Advanced Heat Recovery for Oxy-Fuel Fired Glass Furnaces with OPTIMELT™ PLUS Technology

S. Laux, U. Iyoha, R. Bell, J. Pedel, A. Francis, K.T. Wu, and H. Kobayashi
Praxair, Inc., Danbury, CT, USA
OPTIMEHLT™ Thermo-Chemical Regenerator

- Reforming of Natural Gas in regenerators recovers significant heat in the flue gas of oxy-fuel furnaces
 - Regenerative system takes advantage of high operating temperatures
 - High efficiency non-catalytic reforming process
 - Recycled flue gas with CO₂ and water vapor is used for endothermic CH₄ reforming to CO and Hydrogen (syngas)
- Hot syngas is burned with oxygen in the furnace
- Regenerators roughly 1/3 the size of air-fired regenerators
- OPTIMEHLT advantages
 - Reduced energy consumption (~20% vs oxy-fuel)
 - Reduced CO₂ emissions
 - Reduced air pollutants to the level of oxy-fuel performance (NOx, SOx, CO, etc.)
- Extensive Development program started 2011
 - Demonstration at Pavisa and commercialization of OPTIMEHLT TCR
 - Introduction of combination with oxygen preheating: OPTIMEHLT Plus
OPTIMELT System at Pavisa

- **New**
 - Oxy-Fuel Flue Gas
 - Oxy-fuel system on stand-by as backup

- **Existing**
 - Side-fired oxy-fuel furnace converted to end-port TCR
 - Oxy-fuel system on stand-by as backup

Diagram Components:
- **TCR Flue Gas**
- **RFG Skid ~20%**
- **Regen Left**
- **Regen Right**
- **Natural Gas**
- **Oxygen**
- **TCR Skid**
- **Oxy-fuel Skid**
- **50tpd various colors**
Status Pavisa Furnace 13

- **Operation**
 - System in automatic and continuous operation since September 2014
 - System turned over to Pavisa, formal acceptance by Pavisa
 - Reliable operation (99.7% availability May/June excluding power failures)
 - Glass pull rate and quality continue to be within Pavisa requirements
 - Emissions in the range of emissions for Low NOx glass oxy-fuel burners
 - Energy reduction 15 to 18% - in line with expectations for 50tpd furnace
 - No fundamental TCR technology issues identified

- **Wide Flame Burner Gen III for OPTIMELT tested in Furnace 13**
 - New cooling concept to allow idle burners for future commercial projects
 - Tested successfully two months, temperatures are within material limits

- **End-firing of Oxy-fuel Combustion System as an alternative to the side-fired oxy-fuel burners installed in May**

- **Refractory testing in regenerators continues**

Pavisa continues to support ongoing OPTIMELT development
Regenerator and Checker Performance

- Summer Inspection: Checker in very good condition after 22 months
 - Passages free of deposits
 - No signs of corrosion
 - Light deposits at bottom, easy to clean
- Port neck and regenerator top refractory was not the right choice for application
 - Nepheline spalling of material in hottest zone
 - Better material identified, replacement 2016
- Lower regenerator walls and rider arches in very good condition
- Dampers, ducts and fan deposits
 - Cleaning no problem, no operational impact

Very encouraging results, valuable information for scale-up
Refractory Test Program Continues

- Refractory selection program tests are ongoing

- Test Rounds:
 - 1 completed: 8 months
 - 2 completed: 1 month (quick screening test for exclusion of refractories)
 - 3 currently ongoing for ~9 months
 - 4 in preparation

- Round 1 and 2 results were used in the selection of the refractory for next commercial project
 - Observed corrosion patterns typical for glass furnace conditions
 - SiO2 reduction by H2 /CO/C in syngas was not observed
 - Selection not a straightforward scientific process, actual testing is important
 - Very high alumina and Magnesia samples promising
 - Fused-cast AZS refractories superior to bonded material
 - Surprising differences in same classes or material due to details in composition and manufacturing matter

Technology Development guided by Pavisa Refractory Exposure Tests
OPTIMELT Status Leerdam 1

- Installation on tableware furnace
 - Praxair VPSA oxygen supply with liquid oxygen backup
 - Libbey Motivation: fuel and oxygen savings, emissions, sustainability

- Partial Project funding by EU (LIFE Grant LIFE15 CCM-NL-000121)

- Engineering and Design phase nearly complete
 - Sorg: Furnace, Regenerators and Oxy-fuel system
 - Praxair: OPTIMELT system and JL Oxy-fuel Burners

- Procurement underway
 - EU fabrication requirement

- Construction and startup 2017

LIFE15 CCM/NL/000121
OPTIMELT™ Plus Technology

- High efficiency non-catalytic reforming process (OPTIMELT) coupled with regenerative oxygen preheating (Plus)
- Recycled flue gas with CO₂ and water vapor is used for CH₄ reforming
- Regenerative system allows high operating temperatures/reforming rate

US Patents 6,113,874 and 5,921,771

TCR Endothermic reforming reactions:

\[\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \quad 2060 \text{ kcal/Nm}^3 \quad \text{CH}_4 \ (215 \text{ Btu/scf-CH}_4) \]
\[\text{CH}_4 + \text{CO}_2 \rightarrow 2\text{CO} + 2\text{H}_2 \quad 2630 \text{ kcal/Nm}^3 \quad \text{CH}_4 \ (275 \text{ Btu/scf-CH}_4) \]
OPTIMELT Plus Benefit

- OPTIMELT Plus improves the heat recovery by another 5% in comparison to OPTIMELT
 - Example heat and mass balance comparison of the two heat recovery technologies below
 - 240 t/d container furnace with 1 MW electric boost and 30% cullet ratio

<table>
<thead>
<tr>
<th></th>
<th>Oxy-fuel baseline</th>
<th>OPTIMELT TCR</th>
<th>OPTIMELT Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Input</td>
<td>GJ/t</td>
<td>4.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>MMBtu/ton</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Fuel Savings</td>
<td>%</td>
<td>base</td>
<td>21.3</td>
</tr>
<tr>
<td>Flue Gas Temperature</td>
<td>°C</td>
<td>1500</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>2700</td>
<td>1200</td>
</tr>
</tbody>
</table>
System Layout

- Oxygen preheating to ~1200°C with second set of regenerators
- Total checker volume less than OPTIMELET
- Concept engineering and costing complete for 240tpd furnace

Front: TCR Syngas Regenerators
Back: Oxygen Regenerators
Flame is formed at the interface of hot syngas with hot oxygen
- Technology to shape flame similar to OPTIMELT TCR
- No overheating of ports, walls or crown
- Flame can be positioned in furnace to achieve desired heat transfer
- Combustion technology prevents large area of unburned fuel in the furnace
Options for Heat Recovery

- OPTIMELT TCR flue gas leaves regenerators at ~650°C (1200°F)
- Technology can be combined with many heat recovery options
 - Regenerative oxygen preheat: OPTIMELT Plus
 - Integrated batch/cullet or cullet preheating
 - No air dilution required due to lower temperature of flue gas
 - Requirement to remove the organic fume/odor from the flue gas after a cullet preheater
 - Additional heat recovery options from flue gas
 - Boiler and turbine (ORC)
 - Steam boiler to generate reforming steam for TCR
 - Recuperative oxygen preheat to ~500°C

- Regenerative oxygen preheating
 - Stand-alone preheater to ~1200°C
 - Combination with batch/cullet preheating
Examples of Heat Recovery Options

TCR Heat recovery (~20% fuel savings vs. oxy-fuel baseline)

TCR – Cullet preheater heat recovery

TCR – Boiler heat recovery (Steam injection without FGR)
Fuel Savings of Heat Recovery Options

Results of heat and mass balances (300tpd container furnace at 50% cullet)

<table>
<thead>
<tr>
<th>Case</th>
<th>Heat Recovery System</th>
<th>Fuel Savings (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxy-fuel</td>
<td>baseline</td>
</tr>
<tr>
<td>2</td>
<td>OPTIMELT Thermochemical Regenerator (TCR)</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>OPTIMELT Plus (TCR with O2 Regenerator)</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>OPTIMELT TCR with Cullet PH</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Oxygen Regenerator (100% O₂ purity, PH to 1200°C)</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Oxygen Regenerator with Cullet PH</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Oxygen Regenerator with Batch/Cullet PH</td>
<td>28</td>
</tr>
</tbody>
</table>

- Efficient heat recovery with OPTIMELT lowers level of available heat
- Further heat recovery feasible (some options with diminishing returns)
- Integration issues and environmental impact must be considered

Additional CAPEX must be balanced against incremental heat recovery
Summary

- Praxair’s OPTIMELT™ Thermochemical Regenerator (TCR)
 - High reduction of fuel consumption
 (container furnace: ~20% vs oxy-fuel, ~30% vs. air-regenerative)
 - Reduces CO₂ emissions
 - Reduces air pollutants to the level of oxy-fuel performance
 (NOx, SOx, CO, etc.)

- Pavisa System in automatic and continuous operation

- Two commercial size projects in engineering phase
 - Libbey L1: end-fired tableware furnace with side-fired oxy-burners
 - Customer 2: 240 tpd end-fired container furnace (flint glass) with end-fired oxy-burners

- OPTIMELT™ Plus – a novel technology that maximizes heat recovery without large equipment addition
Thank You for your Attention!

Please stop by at our booth at the Hilton!
Stefan_Laux@Praxair.com