

The co-innovation work in PURE-IPM

Towards innovation-driven research projects

Pieter de Wolf (DLO)
Walter Rossing (Wageningen University)

Frank Wijnands

Horizon 2020 workshop Brussels 14-1-2014

IPM: what and why

- Pesticide use in agriculture: risks for environment and public health (users, consumers)
- EU policy (SUD): reduce pesticide use and impact by means of Integrated Pest Management (IPM).
- IPM: management strategy
 - Prevention
 - Decision support
 - Interventions
 - Non-chemical
 - Chemical

PURE-IPM

- PURE-IPM: FP7 research project 'providing IPM solutions for selected EU farming systems'
- Specific work package dedicated to exploration of coinnovation approach in four pilots:
 - Wheat-based systems: DK, F
 - Outdoor vegetables: D, NL
- Aim: development of the approach
 - action research

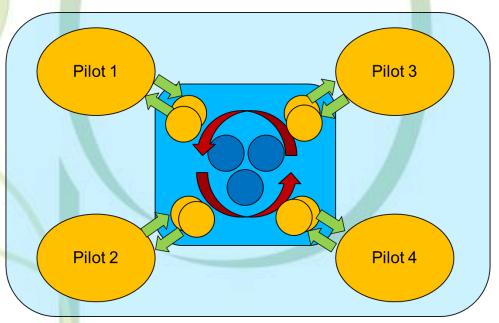
Co-innovation

Characteristic

- challenge or problem driven, focus on innovation
- a multi-actor process, based on equality, different expertises
- a social learning process
- Requires a different management approach
 - Exploration of challenges, agenda setting, system context, stakeholder involvement etc
 - Skills and tools

Innovation:

the implementation of a new practice that contributes to long term business continuation



Co-innovation pilots

- To develop a new practice for advisors & researchers:
 - Provide basic training, coaching,
 - Organise monitoring
 - Share learning
 - Group work as pilots
 - Monitor and evaluate:
 Action research

Structure

Two persons/pilot interact with

Core team with facilitator, monitor and trainers (on demand)

How we started

Basic point of view:

- IPM is a farmer-driven innovation in a
- multi-actor context (public and private demands)
- It is therefore multi-objective (economy agronomu=y) ecology etc)
- Pest management is integral part of the farming system
- Start with farmers outlook on the future
- Capture ideas and innovations

Denmark: facing the future

- Workshop with farmers and advisors
- Societal pressure on pesticide use
 - Scenario: ban on pesticides in the (near) future?
- Main problems perceived
 - Weeds
 - Diseases
- Solutions:
 - Wider row cropping
 - Mech. weed control
 - Variety mixtures

- Main question of the farmers:
 - What are the practical, agronomic and economic effects?
 - Can we influence society, policy and farmers with this approach (experimentation and communication)?
- Different on-farm experiments:
 - With parts of the concept on different farms
 - Facilitated by advisors
 - Exchage experience
- Communication:
 - Open field day for farmers (mechanical weed control)
 - Presentation of farmer for coop board

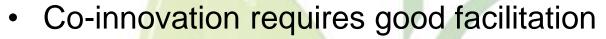
Denmark

- Summer/autumn 2012 very bad weather conditions:
 - spraying unavoidable
- Yield result almost comparable to 'standard'
 - Not bad, but still with spraying
- Issues:
 - Equipment
 - Practical skills
 - Impact at farm level (other crops)

 Start: INRA suggested management extensification, rejected by farmers (existing network)

In 2012/13: co-design workshops for individual farms

(research, advisory, farmers)



- Follow-up: different tracks
 - On-farm (implementation, experimentation)
 - Research / dissemination (general agronomical results)
 - Development of co-design approach (Reau et al, 2013)

Some reflections

- skills of facilitator and tools
- different attitude needed from researchers and advisors
- training & coaching

Key elements

- Exploring the future,
- System context,
- Stakeholder involvement,
- (Co) design
- Experimentation (conditions for)

facilitate learning, reflexivity dynamic learning agenda,

Project set up should allow dynamic approach

More reflection

- What's the role and function of (scientific) research for innovation in practice?
 - ITS NOT THE STARTING POINT
 - Research can have an important role (sometimes limited)
 - It starts with the challenge that is adressed
 - Providing input in the dialogue (status quo knowledge)
 - Listen and pick up innovations
 - Knowledge and innovation agenda
 - Engage in co-design and experimentation
 - More attention needed for innovation context
 - Research is not solely responsible for solutions and implementation, stakeholders need to be involved
 - Different actors different expertise different roles, respect that.

Co-innovation is not...

But it is...

Work in progress

With adequate road map, skills and tools It can deliver lasting results.