A Swedish CBA on acidification abatement -THE CAFE BASELINE SCENARIO

Mohammed Belhaj, Stefan Åström, Catarina Sternhufvud,

(-An economic assessment of the negative impacts of ozone on the crop yield and forest production at the Östad Estate in south-west Sweden (Karlsson P-E, et al) Ambio no1, 2005)

Two cost scenarios

The deposition and emission levels used for the CBA scenario are based on the 'Climate Protocol, current legislation' (CP_CLE) scenario as developed by IIASA for the CAFE programme. The CP_CLE shows the European emission levels that will follow from the implementation of current and coming European legislation. The costs of abating pollution when implementing the CAFÉ baseline scenario are considered in two scenarios.

1. The Source Contributor scenario

Only countries for which we have cost information are considered. These countries are called the Source Contributors in the text. They basically constitute the EU 25, with the slight difference that not all of the countries in the EU 25 contribute to acidifying deposition over Sweden

2. The tax payer scenario

This scenario uses a study boundary regarding Sweden in order to give costs and benefits that only affect the Swedish taxpayers

Swedish emissions (kton/year)

Pollutant	2000	2010	2020
SO ₂	57.6	54	50.4
NO _x	251.4	192.4	150
NH ₃	53.5	51.2	48.5

Source: www.iiasa.ac.at

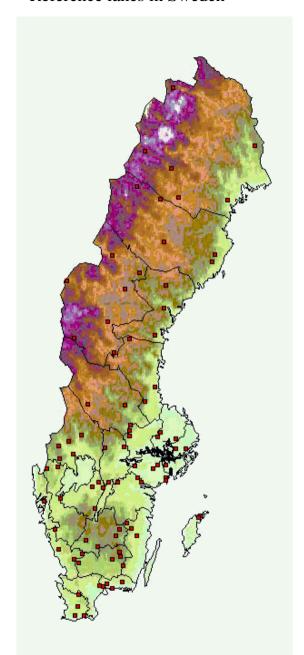
Table 25: Contributors to the deposition of Sulphur over EMEP 150*150 grid cell [21 22]

	Sulphur deposition g S m ⁻²	Percentage
Source region		
Belgium,	2.41	0.7
Czech Republic	3.12	0.9
Denmark	2.98	0.9
Estonia	0.65	0.2
Finland	2.78	0.8
France	4.77	1.4
Germany East	6.26	1.8
Germany West	11.42	3.3
Hungary	1.77	0.5
Italy	0.49	0.1
Latvia	0.99	0.3
Lithuania	2.87	0.8
Netherlands	1.86	0.5
Poland	49.08	14.1
Slovakia	0.87	0.3
Spain	0.38	0.1
Sweden	22.21	6.4
United Kingdom	5.56	1.6
Source Contributors deposition %		34.7

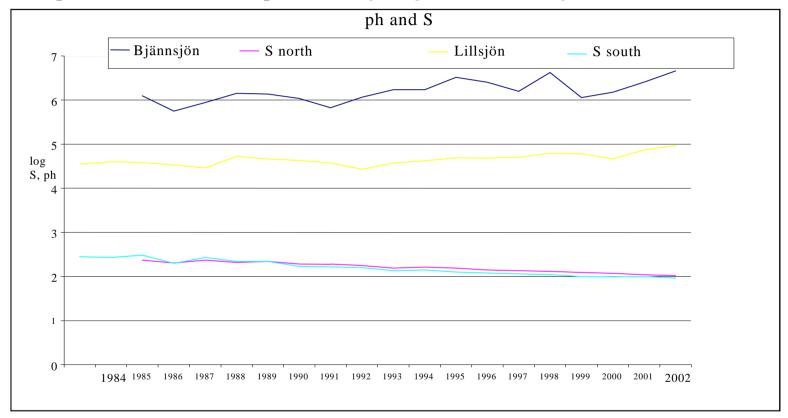
Source: adapted from www.iiasa.ac.at

Biodiversity

- -Since there is no definitive measure of biodiversity,
- -Since most reliable information is available on fish population,
- -Since in the different studies- respondents are willing to pay to maintain and enhance fish stock in lakes and watercourses.


This study relates to the totality of the fish habitat in lakes represented by fish stock used as a proxy for the preservation of ecologically significant species.

pH levels and acidity


PH	Condition
> 6.8	Nearly non-acid
6.5-6.8	Weakly non- acid
6.2-6.5	Fairly non-acid
5.6-6.2	Acid
<5.6	Highly acid

Source: Swedish EPA (2005).

Reference lakes in Sweden

\boldsymbol{S} deposition at two sites and pH in lake Bjännsjön and lake Lillsjön

Characteristics of the sample

	PH North	Sulphur North (ton)	Ph South	Sulphur South (ton)
Mean	6.24	171.3	4.65	171.9
Std Deviation	0.25	43.26	0.13	71.32
Minimum	5.75	105	4.42	92
Maximum	6.66	235	4.97	305
Number of observations		49		78

Regression estimates

Variable	North	South
Intercept	9.23	5.76
	(8.79	(27.93)
S deposition	-1.38	-0.50
	(2.86)	(5.38)
Number of observations	49	78

Valuation studies

Reference	Value	Method
Johansson & Kriström (1988)	-4500 SEK elimination of sulphur emissions	CVM
Johansson (1989)	-555 SEK Preservation of endangered species	CVM
Toivonen et al (2000)	-408 SEK to preserve fish stock (1999 prices)	CVM
Laitila et al (2002)	-46.61 for an extra fish caught	CVM
	-15.60 SEK. Extra fish caught	
Paulrud et al (2003)	-(24-160) SEK for doubling the # of fish (average =	CVM
	92)	
	-26 SEK for doubling the kilo of fish	
	-44 SEK for an extra fish to bring home	
Paulrud et al (2003)	-17 SEK for an extra small fish	CVM

Relation between fish stock and pH values in Sweden

Fish stock %	20	25	50	80	90	95	
PH	4.64	4.80	5.61	6.58	7.15	7.64	

Yearly benefits of biodiversity due to acidification reduction in Sweden (€)

		PH liı	mit 6.58			pH lin	nit 7.93	
WTP	0.42	1.61	2.8	10.8	1.5	5.6	9.7	37.7
Total benefits (mio)*	0.4	1.7	2.9	11.2	1.5	5.8	10.1	38.9
Total benefits(mio) **	1.7	6.5	11.3	43.9	5.9	22.7	39.6	153

^{*)} if 14% fishing population (only adults and elderly and 0-17 not included, **) if 55% fishing population.

In the case of MWTP of 24 SEK (2.2 €), this value would correspond to around 0.42 €in the case of increasing the pH levels from the status quo situation to 6.58

PV of Costs for the Swedish TP and SC scenarios

	Taxpayers scenario	Source contributor scenario
SO2 abatement MC	10.56	49.9
NOx- stationary abatement MC	106	118.4
NH3 abatement MC	4.8	4.4
Total	121.4	172.8

Biodiversity benefits (million \in_{2000})

	PV
Biodiversity – fish occurrence concerning 14 % of the Swedish population	19.02
Biodiversity – fish occurrence concerning 55 % of the Swedish population	74.71

Benefits of reduced base cation depletion (million \in_{2000})

	PV
Total acid equivalent reduction	14.86
Reduced base cation depletion if dep > CL	12.72

Benefits of reduced corrosion (million \in_{2000})

	PV
Construction material	31.28

Health benefits (million $€_{2000}$)

	PV
Reduced days of breathing discomfort from NO2	0.017
Reduced mortality from NO2 - elders	10.290
Congestive heart failure - elders	0.047
Restricted activity days - adults	7.707
Bronchodilator usage - asthma adults	1.814
Cough - asthma adults	2.101
Lower resp symptoms - asthma adults	0.135
Bronchodilator usage - asthma children	0.131
Cough - asthma children	0.255
Lower resp symptoms - asthma children	0.035
Respiratory hospital admission (RHA)	0.039
Cerebrovascular hospital admission	0.364
Chronic mortality - deaths	86.690
Chronic bronchitis - adults	11.010
Chronic cough – children	0.370
(Chronic mortality - non-discounted VSL	194.0

Net present value

	Tax payer, (TP)	Source contributor, (SC)	Control scenario, TP	Control scenario, SC
Estimates:	121.2	69.8	204.6	144.3

Sensitivity analysis

Scenario Summary						
Variable Discount rate						
Changing Cells:						
Discount Rate	0%	2.00%	4.00%	6.00%	8.00%	10.00%
Mortality (million €)	1.00	0.70	0.49	0.35	0.25	0.18
Net benefit (million €):						
TP	316.50	191.86	121.24	80.08	55.39	40.12
SC	262.25	139.32	69.76	29.24	4.93	-10.09