

RESOURCE EFFICIENCY Using less, living better

Outline of the

EuroBioRef Project

Coordinator: Prof. Franck Dumeignil (UCCS-FR)

Speaker: Michele Aresta (CIRCC-IT)

7th FP Call

Call of the 7th Framework Programme: **COLLABORATIVE PROGRAMME**

Joint Programme FP7-2009-BIOREFINERY-CP

- Nanosciences, Nanotechnologies, Materials and new Production Technologies
- Energy
- Food, Agriculture and Fisheries, and Biotechnology
- **Environment (including Climate Change)**

The four Sister Projects

4 years

Johan Elvnert

2 years

Star-COLIBRI

www.suprabio.eu www.star-colibri.eu

12 Partners

6 Nationalities

Mickaël O'Donohue

Ashok K Bhattacharya

Franck Dumeignil

urobioref

INRA

http://eurobioref.org/

37.4 M€

23 M€

28 Partners 14 Nationalities www.biocore-europe.org

20.3 M€

14 M€

24 Partners

13 Nationalities

19 M€

12,5 M€

17 Partners

8 Nationalities

A Large-Scale Project

• 28 Partners

• 14 Nations

4 Years

• 3,344.4 Person Months

- 38 M€ of Global Budget, 23 M€ of EC grant
- 10 Sub-Projects, 35 Work Packages, 153 Tasks
- 59 Milestones

• 214 EC Deliverables

Consortium

Competencies within the Partnership

Preamble

An Integrated European BioRefineries Network

Start date: 1st March 2010

Duration: 4 years

Next Generation Biorefinery

EUROpean Multilevel Integrated BIOREFinery Design for Sustainable Biomass Processing

EuroBioRef will bridge the gap between agriculture and chemical industry by integrating the whole biomass chain in a Multi-feedstock (non-edible), Multi-process (chemical, biochemical, thermochemical), Multi-products (aviation fuels and chemicals) commercially viable and adaptable approach for a sustainable bio-economy in Europe.

Objectives

Produce a large diversity of sustainable biomass

- Produce high energy aviation fuels
- Produce multiple products
- Improve cost-efficiency by 30 %

- Reduce time-to-market by 30 %
- Produce zero waste and rationalize the use of raw materials

Concept

Several examples

RESIDUAL MATERIALS FROM AGRICULTURE AND FORESTRY

Target products

Technical Advancement

Technical Advancement

- Crop rotation optimization, selection of appropriate sustainable biomass feedstock;
- Rationalization/optimization of chains including logistics and LCA considerations;
- Quality control of a variety of feedstock for a variety of end-products;
- Elaboration of multidisciplinary processes combining various technologies;
- Demonstration of sub-units at the lab-scale, the pilot scale, the industrial level;
- Integration of several reactions and separation steps.

Scientific Innovation

Scientific Innovation

- Methods for conceptual process design in the chemical sector towards bio-/chemical applications;
- Novel heterogeneous, homogeneous, enzymatic catalytic systems;
- Novel low energy separation techniques;
- Novel reactor technologies;
- Co-products reutilization/ valorisation technologies;
- Integrated reactions and separation technologies;
- Development of new purification technologies using green solvents.

Expected Business Results

Expected Business Results

- Demonstration of the economic and technical over performance of bio-based products including bio-aviation fuels and chemical commodities markets;
- Demonstration of the increase in economical performance due to the use of second generation feedstock;
- Demonstration of the sustainable value chain of non-food crops cultivated in synergy with food-crops;
- Definition of final products specifications and tests of new products (blend of several components to yield bio-aviation fuel).

Sustainability Assessment and Performances

Sustainability Assessment and Performances

- Specific logistics methodology for cultures in North and South of Europe;
- LCA methodology for evaluation of environmental performances;
- Economic modelling for assessment of the economic viability;
- Sustainable assessment of the whole chain for economics.

First year results

- Non-edible crops grown in field tests. We are seeking seed providers;
- Strategy for culture rotations and combinations: on the way for finding synergies between edible and non-edible crops;
- Non-edible crops: additional revenues for farming communities generated from new side-businesses;
- Development of an **efficient and versatile pre-treatment technology for lignocellulosic materials**: further evaluated in a pilot plant in Norway.
- Extraction of castor, jatropha and lunaria oils;
- Strong integration of the thermochemical, chemical/catalytic and biochemical processes: some **lab work is already ready for demonstration**;
- LCA (carbon footprint + socio-environmental and economic impact assessments): specific tools being developed; harmonisation efforts with major sister projects in the EU;
- Strong power of **dissemination and education**, *e.g.*, first EuroBioRef **Summer School** on the 18-24th September 2011, Italy (see http://eurobioref.org). A **textbook** will be edited for this occasion.

Common Goal

EUROpean Multilevel Integrated BIOREFinery Design for Sustainable Biomass Processing

Acknowledgement

The research led in this project has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under grant agreement n°241718.

