to know if the inclusion probabilities are equal or unequal. This 

makes a difference on the estimator of the variance under simple random sampling that 

should be used at the denominator of the design effect (see Appendix 7.2). 

 

 Yes 

 No 

 

E. Substitution and imputation 

 

28. Has substitution been used for the main target indicators for which precision 

estimates are required? 

Substitution means replacement of a sampling unit by a new one. 

 Yes    
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If yes, please mention the main target indicators (in case there are several): 

      

 

 No 

 

29. What was the substitution rate for the main target indicators? 

Please give the proportion (%) of the sampling units that were replaced by substitutes.   

Main target indicator Substitution rate (%) 

 

                                                                                                                             

  

                                                                              

 
(insert additional rows if needed) 

 

30. On which criterion has the selection of the substituted units been based? 

The choice of the substituted units may rely on statistical considerations (a substituted unit 

should be similar to the original unit with respect to certain characteristics) but also on 

administrative considerations. 

 

Please explain:        

 

 

 

31. Are the main target indicators for which precision estimates are required affected by 

item-response? 

 Yes, please indicate the main target indicators (in case there are several) and the item non-

response rate, which gives an assessment of the influence of this on variability:       

Have the main target variables been imputed? 

 Yes 

 No 

 No 

 

32. What imputation methods have been used? 

(Multiple choices possible) 

 

 Deductive imputation 

An exact value can be derived as a known function of certain characteristics (e.g. the value 

received for a family allowance is a known function of certain characteristics like income 

class, age of children, etc. As soon as those characteristics are known, it becomes possible to 

calculate the value of a family allowance without error.) 

 

Deterministic imputation 

Deterministic imputation leads to estimators with no random component, that is, if the 

imputation were to be re-conducted, the outcome would be the same. 

 Mean/Median 

 Mean/Median by class 

 Regression-based 
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 Donor 

 Other (please specify):         

 

Random imputation 

Random imputation leads to estimators with a random component, that is, if the imputation 

were re-conducted, it would lead to a different result. 

 Hot-deck 

 Cold-deck 

 Simulated residuals 

 Other (please specify):       

 

 Multiple imputation 

Multiple imputation methods offer the possibility of deriving variance estimators by taking 

imputation into account. In multiple imputation each missing value is replaced (instead of a 

single value) with a set of plausible values that represent the uncertainty of the right value to 

impute. The incorporation of imputation variance can be easily achieved based on the 

variability of estimates among the multiply imputed data sets. 

 

33. What was the overall imputation rate for each of the main target indicators (cf q. 6)? 

For each of the target indicators that you listed in your response to question 6, please report 

the proportion of observations that are imputed values. Moreover, if applicable, please report 

the share of the estimate that is contributed by the imputed values. 

 

Main target indicator     Imp. rate (% of observations)        Imp. rate (share of estimate — %) 

 

                                                                                                                                        

  

                                                                                          

 
(insert additional rows if needed) 

 

F. Variance estimation methods and tools 

This section is concerned with variance estimation methods and software tools usually used 

by countries. 

 

34. What are the main variance estimation methods used? 

Please see the definitions of methods in Section 3.3. 

For each method, please specify the name of the main indicators the method was applied to 

(out of those specified for question 6) and the type of parameter. We can distinguish between 

the following types of parameters:   

 parameters at specific time points; 

 parameters defined as averages over a period of time; 

 net change between two time points, i.e. to provide estimates of the difference, the ratio, 

or some other measure of change, between parameters at different time points; 

 gross change, i.e. aggregates of change at the element level between time points. 

See more details in Sections 3.3 and 3.7, and in Appendix 7.4. 
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 Analytical method: 

            Formula or reference in literature Name of indicator         Type of parameter                                

                              

            Please add rows if needed.   

 

 Linearisation method: 

Linearisation method                               Name of indicator       Type of parameter 

                                                                                           

 Taylor linearisation 

             Linearisation based on influence functions 

             Other, please specify:        

            Please add rows if needed.   

 

 Replication method: 

Replication method                                  Name of indicator       Type of parameter 

                                                                                            

 Jackknife 

 Bootstrap 

 Balanced repeated replication/Balanced half-samples 

             Random groups    

Please add rows if needed. 

   

 Other e.g. generalised variance functions, please specify:       

       

35. Please briefly describe the method(s): 

      

 

36. What are the main variance estimation tools used? 

 CLAN 

 GENESEES 

 SUDAAN 

 POULPE 

 CALJACK 

 BASCULA 

 ReGenesees 

Other, please specify:       

 

37. Do the methods/tools for variance estimation take into account the effect of: 

 unit non-response? 

The variance estimator  ̂V̂  has to be adjusted to take unit non-response into account. 

Different methods can be used: methods based on the assumption that respondents are 

missing at random or completely at random within e.g. strata or constructed response 

homogeneity groups, methods using the two-phase approach, etc. See Section 3.4 for more 

information. 

If yes, please indicate:       
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 imputation? 

Imputation variance can be estimated if multiple imputation is used. 

Replication and analytical methods can be used to incorporate imputation into variance 

estimation. 

Deville and Särndal (1994) proposed a method for the regression imputed Horvitz-Thompson 

estimator. 

See Section 3.4 for more information. 

If yes, please indicate:       

 

 coverage errors (over-coverage, multiple listings)? 

Methodology of domain estimation can be used. Target population has to be defined as a 

domain of the frame population. 

The related loss of precision can be quantified. 

See Section 3.4 for more information. 

If yes, please indicate:       

 

 implicit stratification? 

One way to consider implicit stratification is to define explicit strata, from which each of an 

independent sample is supposed to have been selected. 

Other methods using analytical formulae are available. See Section 3.4. 

If yes, please indicate:       

 

 rotating samples? 

In case of rotating sample schemes, the overlap of samples between e.g. successive quarters 

reduces the precision of the average of estimates from e.g. quarterly samples and increases 

the precision for e.g. the quarter-to-quarter estimates of change. 

See Section 3.7. 

If yes, please indicate:       

 

 calibration? 

Methods to account for the effect of calibration on variance should be used. Deville and 

Särndal method (1992) is presented in Section 3.4. 

If yes, please indicate:       

 

38. Please provide the main references in literature for variance estimation methods and 

software tools used 

      

 

G. Availability of specific information which can be used to estimate standard errors by 

Eurostat (and other data users) 

This section aims at collecting information on the possibility of estimating standard errors by 

Eurostat (and other data users) in the future. 
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39. Are design effects (Deffs) systematically calculated along with variance estimates? 

 Yes 

  Please briefly describe the method: 

      

This point deals with the estimation method for Design Effect (Deff). It is essential to 

explain how the variance under simple random sampling (denominator of the Deff) is 

estimated. Please see Appendix 7.2 for more details. 

 No 

 

40. If a replication method is used in the NSIs to estimate standard errors, then can 

replicate weights be transmitted to Eurostat together with the microdata? 

This question aims to contribute to the assessment of the feasibility of estimating standard 

errors under an integrated approach (see chapter 4). 

 

Please comment:       

 

41. If generalised variance functions are used in the NSIs to estimate standard errors, 

then can the parameters and the functions be reported to Eurostat and would they be 

sufficient for estimating standard errors for all indicators and breakdowns? 

This question aims at contributing towards assessment of the feasibility in order to estimate 

standard errors under an integrated approach (see chapter 4). 

 

Please comment:       

 

42. Can microdata be transmitted to Eurostat together with the following specific 

variables at record level? 

- the stratum to which the ultimate sampling unit belongs; 

- the primary, the secondary, etc. sampling units to which the ultimate sampling unit 

belongs; 

- in case systematic sampling is used at any sampling stage, the order of selection of the 

primary, the secondary, etc. sampling units; 

- the final sampling weight of the units used in the estimation. The final sampling weight 

should ideally incorporate adjustment due to non-response, calibration, etc. so that 

variance estimates can reflect their effects. 

This question aims at contributing towards the assessment of the feasibility in order to 

estimate standard errors under a fully centralised approach (see chapter 4). 

 

Please comment:       
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7.4 Suitability of variance estimation methods for sampling designs and types of statistics 

This matrix lists some recommended methods which are suited to different sampling designs and types of statistics. The list of suitable methods 

does not claim to be complete. This matrix also lists methods which are not recommended (bad practices). 

Suitable method (recommended for use) 

 !   Unsuitable method (not recommended for use) 

Sampling 

designs 

  

 Type of statistics   

Linear statistics (e.g. 

totals, means, 

proportions*) 

Ratios** (other than 

proportions) 

Smooth non-linear statistics (other 

than ratios e.g. regression coef., 

correlation coef.) *** 

Non-smooth statistics (e.g. Gini coefficient, 

functions of quantiles)*** 

Simple 

random 

sampling  

Analytical: 

Cochran (1977 p 23) 

 

Jackknife: 

Wolter (2007 p 162) 

 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 196) 

 Bootstrap with 

replacement (MacCarthy 

and Snowden, 1985) 

 Rescaled bootstrap (Rao 

and Wu, 1988) 

 Mirror-matched 

bootstrap (Sitter, 1992b) 

 Bootstrap without 

replacement (Gross, 1980) 

 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 

427) 

Analytical: 

Cochran (1977 p 32) 

 

Jackknife: 

Wolter (2007 p 162) 

 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 196) 

 Bootstrap with replacement 

(MacCarthy and Snowden, 

1985) 

 Rescaled bootstrap (Rao 

and Wu, 1988) 

 Mirror-matched bootstrap 

(Sitter, 1992b) 

 Bootstrap without 

replacement (Gross, 1980) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal 

et al (1992 p 178) 
 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 427) 

Jackknife: 

The Extended Delete-A-Group 

jackknife (Kott, 2001) 

Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 196) 

 Bootstrap with replacement 

(MacCarthy and Snowden, 1985) 

 Rescaled bootstrap (Rao and Wu, 

1988) 

 Mirror-matched bootstrap (Sitter, 

1992b) 

 Bootstrap without replacement 

(Gross, 1980) 
 

Linearisation of the statistic: 

Taylor linearisation, Särndal et al 

(1992 p 178) 

Generalised linearisation method 

relying on the concept of influence 

function (Osier, 2009) 
 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 427) 

Jackknife: 

The Extended Delete-A-Group JK  (Kott, 2001) 

Berger (2007, 2008) 

! Delete-one or groups jackknife is inconsistent for 

non-smooth statistics (except for the Gini 

coefficient) (Miller, 1974; Berger, 2008) 
 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 196) 

 Bootstrap with replacement (MacCarthy and 

Snowden, 1985) 

 Rescaled bootstrap (Rao and Wu, 1988) 

 Mirror-matched bootstrap (Sitter, 1992b) 

 Bootstrap without replacement (Gross, 1980) 
 

Linearisation of the statistic: 

Linearisation based on estimating equations 

(Binder, 1983, Kovacevic and Binder, 1997) 

Generalised linearisation method relying on the 

concept of influence function (Osier, 2009) 

! Taylor linearisation 
 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 427) 
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Sampling 

designs 

  

 Type of statistics   

Linear statistics (e.g. 

totals, means, 

proportions*) 

Ratios** (other than 

proportions) 

Smooth non-linear statistics (other 

than ratios e.g. regression coef., 

correlation coef.) *** 

Non-smooth statistics (e.g. Gini coefficient, 

functions of quantiles)*** 

Stratified 

random 

sampling  

Analytical: 

Cochran (1977 p 95) 

 

Jackknife: 

Wolter (2007 p 172) 

Berger (2007, 2008) 

! Delete-one jackknife 

should not be used in 

stratified designs. See e.g. 

Wolter (2007) p. 172-173 

 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 207) 

 Bootstrap with 

replacement (MacCarthy 

and Snowden, 1985) 

 Rescaled bootstrap (Rao 

and Wu, 1988) 

 Mirror-matched 

bootstrap (Sitter, 1992b) 

 Bootstrap without 

replacement (Gross, 1980) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 

428) 

 

Balanced repeated 

replication ****: 

Wolter (2007) 

Särndal et al (1992 p 

432) 

Analytical: 

Cochran (1977 p 164) 
 

Jackknife: 

Wolter (2007 p 172) 

Berger (2007, 2008) 

! Delete-one jackknife should 

not be used in stratified 

designs. See e.g. Wolter (2007) 

p. 172-173 

 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 207) 

 Bootstrap with replacement 

(MacCarthy and Snowden, 

1985) 

 Rescaled bootstrap (Rao 

and Wu, 1988) 

 Mirror-matched bootstrap 

(Sitter, 1992b) 

 Bootstrap without 

replacement (Gross, 1980) 
 

Linearisation of the statistic: 

Taylor linearisation, Särndal 

et al (1992 p 178) 
 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 428) 
 

Balanced repeated 

replication ****: 

Wolter (2007) 

Särndal et al (1992 p 432) 

Jackknife: 

The Extended Delete-A-Group 

jackknife (Kott, 2001) 

Berger (2007, 2008) 

! Delete-one jackknife should not be 

used in stratified designs. See e.g. 

Wolter (2007) p. 172-173 

 
 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 207) 

 Bootstrap with replacement 

(MacCarthy and Snowden, 1985) 

 Rescaled bootstrap (Rao and Wu, 

1988) 

 Mirror-matched bootstrap (Sitter, 

1992b) 

 Bootstrap without replacement 

(Gross, 1980) 
 

Linearisation of the statistic: 

Taylor linearisation, Särndal et al 

(1992 p 178) 

Linearisation based on estimating 

equations (Binder, 1983, Kovacevic 

and Binder, 1997) 
 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 428) 
 

Balanced repeated replication 

****: 

Wolter (2007) 

Särndal et al (1992 p 432) 

Jackknife 

The Extended Delete-A-Group jackknife (Kott, 

2001) 

Berger (2007, 2008) 

! Delete-one or groups jackknife is inconsistent for 

non-smooth statistics (except for the Gini 

coefficient) (Miller, 1974; Berger, 2008) 

! Delete-one jackknife should not be used in 

stratified designs. See e.g. Wolter (2007) p. 172-173 

 

Bootstrap: 

Rao et al (1984) 

Booth et al (1994) 

Wolter (2007 p 207) 

 Bootstrap with replacement (MacCarthy and 

Snowden, 1985) 

 Rescaled bootstrap (Rao and Wu, 1988) 

 Mirror-matched bootstrap (Sitter, 1992b) 

 Bootstrap without replacement (Gross, 1980) 

Linearisation of the statistic: 

Linearisation based on estimating equations 

(Binder, 1983, Kovacevic and Binder, 1997) 

Generalised linearisation method relying on the 

concept of influence function (Osier, 2009) 

! Taylor linearisation 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 428) 

 

Balanced repeated replication ****: 

Wolter (2007) 

Särndal et al (1992 p 432) 
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Sampling 

designs 

  

 Type of statistics   

Linear statistics (e.g. 

totals, means, 

proportions*) 

Ratios** (other than 

proportions) 

Smooth non-linear statistics (other 

than ratios e.g. regression coef., 

correlation coef.) *** 

Non-smooth statistics (e.g. Gini coefficient, 

functions of quantiles)*** 

Single-stage 

cluster 

sampling  

Analytical: 

Cochran (1977 p 261) 

 

Jackknife: 

Wolter (2007 p 182) 

Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 

427) 

Analytical: 

Cochran (1977 p 271) 

 

Jackknife: 

Wolter (2007 p 182) 

Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal 

(1992 p 178) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 427) 

Jackknife: 

The Extended Delete-A-Group 

jackknife (Kott, 2001) 

Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal et al 

(1992 p 178) 

Linearisation based on estimating 

equations (Binder, 1983, Kovacevic 

and Binder, 1997) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 427) 

Jackknife: 

The Extended Delete-A-Group jackknife (Kott, 

2001) 

Berger (2007, 2008) 

! Delete-one or groups jackknife is inconsistent for 

non-smooth statistics (except for the Gini 

coefficient) (Miller, 1974; Berger, 2008) 

 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Linearisation based on estimating equations 

(Binder, 1983, Kovacevic and Binder, 1997) 

Generalised linearisation method relying on the 

concept of influence function (Osier, 2009) 

! Taylor linearisation 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 427) 

 

 

 

 



 

 

Appendix 7 

Handbook on precision requirements and variance estimation for ESS household surveys 154 

Sampling 

designs 

  

 Type of statistics   

Linear statistics (e.g. 

totals, means, 

proportions*) 

Ratios** (other than 

proportions) 

Smooth non-linear statistics (other 

than ratios e.g. regression coef., 

correlation coef.) *** 

Non-smooth statistics (e.g. Gini coefficient, 

functions of quantiles)*** 

Stratified 

single-stage 

cluster 

sampling  

Analytical: 

Cochran (1977 p 271) 

 

Jackknife: 

The Extended Delete-A-

Group jackknife, Kott 

(2001) 

Berger (2007, 2008) 

! Delete-one jackknife 

should not be used in 

stratified designs. See e.g. 

Wolter (2007) p. 172-173 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 

428) 

 

Balanced repeated 

replication ****: 

Wolter (2007) 

Särndal et al (1992 p 

432) 

Analytical: 

Cochran (1977 p 271) 

 

Jackknife: 

The Extended Delete-A-

Group jackknife, Kott (2001) 

Berger (2007,  2008) 

! Delete-one jackknife should 

not be used in stratified 

designs. See e.g. Wolter (2007) 

p. 172-173 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal 

et al (1992 p 178) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 428) 

 

Balanced repeated 

replication ****: 

Wolter (2007) 

Särndal et al (1992 p 432) 

Jackknife: 

The Extended Delete-A-Group 

jackknife (Kott, 2001) 

Berger (2007, 2008) 

! Delete-one jackknife should not be 

used in stratified designs. See e.g. 

Wolter (2007) p. 172-173 

 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal et al 

(1992 p 178) 

Linearisation based on estimating 

equations (Binder, 1983, Kovacevic 

and Binder, 1997) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 428) 

 

Balanced repeated replication 

****: 

Wolter (2007) 

Särndal et al (1992 p 432) 

Jackknife: 

The Extended Delete-A-Group jackknife (Kott, 

2001) 

Berger (2007, 2008) 

! Delete-one or groups jackknife is inconsistent for 

non-smooth statistics (except for the Gini 

coefficient) (Miller, 1974; Berger, 2008) 

! Delete-one jackknife should not be used in 

stratified designs. See e.g. Wolter (2007) p. 172-173 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

Linearisation of the statistic: 

Linearisation based on estimating equations 

(Binder, 1983, Kovacevic and Binder, 1997) 

Generalised linearisation method relying on the 

concept of influence function (Osier, 2009) 

! Taylor linearisation 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 428) 

 

Balanced repeated replication ****: 

Wolter (2007) 

Särndal et al (1992 p 432) 
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Sampling 

designs 

  

 Type of statistics   

Linear statistics (e.g. 

totals, means, 

proportions*) 

Ratios** (other than 

proportions) 

Smooth non-linear statistics (other 

than ratios e.g. regression coef., 

correlation coef.) *** 

Non-smooth statistics (e.g. Gini coefficient, 

functions of quantiles)*** 

Multi-stage 

(cluster) 

sampling  

Analytical: 

Särndal et al (1992 p 

135) 

 

Jackknife: 

The Extended Delete-A-

Group jackknife, Kott 

(2001) 

Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 

429) 

 

Balanced repeated 

replication ****: 

Wolter (2007) 

Särndal et al (1992 p 

435) 

Analytical: 

Särndal et al (1992 p 135) 

 

Jackknife: 

 The Extended Delete-A-

Group jackknife, Kott (2001) 

Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal 

et al (1992 p 178) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 429) 

 

Balanced repeated 

replication ****: 

Wolter (2007) 

Särndal et al (1992 p 435) 

Jackknife: 

 The Extended Delete-A-Group 

jackknife (Kott, 2001) 

 Berger (2007, 2008) 

 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Taylor linearisation, Särndal et al 

(1992 p 178) 

Linearisation based on estimating 

equations (Binder, 1983, Kovacevic 

and Binder, 1997) 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 429) 

 

Balanced repeated replication 

****: 

Wolter (2007) 

Särndal et al (1992 p 435) 

Jackknife: 

 The Extended Delete-A-Group jackknife  (Kott, 

2001) 

Berger (2007, 2008) 

! Delete-one or groups jackknife is inconsistent for 

non-smooth statistics (except for the Gini 

coefficient) (Miller, 1974; Berger, 2008) 

Bootstrap: 

Rao et al (1984) 

Deville (1987) 

Booth et al (1994) 

Wolter (2007 p 210) 

Chauvet (2007) 

Preston (2009) 

 

Linearisation of the statistic: 

Linearisation based on estimating equations 

(Binder, 1983, Kovacevic and Binder, 1997) 

Generalised linearisation method relying on the 

concept of influence function (Deville, 1999, Osier, 

2009) 

! Taylor linearisation 

 

Random Groups: 

Wolter (2007) 

Särndal et al (1992 p 429) 

 

Balanced repeated replication ****: 

Wolter (2007) 

Särndal et al (1992 p 435) 
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* In Section 2.2 proportions and ratios are defined in the general context: a ratio is a ratio of two totals or means, while a proportion is a special case of ratio, where the numerator and denominator 
are counts of elements in domain A and domain B respectively, where domain A is a subset of domain B. In this general context, both ratios and proportions can have constant denominator or 
variable denominator. However, for the purpose of variance estimation and for simplification purposes, proportion is used to designate a linear statistic where the variance of the estimator in the 
denominator is zero. (The denominator is a constant, e.g. known from external sources.) 

** In Section 2.2 proportions and ratios are defined in the general context: a ratio is a ratio of two totals or means, while a proportion is a special case of ratio, where the numerator and denominator 
are counts of elements in domain A and domain B respectively, where domain A is a subset of domain B. In this general context, both ratios and proportions can have constant denominator or 
variable denominator. However, for the purpose of variance estimation and for simplification, ratio is used to designate a ratio of two estimators with a denominator having a non-zero variance. 
(The denominator is not a constant, but a random variable being estimated from a survey). This can occur for example in the case of domain estimates. 

*** Smooth non-linear statistics are differentiable non-linear statistics for which Taylor series expansions can be used. They can be expressed as differentiable functions of linear statistics. Other 
examples besides ratios of two linear statistics are the estimators for regression coefficients or for correlation coefficients. Non-smooth non-linear statistics are non-linear statistics for which 
Taylor series expansions can no longer be used; influence functions can be used for linearisation of non-smooth statistics (income quintile, Gini coefficient). 

**** Other names for the balanced repeated replication (BRR) technique are balanced half-samples (BHS) and pseudo-replication. Originally the balanced half-samples technique was used for 
the case with a large number of strata and a sample composed of only two elements (or two PSUs) per stratum. Modification of the technique has been suggested for cases where the sample 
sizes nh exceed two. For a review, see Wolter (2007). 
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7.5 Suitability of software tools for sampling designs and related issues on variance estimation 

 POULPE CLAN SAS/SPSS R* GENESEES REGENESEES SUDAAN BASCULA 

Simple 

random 

sampling  

Yes. Let y be the sample mean of a 

variable y . Then we have: 

   
n

s
fyV

2

1ˆ   , where n is the sample 

size, f  the finite population correction 

and 
2s is the dispersion of variable y  

over the sample. 

Yes. Same 

formula as 

POULPE. 

Yes. Same 

formula as 

POULPE. 

Yes. Yes. Yes. Yes. Yes. 

Stratified 

random 

sampling  

Yes. Let hy be the sample mean of a 

variable y  over stratum h . Let hw be 

the relative weight of stratum h in the 

population. We have: 

h

h

hywY ˆ  and 

    
h h

h
h

n

s
fYV

2

1
ˆˆ  , where hn  is the 

sample size in stratum h , hf  the finite 

population correction in stratum h  and 
2

hs  is the dispersion of variable y  over 

the sample in stratum h . 

Yes. Same 

formula as 

POULPE. 

Yes. Same 

formula as 

POULPE. 

Yes. A special 

feature 

available in 

GENESEES is 

the merging of 

strata 

(collapsing) 

for strata with 

small response 

frequencies 

(the user can 

choose the 

frequency 

level). This 

problem is 

especially 

notable when 

there is only 

one PSU in 

one or more 

strata. 

 

Yes. Collapse 

strata technique 

for handling 

single PSUs 

(Rust and 

Kalton (1987)). 

Yes. Yes. 

Single-stage 

cluster 

sampling and 

multi-stage 

Yes. 

Every multi-stage sampling can be split 

into ‘elementary’ samplings. Variances 

in each ‘elementary’ sampling are 

Yes. Ultimate 

cluster 

approximation: 

the second 

Yes. 

Ultimate 

cluster 

approximation. 

Yes. Ultimate 

cluster 

approximation. 

Yes. Ultimate 

cluster 

approximation. 

Yes, both via 

the ultimate 

cluster 

approximation 

Yes. Like 

POULPE, 

SUDAAN uses 

an exact 

BASCULA 

can handle 

the 

following 
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 POULPE CLAN SAS/SPSS R* GENESEES REGENESEES SUDAAN BASCULA 

(cluster) 

sampling  

estimated and then combined so as to 

form an estimate for the overall 

variance. The underlying formula is due 

to Raj (1968). See Section 3.3 for this 

formula. The formula is the cornerstone 

of the software POULPE. 

 

If PSUs are assumed to be selected with 

replacement, then the variance of a 

multi-stage sampling can be estimated 

by the variance of the estimated totals of 

the PSUs. This approximation, called 

‘ultimate cluster approximation’, is 

implemented in the software too. Its 

interest lies in its simplicity. 

(third, etc.) 

stage’s 

variance is 

omitted. 

However, one 

can introduce 

the second-

stage variation 

into the 

calculations 

with additional 

computational 

efforts. 

or by means of 

an actual multi-

stage 

computation 

(Bellhouse 

(1985) recursive 

algorithm). 

variance 

decomposition. 

designs: 
 

i) Stratified 

two-stage 

sampling 

where both 

PSUs and 

secondary 

sampling 

units (SSUs) 

are selected 

by simple 

random 

sampling. 
 

ii) 

Stratified 

multi-stage 

sampling 

where PSUs 

are selected 

(possibly 

with unequal 

probabilities) 

with 

replacement. 

Multi-phase 

(cluster) 

sampling  

 

Variance estimation under multi-phase 

sampling is a long-established theory 

(Särndal et al 1992). It can be regarded 

as an extension of variance estimation 

under multi-stage sampling: the variance 

of a multi-phase design can be 

expressed as a sum of variance terms 

representing the contribution of each 

sampling phase. 

POULPE tackles multi-phase 

sampling designs by estimating the 

variances contributed by 

each phase of selection and then 

Same 

approach as 

POULPE. The 

idea is to 

decompose for 

the variance of 

first-phase 

estimator and 

the variance 

for second-

phase. 

No formula. 

Can be 

programmed 

by the user. 

Yes. No. No. No. No. 
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 POULPE CLAN SAS/SPSS R* GENESEES REGENESEES SUDAAN BASCULA 

combining them in order to obtain an 

estimate for the overall variance. 

Can software tools take into account in the overall variance estimation the effects of: 

Implicit 

stratification?  
Systematic sampling with equal 

probabilities can be treated using the 

following approximate estimator. Let 

Ŷ be an estimator for the total Y of a 

variable y . A variance estimator is 

given by: 

   
 


















n

j

jiji

i
n

yy

Nn
NYV

2

2

1,,2

12

11ˆˆ  

 

where 
ijy denotes the value of y  for 

the j
th

 individual of the i
th

 

systematic sample. 

Yes. No formula. It 

has to be 

programmed. 

No formula. It 

has to be 

programmed. 

No. No. No. No. 

(Unit) non-

response?  
Non-response is viewed as an additional 

phase of selection. POULPE offers two 

possibilities as to the kind of selection 

carried out at second-phase: either 

Poisson selection or post-stratified one. 

Yes. No formula. It 

has to be 

programmed. 

Use formulae 

for multi-

phase 

sampling. 

No. Yes, with the 

calibration 

approach of 

Särndal and 

Lundström 

(2005). The 

calibration step 

intended to fight 

non-response 

bias and the 

calibration step 

intended to 

improve 

estimators 

efficiency can 

be performed 

simultaneously 

or subsequently. 

 

Use replication 

methods (adjust 

the non-response 

weight in each 

replication). 

Use 

replication 

methods 

(adjust the 

non-

response 

weight in 

each 

replication). 
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 POULPE CLAN SAS/SPSS R* GENESEES REGENESEES SUDAAN BASCULA 

Imputation 

(for item non-

response)?  

No special treatment. Imputed values 

are treated as if they were the exact 

ones. 

No special 

treatment. 

Imputed 

values are 

treated as if 

they were the 

exact ones. 

No formula. 

Has to be 

programmed. 

No formula. 

Has to be 

programmed. 

No. No. Multiple 

imputation. 

No. 

Substitution?  Substituted units are treated as if they 

were the original ones. 

Substituted 

units are 

treated as if 

they were the 

original ones. 

Substituted 

units are 

treated as if 

they were the 

original ones. 

Substituted 

units are 

treated as if 

they were the 

original ones. 

Substituted 

units are 

treated as if 

they were the 

original ones. 

No. Substituted units 

are treated as if 

they were the 

original ones. 

Substituted 

units are 

treated as if 

they were 

the original 

ones. 

Calibration?  The variance of a calibration linear 

estimator is asymptotically equal to that 

of the estimator based on initial weights 

and using as variable of interest the 

regression residuals of the target 

variable over the calibration variables 

(Deville and Särndal, 1992). 

Contrary to 

POULPE, 

CLAN has 

both a 

structure for 

calibrated 

weight 

creation and 

for variance 

estimation 

taking the 

calibration into 

account. The 

results are 

based on the 

properties of 

the GREG 

estimator 

(technique of 

residuals). 

No formula. 

Has to be 

programmed 

(compute the 

regression 

residuals). 

Two main 

functions for 

calibration: 

Post-stratify 

(post-

stratification); 

Calibrate 

(regression 

calibration). 

Yes (GREG 

estimators). 

Yes, by 

exploiting the 

asymptotic 

equivalence of 

all calibration 

estimators to the 

GREG and by 

linearising the 

GREG for 

variance 

estimation (as in 

POULPE). 

Post-

stratification 

only. 

Yes (GREG 

estimator). 

Rotating 

schemes?  

Yes. But simplifying assumptions must 

be made regarding the rotation groups 

(the sub-samples are assumed to be 

independent). 

Yes. Yes. But 

simplifying 

assumptions 

must be made. 

Yes. But 

simplifying 

assumptions 

must be made. 

No. No. No. No. 
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 POULPE CLAN SAS/SPSS R* GENESEES REGENESEES SUDAAN BASCULA 

Joint 

inclusion 

probabilities? 

 

An approximation formula is available 

for handling this kind of selection. Let 

n  be the sample size and i  the 

probability of selection of i. Let 





si i

iy
Y


ˆ be the Horvitz-Thompson 

estimator for the total Y  of the variable 

of interest y . A variance estimator for 

the estimated total Ŷ  is given by: 

   

















n

i i

i

i B
y

n

n
YV

1

2

1
1

ˆˆ


  

     

 (Hájek, 1964), where 

 

 












n

i

i

n

i

i

i

iy

B

1

1

1

1






. 

Yes. Ultimate 

cluster 

approximation. 

Ultimate 

cluster 

approximation. 

Yes. Ultimate 

cluster 

approximation. 

No approximate 

expressions 

available for 

joint inclusion 

probabilities. 

Selection under 

πpswor treated 

as if it were 

under πpswr. 

SUDAAN has 

an option 

denoted by 

‘UNEQWOR’, 

available for the 

first stage only. 

It uses 

the Yates-

Grundy-Sen 

variance 

estimator which 

is given by 

 
2

2

1ˆˆ

 
















i j

j

i

i

ji

ij

YY

TV



 

 

where 

ij

jiij

ij


 
  


i i

iy
Y


ˆ  and 

i   and 

ij designate 

the simple 

inclusion 

probability of 

unit i and the 

joint inclusion 

probability of i 

and j, 

respectively. 

 

Yes 
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 POULPE CLAN SAS/SPSS R* GENESEES REGENESEES SUDAAN BASCULA 

Non-linear 

statistics?  

The software handles linear statistics. In 

order to deal with non-linear statistics, 

the solution is to linearise them and to 

run POULPE on the linearised variable. 

The software 

handles linear 

statistics. In 

order to deal 

with non-

linear 

statistics, the 

solution is to 

linearise them 

and to run the 

software on 

the linearised 

variable. 

SAS can deal 

with ratios 

using Taylor 

approximation. 

Otherwise, 

linearisation 

formulae must 

be 

programmed 

(Osier, 2009). 

Use of Taylor 

linearisation. 

Otherwise, 

statistics have 

to be 

linearised prior 

to any 

calculations. 

Use of Taylor 

linearisation. 

Otherwise, 

statistics have 

to be 

linearised prior 

to any 

calculations. 

Yes, provided 

they can be 

expressed as 

closed-form, 

differentiable 

functions of 

Horvitz-

Thompson or 

calibration 

estimators of 

totals and 

means. They 

can be even 

freely defined 

by the user. 

ReGenesees 

linearises such 

estimators 

automatically, 

on-the-fly. 

Non-linear 

statistics have to 

be linearised 

first. 

Non-linear 

statistics 

have to be 

linearised 

first. 

Another 

solution is to 

use 

replication 

methods. 

* Reference is made to the packages sampling and survey presented in Section 3.5.
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7.6 Minimum effective sample size for longitudinal estimates 

 

As significant efforts are required to obtain panel data, it is only fair to require a certain level 

of precision for gross changes. Precision requirements for gross changes can be expressed as 

the minimum effective sample sizes that need to be achieved between any pair of consecutive 

waves. As in EU-SILC, let us consider a simple rotating design based on four rotation groups 

(once the system is fully established). The sample at a given year consists of four rotation 

groups which have been in the survey for 1-4 years. Any particular rotation group remains in 

the survey for four years; each year one of the four groups from the previous year is dropped 

and a new one is added. Between year t and t+1 the sample overlap is 75 %; the overlap 

between year t and year t+2 is 50 %; it is reduced to 25 % from year t to year t+3, and to zero 

for longer intervals. 

Figure 7.6.1: The EU-SILC rotating scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a panel sample is nested in a larger structure, as in the above figure, the precision of the 

panel sample must be linked to that of the larger structure. More precisely, in the above figure, 

the precision of the panel (2,3,4) between t and t+1 depends on that of the cross-sectional 

samples (1,2,3,4) at year t and (2.3.4.1’) at year t+1. For instance, the EU-SILC Framework 

Regulation (No 1177/2003 of 16 June 2003) specifies minimum sample sizes for both the 

cross-sectional and the longitudinal dimension. For any pair of consecutive years, sample size 

for the longitudinal component refers to the number of households successfully interviewed in 

the first year in which all, or at least a majority, of the household members aged 16 or over are 

successfully interviewed in both years. 
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In practice, there are often precision requirements for the cross-sectional samples (1,2,3,4) 

and (2,3,4,1’) too (as in EU-SILC). Let 
)(

min
cross

n  be the minimum sample size required at cross-

sectional level. If a proportion   of the sample  10   rotates out at each wave, then the 

minimum sample size between two consecutive waves is given by: 

  )(
min

)(
min 1

crosslong
nn   .   (7.6.1) 

Please note that in the above formula we assume that 
)(

min
cross

n  is fixed and we derive the 

)(
min
long

n . In the EU-SILC rotating scheme (Figure 7.6.1), we have 25.0 . In the case of a 

‘pure’ panel (that is, no rotation of the sample), we have 0 . 

(7.6.1) assumes full response from one wave to another, something which is, obviously, 

unrealistic. Therefore, when we set up precision requirements for gross changes, we should 

take into account the loss of accuracy caused by non-response between two consecutive 

waves. As a matter of fact, at least in the first years of the survey, many EU-SILC countries 

departed from Eurostat’s recommendation of having a four-year rotating design by rotating 

out less than 25 % of their sample at each wave. Thus, the longitudinal sample size was higher 

and the loss of sampling efficiency due to higher non-response was under control. This 

solution is interesting and could be generalised to all surveys which are based on rotating 

samples. Let us assume that a proportion   of the sample  10   rotates out at each 

wave. However, to accommodate a certain level of non-response between two consecutive 

waves, only a proportion    10    of the sample is actually replaced. The value of 

 can then be derived from  and the (predicted) response probability r between two 

consecutive waves is given by: 

r








1

1
.     (7.6.2) 

In panel surveys, r  is generally high, so   would be close to . Thus, by rotating out fewer 

sample units than initially planned, we can allow for a certain degree of non-response and 

then ensure that we achieve the minimum required longitudinal sample size that would have 

been achieved under full response, when a proportion  of the sample rotates out at each 

wave. 

An alternative solution is to issue minimum sample sizes for the longitudinal dimension on 

the basis of the minimum sample sizes required for the cross-sectional dimension, and by 

taking into account both the rotation rate and the probability of response between two waves. 

Thus, let 
)(

min
cross

n  be the minimum sample size required at cross-sectional level. Let us assume 

that a proportion   of the sample  10   rotates out at each wave and that there is a 

probability r  for a unit to respond at t+1 given that the unit has responded at t. Thus, the 

minimum longitudinal sample size between t and t+1 is given by: 

  )(
min

)(
min 1

crosslong
nrn   .     (7.6.3). 

This solution has the disadvantage of using a pre-determined value r for the response 

probability, which does not take into account the differences in response behaviour from one 

country to another. On the other hand, the former option (although we assume full response) 

leaves the responsibility of adjusting rotating schemes to the countries in order to meet the 

precision requirements. 
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