Eco-innovation for Air-Quality, Sofia 5-6/2/2018

“Global system for Sustainable TRAffic management”

- LIFE GySTRA -
LIFE16 ENV/ES/000082

Mª Dolores Hidalgo Barrio
LIFE GySTRA - LIFE 16 ENV/ES/000082

BUDGET INFO:
Total amount: 1,567,625 Euro
EC Co-funding: 52.16%

DURATION: Start: 01/09/2017 - End: 30/11/2020

PROJECT’S IMPLEMENTORS:
Coordinating Beneficiary: CARTIF
Associated Beneficiary(ies): RSLAB (now OPUS-RSE), CIEMAT, DGT, Stadt Graz
PROJECT BACKGROUND
Nowadays, air pollution is one of the main environmental challenges in Europe.

Air pollution causes significant environmental impacts on natural ecosystems.
(Road) Traffic is a very important source of air pollution.
As for environment traffic contributes with up to 60% of the total NO\textsubscript{X} emissions in European Cities. NO\textsubscript{X} is one of the most dangerous pollutants because it generates the tropospheric ozone.

NO\textsubscript{x} and SO\textsubscript{2} emissions cause acid rain.

Incomplete combustion of hydrocarbons results in CO pollution, a leading cause of global climate change.

Fine particles reduce visibility and, when settling on land or water, affect local ecosystems.
As for health, CO directly affects the cardiovascular system in case of chronic exposure to this gas. NOx are highly toxic and responsible for a rise of cases of asthma, strokes, heart attacks or cancer.

The PM, are related to DNA degradation, cancer, cardiovascular and respiratory problems, neurodegenerative lesions, etc.

In figures, these pollution problems cause annually up to 1.3 million of premature deaths in the whole world.
As for the economy, the breach of air quality standards of the European Union involves the payment of a fine, to which the economic costs related to health and public maintenance are added, since air pollution is directly related to diseases and deterioration of buildings.

In total, air pollution is an environmental problem which in economic terms represents costs of 100,000 M€ per year in the EU.
Environmental problem targeted

The **CORETRA project**, demonstrated, using technology RSD*, that 6.4% of the most polluting vehicles are responsible for more than 35% of total emissions of CO, NOx, HC and PM (Madrid, 2014-2015).

*NO$_2$, key traffic pollutant, was not measured because current RSD did not include this possibility.

High Emitters are:
- heterogeneous and include modern vehicles (e.g. Euro V).
- vehicles that passed a Periodic Technical Inspection (PTI).
The CORETRA project, demonstrated, using technology RSD*, that 6.4% of the most polluting vehicles are responsible for more than 35% of total emissions of CO, NOx, HC and PM (Madrid, 2014-2015).

*NO₂, key traffic pollutant, was not measured because current RSD did not include this possibility.

High Emitters are:
- heterogeneous and include modern vehicles (e.g. Euro V).
- vehicles that passed a Periodic Technical Inspection (PTI).

WHY?
Pollutant emissions from motor vehicles are initially controlled from their manufacture before bring them onto the market.

However, the reality is that these tests are performed on "bench" without circuit tests and within specific driving cycles. Therefore, real driving emissions from vehicles in urban areas differ from the official data.

Once in circulation, the vehicle must overcome Periodic Vehicle Technical Inspection (PVTI).

PVTI is not made in real driving conditions, the vehicles are stopped and accelerated and not all relevant pollutants are measured (only CO and opacity to visible light).
Pollutant emissions from motor vehicles are initially controlled from their manufacture before being brought onto the market. However, the reality is that these tests are performed on "bench" without circuit tests and within specific driving cycles. Therefore, real driving emissions from vehicles in urban areas differ from the official data.

Once in circulation, the vehicle must overcome Periodic Vehicle Technical Inspection (PVTI). PVTI is not made in real driving conditions; the vehicles are stopped and accelerated and not all relevant pollutants are measured (only CO and opacity to visible light).
Environmental problem solution?

Identifying High Emitters is not intuitive at all.

10% of the most emitting vehicles contribute to 50% of total emissions.

50% of the HE are vehicles misaligned with an average age of 2 years.

Repairing the HE implies significant reduction both in emissions and fuel consumption.
How can we identify HE?

(1) PTI: Idle test / acceleration test carried out with intrusive analyser in the Periodical Technical Inspections.

(2) CVS: Laboratory test carried out with CVS analyser and dynamometers in order to simulate the engine load.

(3) OBS-PEMS: On-Board Systems or Portable Emissions Measurement Systems are devices installed in the vehicle to measure their emission levels.

(4) RSD: Remote Sensing Devices, traditionally not suitable to be used in high capacity roads.
Main Objectives

- To establish a real and effective policy for sustainable mobility, both for city traffic as for public transport fleets.
- To implement actions that achieve the reparation of the vehicles that are polluting beyond the defined thresholds (High Emitters).
Main Objectives

- To establish a real and effective policy for sustainable mobility, both for city traffic as for public transport fleets.
- To implement actions that achieve the reparation of the vehicles that are polluting beyond the defined thresholds (High Emitters).

HOW?

With the creation of a global emission management system using a newly developed RSD adapted to the EU requirements by including NO$_2$.
Main Objectives

- To establish a real and effective policy for sustainable mobility, both for city traffic as for public transport fleets.
- To implement actions that achieve the reparation of the vehicles that are polluting beyond the defined thresholds (High Emitters).

HOW?

With the creation of a global emission management system using a newly developed RSD adapted to the EU requirements by including NO₂.

RSD+
The RSD+ will measure CO, HC, CO₂, NO and NO₂ via nondispersive infrared spectroscopy (for the carbon species) and dispersive ultraviolet spectroscopy (for nitrogen species) in less than 0.5 seconds via the exhaust of vehicles.

RSD+ software determines the ratios of CO/CO₂, HC/CO₂, NO/CO₂ and NO₂/CO₂ in the diluted and dispersed exhaust plumes and applies the mathematics of chemical mass balance of internal combustion to calculate tailpipe concentrations that are corrected for water and excess air.

RSD+ also calculates a total obscuration factor (termed a “smoke factor”) that is a fuel specific exhaust opacity measurement.

RSD+ technology is prepared to measure in the European roads in fixed locations, similar to speed radars.
How can we identify HE?

<table>
<thead>
<tr>
<th>Scope</th>
<th>Static Test</th>
<th>On Board</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) PTI</td>
<td>(2) CVS</td>
<td>(3) OBS-PEMS</td>
</tr>
<tr>
<td>CO and Opacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC, CO, NOₓ and PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC, CO, NOₓ and PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC, CO, NO and PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real driving emissions?</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Accuracy? Regulated use?</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Number of vehicles analyzed per hour?</td>
<td>10</td>
<td>3</td>
<td>1 per PEMS</td>
</tr>
<tr>
<td>Data automation and integration?</td>
<td>None</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Deployment</td>
<td>Indoor</td>
<td>Indoor</td>
<td>On board</td>
</tr>
<tr>
<td>Costs by vehicle analyzed</td>
<td>50 €</td>
<td>2,000 €</td>
<td>1,500 €</td>
</tr>
</tbody>
</table>

Remote

(5) RSD+

HC, CO, NOₓ and PM

Yes

High ISO 17025

< 3,000

Full

Multiple lanes roads

0,1 €
RSD+ prototype

RSD
Available in the market

RSD+
NOT commercially available

- NO\textsubscript{2} included
- Fixed design
- DGT Control Centre Integration (Estrada System)
- Design according to European Standards
- Lower cost manufacturing
- Increase the daily vehicles collected
- Designed in Europe
The innovation, in terms of instrumental matter, lies in that this is the first device that measures remotely all emissions included NO$_2$ in a fixed manner with a cutting-edge software that allows, in less than 0.5 seconds, controlling:

- Emissions (NO$_2$ added).
- License plate.
- Conditions that have influence in the measurements such us kinetics (speed and acceleration).
- Environmental conditions (temperature, pressure, humidity, direction and speed of the wind).
Specific Objectives (1)

- Demonstration of RSD+ technology at TRL7.

- Implementation of a solid sustainable mobility policy with the following aims:
 - Control and quantification of real driving traffic emissions.
 - Creation of a global emission management system for two types of users.
 - **Public model**: directed to public entities (municipalities, ministries,..) with legislative power to reduce up to 20% of traffic emissions through the identification of high emitters, notification and repair, to receive benefits (e.g., access to low emissions zones) or to avoid penalty payments. This will depends on the final decision of the enforcing administrations.
 - **Fleet model**: directed to private or controlled fleets (e.g. urban buses) to reduce up to 20% of vehicles emissions and 3-5% of fuel consumption.
Specific Objectives (2)

- Demonstration that the application of the emissions management system has a long trajectory since it will not only be implemented by Spanish or Austrian administrations.

- Publication and dissemination of the results to different interest groups: scientific circles, public administrations, private companies, consumers and automobile associations, etc., in order to replicate the model in further EU member states.
Actions (1)

- Development of RSD+
 - Construction of the first prototypes of the new technology, RSD+, adapted to the European market (OPUS RSE).
 - Verification of the technology and the validity of the measures (CIEMAT).
Actions (2)

- Creation of the **public model** - actions in Madrid.
 - Installation of RSD+ in roads and massive data collection campaign (OPUS RSE).
 - Integration with national database of vehicles (DGT).
 - Validation of the measurements by comparison test with known gas concentrations (CIEMAT).
- Notification to drivers who exceed a certain emission threshold. In case of not repairing the vehicle identified as high emitter, they will be fined (DGT).
- Quantification: evaluation of the environmental, socio-economic and technical-economic impact of the project (CARTIF).
Actions (3)

- Creation of the fleet model - actions in Graz.
 - Installation of RSD+ in bus station and data collection campaign (OPUS RSE).
 - Notification to the responsible of the fleet of HE identified (GRAZ).
 - Follow-up of vehicles repair (GRAZ).
- Quantification: evaluation of emissions avoided, fuel consumption savings and indirect costs savings (e.g. public health and cleaning) (GRAZ and CARTIF).
 Actions (4)

- Sustainable mobility reference model. Transference and replication:
 - Barcelona
 - Lille
 - Göteborg
 - Valladolid
 - Graz (full implementation)
 - Madrid (full implementation)

- Active dissemination of the project and its results.
Expected results (1)

- Sustainable mobility policy based on a legal frame to identify high emitter vehicles (HE) and reduce traffic emissions.

- Develop RSD+ prototypes which complies with EU standards, small and versatile, able to be installed in fixed locations, with uncertainty less than 15% applied to all the emissions: NO, CO, HC and PM, and NO\(_2\).

- Model replicable, with two different approaches:
 - a public model based on a policy deployed through a legal framework for the control of emissions from city traffic and,
 - a private fleet model for control and regulation of traffic emissions from the vehicle fleet.

- Dissemination of the results to more than 50,000 people from all sectors.
Expected results (2)

Public model:

- In the Spanish pilot (Madrid), **700,000 vehicles per year** will be monitored with 2 RSD+ devices (30% of fleet in Madrid).
- Circa 5% will be identified as HE.
- With the repair of HE it is expected to achieve reductions of CO, HC and NOx emissions of 617 t/y, 89 t/y and 518 t/y, respectively, in Madrid.
- The projection for all the country would be 17,779 t/y, 2,463 t/y and 15,320 t/y, respectively, this is an estimated emission savings of 14.8% (CO), 2.8% (HC) and 22.7% (NOx, NO and NO₂) of the total volume of emissions according to the numbers of the Inventory of the Emissions to the Atmosphere in Spain (MAGRAMA).
Expected results (3)

- **Fleet model:**
 - In the Austrian pilot (Graz) a controlled fleet of 150 buses will be continuously monitored.
 - Identifying 6% of HE and repairing them their emissions will be reduced by up to 84%, contributing with a saving of up to 17% and an average of 9% of the total bus fleet.
 - Fuel savings are expected to be 3-5% of HE.
Thank you for your attention

More information:

dolhid@cartif.es
www.lifegystra.eu