Workshop on Implementation of EU regulations related to Newcastle disease, Avian influenza, West Nile and Mycoplasma
AGR 51516
Belgrade, Serbia; 24-25 February 2014

Etiology, pathogenesis, clinical signs and diagnostics in different species, sampling and laboratory methods for detection of West Nile virus and disease

Tamás Bakonyi1,2 and Norbert Nowotny2,3

1Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
2Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
3Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
West Nile fever aetiology: West Nile virus (WNV)

- Member of the *Flaviviridae* family, *Flavivirus* genus, Japanese encephalitis virus serocomplex
 - relative of the Yellow fever virus, Dengue virus, Tick-borne encephalitis virus, etc.
 - +ssRNA genome, ~ 11,000 base
 - 3 structural and 7 non-structural proteins
 - stem-loop structures at the UTR regions
 - icosahedral capsid
 - enveloped
 - relatively weak resistance (heat, detergents)
 - strong antigen
 - the E glycoprotein is the neutralizing Ag
 - one serotype
 - cross-reactions with other flaviviruses
• WNV genome
• **WNV genetic diversity**
 – Two main genetic lineages

Lanciotti et al.
• **WNV genetic diversity**
 – Two main genetic lineages
 • lineage 1: worldwide distributed
 – topotype strain: Eg101 (Egypt, 1951)
 – three clades (~ geographic distribution)
 – virulence–variants
 • lineage 2: limited distribution
 – topotype strain: B956 (Uganda, 1937)
 – Sub-Saharan Africa and Madagascar
 – strain Q3574-5 isolated in 1968 from a migrating Barred Warbler (*Sylvia nisoria*) on Cyprus (Watson et al. 1972)
- **WNV genetic diversity**
 - Two main genetic lineages
 - lineage 1: world-wide distributed
 - lineage 2: limited distribution
 - topotype strain: B956 (Uganda, 1937)
 - Sub-Saharan Africa and Madagascar
 - emergence in central Europe (Hungary) in 2004
 - emergence in Russia (Volgograd) in 2007
 - differences in virulence!
 - Further genetic lineages
 - lineage 3: Rabensburg strain
 - first isolation in the Czech Republic, from *Cx. pipiens*
 - reisolation in 1999 (*Cx. pipiens*) and in 2006 (*Ae. rossicus*)
 - no Rabensburg strain associated cases reported in the area
 - limited pathogenicity in mice
• **WNV genetic diversity**
 - Two main genetic lineages
 - lineage 1: world-wide distributed
 - lineage 2: limited distribution
 - Further genetic lineages
 - lineage 3: Rabensburg strain
 - lineage 4: LEIV-Krnd88-190
 - isolated in Russia (Caucasus) in 1998
 - isolated from ticks (*Dermacentor marginatus*)
 - virulence is unknown
• WNV genetic diversity
 – Two main genetic lineages
 • lineage 1: worldwide distributed
 • lineage 2: limited distribution
 – Further genetic lineages
 • lineage 3: Rabensburg strain
 • lineage 4: LEIV-Krnd88-190 (Lvov et al., 2004)
 • lineage 5: Indian isolates (Bondre et al., 2007)
 • lineage 6: Malaysian isolate (Scherret et al., 2001)
 • lineage 7: Spanish isolate (Vazquez et al., 2010)
WNV ecology

• Transmission cycle
 – natural hosts of WNV are wild birds
 • several species are susceptible (USA: 371 bird species)
 • frequent subclinical infections
 – varying length of viraemia
 – varying level of virus titre in the blood (amplifying host)
 – transient shedding with faeces and body fluids
 • certain species are more vulnerable
 – USA: 62% of the WNV positive dead birds were American crows and Blue jays
 – main vectors are mosquitoes
 • several species are potential carriers
 – USA: 62 WNV positive mosquito species reported
 – >98% of the positive pools are of *Culex spp.*
 – in Europe the principal vector is usually *Culex pipiens*
 » ornithophillic
 » overwinters in adult form
 » gradation in late summer and autumn
 – the extrinsic period is significantly influenced by the weather
infected mosquitoes

disseminated infection in mosquitoes

transmitting mosquitoes

ratio
days after feeding

Kilpatrick et al., PloS Path. 2008. 4/6, e1000092
Transmission cycle of WNV

- natural host of WNV are wild birds
- main vectors are mosquitoes
- tick are also potential vectors
- several other vertebrates are susceptible hosts
 - mammals (humans, horses), reptiles (alligators), amphibians (frogs)
 - incidental hosts – the mosquitoes’ choice
 - dead-end hosts – viraemia is lower than the mosquito infection threshold
- possible non-vectorial transmission
 - iatrogenic – blood transfusion, organ transplantation
 - intrauterine, lactogenic – reported in humans
 - accidental – necropsy, laboratory infections
 - peroral
 - scavenger birds – carrion feeding (i.e. caws)
 - birds of prey (i.e. goshawks)
 - virus shedding by faeces (common coots, grebes?)
WNV pathogenesis

- local multiplication → viraemia
- ~ 80% of the infections remain subclinical
- ~ 20% acute febrile illness – West Nile fever
- ~ 1-0.1% neuroinvasive infection – West Nile encephalitis
- neuroinvasiveness: tumour necrosis factor-α, toll-like receptors
- neuron apoptosis, inflammatory processes
- genetic markers of the virus may influence neuroinvasiveness
- antibodies emerge on 7-11. days post infection
- chronic infections are rare
 - shedding of WNV RNA in urine of humans several years after infection
 - detection of WNV RNA in brain tissue of birds years after initial infection
WNV – Clinical signs

- Animals
 - Birds
 - Frequent subclinical infections
 - Vulnerable species: raptors, corvids, passeriformes (?)
 - Poultry: goose
 - Encephalitis, weakness, inappetite, death
 - Mammals
 - Typically horses
 - Less frequently dogs, cats, sheep and others
 - Experimentally mice

- Humans
 - Incubation period of 2-15 days
 - West Nile fever:
 - Fever, headache
 - Nausea, vomiting
 - Rash, lymphadenopathy
 - Rarely hepatitis, myocarditis, pancreatitis
 - West Nile encephalitis
WNV encephalitis in humans

- Meningitis: Fever, nuchal rigidity, CSF pleocytosis
- Encephalitis: Altered mental status

- **Tremor (~94%)**
 - Sometimes associated with other viruses
 - Static / kinetic; sometimes with movement
 - Occasionally disabling

- **Myoclonus (~63%)**
 - Upper extremity, facial involvement most frequent
 - Nocturnal myoclonus
 - Both tremor and myoclonus – onset generally > 5 days following initial symptoms

- **Parkinsonism (~68%)**
 - Cogwheel rigidity, bradykinesia, postural instability
 - Rest tremor not observed
 - Seen both in encephalitis and meningitis cases

Sejvar et al., CDC
Acute flaccid paralysis (rare)
- Relatively young; lack of premorbid conditions
- May have absence of fever, headache
- Clinical hallmarks:
 - Onset during acute infection
 - Asymmetry of weakness
 - Absence of sensory changes
 - Elevation of CSF protein and WBC
- Multiple alternative diagnoses (stroke, GBS, myopathy)
- Syndrome actually localized to spinal anterior horn cells - resultant poliomyelitis
- Recognition could limit unnecessary diagnostic procedures, treatment
- Little or no improvement short-term

Rhabdomyolysis – acute destruction of skeletal muscle cells
- Infrequent manifestation of viral infection
- September 2002 – rhabdomyolysis reported in Chicago WNV patients: 14 cases
- Trauma, medication effect unlikely; further studies to assess association

Flaccid paralysis with sensory symptoms
- Neuropathic pain, causalgia, paresthesias
- Peripheral neuropathy, polyradiculopathy
- Optic neuritis
- Acute demyelinating encephalomyelitis (ADEM)
- Prenatal WNV infection with CNS developmental abnormalities

Sejvar et al., CDC
WNV encephalitis in humans

Clinical outcome data

• Fatality rates
 – 10% fatality rate in CNS disease
 – Elderly, immunosuppressed
 – Independent risk factors unknown

• Long-term outcomes in NYC:
 – >50% with continued impairment at 1 year
 – Only 37% considered fully recovered

• Follow-up telephone query data
 – Persistent / chronic headache
 – Concentration, memory difficulties
 – Overwhelming fatigue
 – Persistence of tremor, parkinsonism

• Paralysis – no short-term improvement

Sejvar et al., CDC
WNV – Diagnosis

- Epizootiology, clinical signs
 - seasonal (midsummer to fall) ~ infected mosquitoes
 - suspicion if CNS signs are seen

- Laboratory diagnosis
 - direct virus detection
 - virus isolation
 - immunohistochemistry, *in situ* hybridisation
 - RT-PCR, qRT-PCR
 - virus serology
 - cross-reactions! – TBEV, Usutu virus
 - virus neutralisation, plaque-reduction neutralisation test (PRNT)
 - haemagglutination-inhibition, indirect immunofluorescence, ELISA

- Differential dg.: from febrile illnesses with CNS signs
WNV – Laboratory diagnosis

- OIE World Organisation for Animal Health
- Chapter 2.1.20. West Nile fever
 - http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.20_WEST_NILE.pdf

B. Diagnostic Techniques

<table>
<thead>
<tr>
<th>Method</th>
<th>Population freedom from infection</th>
<th>Individual animal freedom from infection</th>
<th>Confirmation of clinical cases</th>
<th>Prevalence of infection – surveillance</th>
<th>Immune status in individual animals or populations post-vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nested RT-PCR</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Real time RT-PCR</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isolation in tissue culture</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IgM capture ELISA</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plaque reduction neutralisation</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Serum neutralisation</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Immunohistochemistry</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Test methods available for the diagnosis of West Nile fever and their purpose

Key: +++ = recommended method; ++ = suitable method; + may be used in some situations, but cost, reliability, or other factors severely limits its application; -- = not appropriate for this purpose.

Although not all of the tests listed as category +++ or ++ have undergone formal standardisation and validation, their routine nature and the fact that they have been used widely without dubious results, makes them acceptable.

RT-PCR = reverse-transcriptase polymerase chain reaction; IgM = immunoglobulin; ELISA = enzyme-linked immunosorbent assay.
WNV – Laboratory diagnosis

– OIE World Organisation for Animal Health
– Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2013
– Chapter 2.1.20. West Nile fever
 • http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.20_WEST_NILE.pdf

– Sample collection:
 • For direct virus detection
 – Animals with clinical signs
 » anticoagulant-treated blood
 » cerebrospinal fluid
 » urine, faeces
 – Dead animals
 » brain tissue (hindbrain, medulla, spinal chord)
 » myocardium, spleen, kidney, lung, liver, lymph nodes
 – Mosquitoes

 • For serology
 – blood serum
 – cerebrospinal fluid
Identification of the agent

- *In vitro* and *in vivo* culture – virus isolation
 - suckling mouse brain
 - RK-13, Vero, PK-15, primary goose embryo fibroblast
 - embryonated egg – allantoic / amniotic cavity inoculation
 - usually successful in the early stage of the infection
 - in BSL3 laboratory

- Immunohistochemistry
 - monoclonal antibodies (?)
 - successful in ~ 50%, if death is within 1 week

- *In situ* hybridisation – more specific, less sensitive

- RT-PCR
 - Conventional RT-PCR
 » detection from brain and tissue samples
 » pan-flavi systems – broad spectrum
 - Nested RT-PCR
 » higher sensitivity, higher risk of contamination
 » PBMC, mosquito pools
 - Quantitative, real-time RT-PCR
 » TaqMan – more sensitive and specific

Determination of the nucleotide sequence of the amplicon is useful
WNV – Laboratory diagnosis

- Serology
 - ELISA
 - Competitive, IgG ELISA
 - host-independent
 - cross-reactive with other flaviviruses
 - not discriminative (vaccination)
 - for screening
 - Equine IgM capture ELISA
 - for clinical diagnosis
 - Indirect immunofluorescence, haemagglutination-inhibition
 - Usually in-house assays
 - less specific, less reliable, more cross-reactions
 - for screening or for clinical diagnosis (seroconversion)
 - Neutralisation assays
 - PRNT, microtitre VN assay
 - most specific, less sensitive, indicates protection
 - in BSL-3 lab, time-consuming
 - for validation of the ELISA / IFA / HAI results
Acknowledgements:

Jolanta Kolodziejek Zoonoses and Emerging Infections Group, Clinical Virology,
Helga Lussy Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria

Bernhard Seidel Office of Ecology Research and Landscape Assessment, Persenbeug, Austria

Éva Ivanics Central Veterinary Institute, Budapest, Hungary
Károly Erdélyi
Krisztina Ursu

Emőke Ferenczi National Center for Epidemiology, Budapest, Hungary

Orsolya Kutasi Large Animal Clinic, Faculty of Veterinary Science, Szent István
University, Üllő, Hungary

Herbert Weissenböck Institute of Pathology and Forensic Veterinary Medicine, Department
of Pathobiology, University of Veterinary Medicine, Vienna, Austria

Katharina Brugger Institute of Veterinary Public Health, University of Veterinary
Medicine, Vienna, Austria
Acknowledgements

EU-FP7 projects
• EDENext 261504
• Vectorie 261466

TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’
TÁMOP-4.2.2.B-10/1
TÁMOP-4.2.1.B-11/2/KMR-2011-0003

EDENext and VECTORIE are funded by the European Seventh Framework Programme for Research and Development
Thank you for your attention!