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1 Introduction 
 
In recent years a new consensus has emerged in macroeconomics in general and in model 
building in particular, the so called New Keynesian Paradigm (NKM). This paradigm is well 
established as can be seen from the prominent treatment in recent textbooks (see, for example 
Obstfeld/Rogoff) and literature surveys (se for example Clarida, Gali Gertler). In a sense the 
NKM paradigm combines elements from the RBC literature with more traditional Keynesian 
ideas. Traditional Keynesian models suffered from underdeveloped microfoundations and a 
lack of long term factors influencing the economy which made them subject to the Lucas 
critique. It also did not have a coherent theoretical explanation for the sluggish behaviour of 
prices it assumed. On the other hand, RBC modellers built their models up from the actions of 
optimising economic agents whose choices are made within specified constraints. The New 
Classical view of RBC modellers saw business cycles as largely the result of shocks to 
productivity and preferences, and downturns as merely the optimal adjustment of the 
economy to such disturbances. NKM models correct the RBC models by introducing frictions 
in goods, labour and financial markets in order to provide a better fit with actual data, but at 
the same time tries to model the frictions explicitly as constraints faced by households and 
firms. This allows combining optimal behaviour with rigidities in a way which avoids the 
Lucas critique.  
 
The QUEST model has been set up in the spirit of a NKM model, with a strong emphasis on 
theoretical consistency of the behavioural equations. However at the time when QUEST II 
was introduced the estimation technology for DSGE models was not sufficiently developed to 
allow for rigorous estimation and testing of these models. Large parts of these models needed 
to be calibrated. Following recent developments in Bayesian estimation techniques (see, e.g., 
Geweke 1999 and Schorfheide 2000), it has become possible to estimate these type of models. 
Smets and Wouters (2003) have been the first to estimate such a model for the Euro area. 
They followed Cristiano, Eichenbaum, and Evans (2001) and designed a DSGE model for the 
Euro area featuring price and wage stickiness, partial indexation of prices and salaries, 
external capital formation, variable capital utilisation rate and stochastic shocks to each 
structural equation of the resulting model. Smets and Wouters (2003) show that the current 
generation of New-Keynesian DSGE models is sufficiently rich to capture the time-series 
properties of the data, as long as a sufficient number of structural shocks is considered. In 
particular, it is able to match  the degree of empirical persistence found in the euro area data 
for inflation and wages quite well.  
 
This paper applies Bayesian estimation techniques to a time series data set of the euro area 
and presents estimates of a DSGE model. The purpose of this paper is not to estimate the 
current version of the QUEST model directly with these methods but rather to estimate a 
prototype new generation New-Keynesian DSGE model. This model can then serve as a 
benchmark for an estimation of a QUEST specification. In fact in some dimensions the 
QUEST model may need to be adjusted to come closer to a DSGE model.  
 
One of the common features between the QUEST II model and the estimated New-Keynesian 
DSGE model presented in this paper are that both, in the long run, closely resemble the 
standard neoclassical growth model. All behavioural relations are derived from dynamic 
optimisation problems of households and firms, with optimisation subject to technological 
constraints, budget constraints and/or institutional constraints, often captured as adjustment 
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costs. This leads to a description of economic behaviour that is a mixture of backward and 
forward looking behaviour. The main differences with the QUEST II model are in the 
specification of consumption. While consumption in the QUEST model is based on a 
permanent income model for finitely-lived households, as popularised by Blanchard (1984), 
in this DSGE model in contrast, consumption is derived from intertemporal optimisation for 
infinitely lived households, like in all other current DSGE models. However, consumption is 
modelled more backward looking by allowing for habit persistence (i.e. consumption 
decisions today depend partially on the previous pattern of consumption). On the other hand, 
QUEST allowed for liquidity constraints, a feature still missing in the consumption 
framework here. The differences in the investment specification are only of minor importance, 
with a stronger emphasis on adjustment costs here. The modelling of the labour market is 
substantially different. Here, like in other DSGE models, this is based on a neoclassical labour 
supply with monopoly power for workers. One of the distinguishing features of the QUEST 
model is the labour market specification derived from a theoretical search model based on the 
work by Pissarides (1990).  
 
The estimated model as presented here is still incomplete since it treats the Euro area as a 
closed economy. The closed economy setting was chosen because we first wanted to 
concentrate on the main aggregates consumption and investment as well as on prices and 
wages and their interactions. However, adding a trade sector would be among our first 
priorities for further extensions of this model. The model will then include a more explicit 
modelling of trade frictions within the framework of convex adjustment costs, which would 
distinguish it from the QUEST model, where trade is modelled through an ad-hoc 
specification of adjustment lags in quantities and prices. 
 
An important reason for estimating a DSGE model was also to be able to compare estimation 
results with the existing literature and to make sure that the estimation yields results which are 
consistent with the results obtained with similar specifications and similar datasets.  
 
The main goals of this exercise are: 
 
1) Demonstrate that models derived from economic theory can fit Euro area data, provided 
one allows for sufficient institutional restrictions. We compare the predictive performance of 
the estimated DSGE model with that of a VAR model estimated over the same euro area data 
set. (We intend to conduct a similar exercise for the US economy to see whether institutional 
constraints play the same role there). 
 
2) Identify the main structural shocks hitting the Euro area economy in a theoretically 
consistent way. An advantage of an explicit structural model is the fact that residuals can be 
given a structural interpretation, i.e. we can identify shocks which originate from 
consumption, technology, labour supply, labour demand, investment and fiscal and monetary 
policy. This may be of added value in trying to understand the nature of the current economic 
situation. For example, the model identifies a declining trend in government spending, which 
is reversed in recent years, a decline in price mark-ups, reflecting increased competitive 
pressures, a trend increase in total factor productivity in the 1980s, followed by a decline in 
the late 1990s and a trend increase in labour supply, reflecting a declining NAIRU. 
 
3) Provide the typical response of the economy to the individual shocks in the form of impulse 
responses, like in VAR studies, with the additional benefit that confidence intervals can be 
provided to show the uncertainty surrounding these responses. 
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The outline of the paper is as follows. Section 2 presents the model. In section 3 discusses the 
estimation methodology. Since estimation of these models is non standard a fairly 
comprehensive explanation will be provided. Section 4 presents the estimation results. In 
order to provide a more intuitive understanding for the quality of the fit of this model, a 
comparison with a simple VAR model is given. Section 5 presents and interprets the structural 
shocks identified by the model estimates and section 6 describes the dynamic adjustment of 
the euro area economy to structural shocks. 
 
 
 

2 The DSGE Model 
 
Households: 
 
The household sector decides about consumption and asset accumulation (including fixed 
capital). Each household supplies a specific variety of labour in a monopolistically 
competitive fashion, i.e. the household sector sets the wage given the demand curve for 
labour. When making decisions the household also faces adjustment costs for changing 
wages. These adjustment costs are borne by the household (see budget constraint). The 
household maximises a utility function subject to a budget constraint. The Lagrangian of this 
maximisation problem is given by 
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The household maximises a utility function over consumption, leisure and real money 
balances. Following the recent literature we allow for habit persistence in consumption. This 
is an important modification w. r. t. the current consumption specification in QUEST which 
was based entirely on a pure life cycle model. The current version allows for lagged 
adjustment of consumption and we choose a logarithmic specification  
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where  denotes a stochastic preference shock for consumption in period t. This 
specification yields the following expression for the marginal utility of consumption 
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The consumption index is itself an aggregate over different goods which are imperfect 
substitutes. The preferences of households are expressed by a CES utility function  
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where tτ  measures the inverse of the time varying elasticity of demand of households for 
consumption goods of type j. The term tτ  is given by 
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where  is a autocorrelated shock to the demand elasticity. τε t

 
For labour supply we use a CES utility function  
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where is a possibly autocorrelated labour supply shock. The marginal utility of leisure is 
given by 
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The household decides about consumption, asset accumulation and the supply of labour (or 
more correctly about wages) and real money holdings1. The first order conditions of the 
household (FOCs) with respect to consumption and financial wealth are given by the 
following equations: 
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The labour supply decision is slightly more complex, since it is assumed that workers have a 
certain market power in the labour market, because they offer services, which are imperfect 
substitutes to services offered by other workers. That means aggregate labour demand of firms 
is a composite of labour supplied by individual workers. Total employment in production is 
characterised by a CES function  
 

                                                 
1 With an interest rate rule as specified below, an optimality condition for money would only determine the 
desired money holdings of the household sector without any further consequence for the rest of the economy. For 
that reason any further discussion on money demand is dropped here.  
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where the parameter θ  determines the degree of substitutability between labour supplied by 
individual households. Corresponding to the CES aggregator there exists a wage index 
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This technology yields a labour demand equation as perceived by household i 
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In a monopolistic labour market the elasticity of substitution between different types of labour 
is important for determining the mark-up of wages over the equilibrium wage. This elasticity 
is defined by  
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Now the wage setting rule can be derived taking derivatives of the Lagrangian w.r.t. wages. 
Using symmetry: W  and neglecting second order terms allows us to write t

i
t W=
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where is the growth rate of nominal wages. This can be reformulated as a wage setting 
rule 
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where wage inflation is determined by the gap between the reservation wage and the real 
wage adjusted for a wage mark up. The forward looking nature of wage setting is reflected by 
the forward wage inflation term. This formulation generalises the neoclassical labour supply 
model along two dimensions. First, by introducing convex wage adjustment costs ( 0>wγ ), 
workers want to smooth wage adjustments, taking into account current and future expected 
labour market conditions. Second, because workers offer services which are imperfect 
substitutes to services offered by other workers, they can demand wages which are above their 
reservation wage2. The reservation wage is the marginal value of leisure, divided by the 

                                                 
2 Notice in the limiting case of perfect substitutability ( ∞→θlim ), the mark up approaches zero. 
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marginal utility of consumption. That means for a given utility of leisure the reservation wage 
increases with a decline in the marginal utility of consumption that an additional unit of 
labour can buy. In estimating the wage rule two further generalisations have been introduced. 
Some search theoretic generalisations of the neoclassical wage rule suggest rules where wages 
are indexed to both the reservation wage and the marginal value product of labour with weight 
bg reflecting the bargaining strength of workers (see, for example, Shi et al.  (1999)). In order 
to allow for backward looking behaviour it is assumed that only a fraction sfw of workers 
form rational expectations of future wages, while the remaining workers follow a simple rule 
of thumb where expectations are determined by past inflation. These two modifications lead 
to the following wage equation 
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Firms: 
 
There are N firms indexed by j. Because goods produced by individual firms are imperfect 
substitutes, firms are monopolistically competitive in the goods market and face a demand 
function for goods given by 
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Output is produced with a Cobb Douglas production function  
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with capital and labour as inputs. Firms can also decide about the degree of capacity 
utilisation The level of technology is subject to random technology shocks ( ) and follows 
the autoregressive process 
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The objective of the firm is to maximise the present discounted value of its cash flows. 
Dynamic considerations enter the problem of the firm because firm faces quadratic costs of 
changing capital, employment and prices. Finally firms must also choose the optimal level of 
capacity utilisation.  
 
(9) 
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rate and a risk premium (rp). The risk premium can be subject to random shocks and 
generated by the following autoregressive process 
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For adjustment costs we choose the following convex functional forms 
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The firm determines labour input, the capital stock, capacity utilisation and prices optimally in 
each period given the technological and administrative constraints as well as demand 
conditions. The first order conditions are given by: 
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Firms equate the marginal product of labour, net of adjustment costs, to wage costs. Wage 
costs include a stochastic wage cost shock. This should be seen as shocks to administrative 
burdens related to current employment. As can be seen from the left hand side of equation 
(12a), the convex part of the adjustment cost function penalises in cost terms accelerations 
and decelerations of changes in employment. Equations (12b-d) jointly determine the optimal 
capital stock and optimal capacity utilisation. The firm equates the marginal product of capital 
to the rental price of capital, adjusted for capital costs. The firm also equates the marginal 
product of capital services (K*ucap) to the marginal cost of capacity utilisation. Equation 
(12e) defines the mark up factor as a function of the elasticity of substitution and changes in 
inflation. We follow Smets and Wouters and allow for additional backward looking elements 
by assuming that a fraction (1-sfp) of firms keep prices fixed at the t-1 level. This leads to the 
following specification: 
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Government sector: 
 
The government sector and fiscal policy is treated in a rather rudimentary fashion. The share 
of government purchases 
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Discretionary fiscal action is characterised by the variable  which is allowed to be 
autocorrelated process. Implicitly it is assumed that government expenditure is financed, by 
lump sum taxes.  
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Central bank policy rule (interest rate rule): 
 
Monetary policy is modelled via the following Taylor rule, which allows for some smoothness 
of the interest rate response to the inflation and output gap 
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The term  captures random discretionary shocks to monetary policy and  is a time 
varying inflation target, specified as follows 
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Tπε is an i.i.d. shock to the inflation target. It is assumed that both fiscal and monetary 

authorities base their policies on a concept of potential output which is a smooth function of 
past output 
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3 Estimation Methodology 
 
We present the first attempt to apply a Bayesian estimation approach to bring the model 
directly to the data. This approach has been discussed by many authors in the literature in the 
last few years (e.g. Schorfheide 2000, Lubik and Schorfheide, 2003, Smets and Wouters, 
2003). Schematically, the method consists of the following steps: 

• the non-linear DSGE model is solved via a linear approximation: a linear rational 
expectation system is obtained that must be obtaining a ‘standard’ linear model in 
state space form; 

• the state-space approximation of the original non-linear model allows the 
identification of a likelihood function (via e.g. Kalman recursions) and a 
subsequent inference based on it (maximum likelihood estimation, etc.);  

• usually theoretical model imply few, well defined shocks; unfortunately this often 
implies singularities in the determination of the likelihood (in the Kalman filter 
the number of shocks must at least be as large as the number of observables), 
implying the introduction of additional structural shocks and/or measurement 
errors; 

• likelihood-based inference presents a series of issues: specifically the lack of 
identification (global: multiple maxima; local: over-parameterisation, i.e. the 
maximum is given by a complex multidimensional combination/interaction 
structure rather then by a single point in the parameter space); 

• the Bayesian analysis is performed: prior distributions for model parameters have 
to be defined, representing the prior beliefs of the analyst on their plausible 
values, which, in combination with the likelihood function, allows to obtain the 
posterior distribution; 

• the Bayesian inference needs the use of stochastic simulations, specifically 
Markov Chain Monte Carlo (MCMC) techniques, allowing to obtain samples 
from the posterior joint pdf of the model parameters and subsequently to make an 
inference in which the parameter uncertainty and the shape of the likelihood are 
taken into account; 

• the model is finally compared to an empirical model; in the literature this is 
usually a VAR model. 
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From the computational point of view, the linear approximation and the solution of the 
obtained LRE can be done automatically using the DYNARE program (Juillard, 1996, 2003), 
which applies the generalised Schur decomposition solution method (Klein, 2000). DYNARE 
is a software for the simulation of DSGE models, freely available and totally open source. 
Presently, an estimation module is implemented on DYNARE, to include the most recent 
developments in Bayesian estimation macro-economic models in an extremely efficient and 
easy way. DYNARE is also extremely flexible, and allows to easily incorporating problem 
specific methodological issues or customisations. 
 
3.1 Solving the model with linear approximations 
Let a model be defined and first order conditions identified. This can be expressed as: 
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where y is vector of endogenous variables, ε  is the vector of exogenous stochastic shocks, θ  
is the vector of parameters and E is the expectation operator. 
The non-linear model is solved via a linear approximation around the deterministic steady 
state y  such that 0);0,,,( =θyyyf . A linear rational expectation (LRE) system is obtained, 
with forward looking components 
(17)  , where 0ˆˆˆ 1

0
1 =+++ −
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The system is solved for the reduced form state equation in its predetermined variables 
(Blanchard and Kahn, 1980; generalised Schur form, Klein, 2000). An observation equation is 
also added to link the observed variables  to the predetermined ones, obtaining: ∗

ty
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where tη  is the measurement error, if any. The system matrices G, H, V and Q and the steady 
state vector )(θy  are functions of the vector of structural parameters θ  of the original model. 
Vector θ  includes the noise parameters Σ . The state space representation (18) allows use of 
Kalman filtering for the computation of the log-likelihood, and a subsequent inference based 
on it (maximum likelihood estimation, etc.). 
In the original model specification (16), well-defined (and relatively few) shocks are usually 
present. If the number of shocks is smaller than the number of observed variables, 
singularities in the Kalman filter will be present, i.e. the probability distribution of the 
observables  (the likelihood) can be degenerate. This implies the introduction of 
additional shocks until the system becomes non-singular, including either measurement errors 

)|( θTYp

tη  (as e.g. in Ireland, 2004, who also models the measurement error as a VAR(1) process) or 
additional structural shocks in the state equation (as e.g. in Smets and Wouters, 2003). 
Rigorously, in such cases, as clearly stated by Schorfheide (2000), the evaluation approach 
here applied will “lead to an assessment of the modified model rather than the original one”. 
In such cases, the parameter vector θ  will be augmented for the additional noise terms and, if 
any, also for the VAR coefficients in the measurement errors as in Ireland (2004). In this 
paper we follow the Smets and Wouters approach and introduce a sufficient number of 
structural shocks in the state equations. 
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3.2 Maximum likelihood estimation and inference 
The state space form of the linear approximation obtained can be subject to a ‘classical’ 
likelihood analysis. The system can be fed to a Kalman filter and the likelihood function 

 can be computed in a standard way (Kalman, 1960, Kalman and Bucy, 1961) or, in 
the case of non-stationary models, with exact initial Kalman filtering (Koopman, 1997). This 
allows performing maximum likelihood estimation, using a numerical optimisation routine, 
obtaining: 

)|( θTYp

)|(maxargˆ θϑ ϑ
T

ML Ypkℜ∈=  

where TY  is the information set given by a series of observations Y  with t . Given 
the particular nature of the state space model fed to the ML optimisation, in which all matrices 
of coefficients are functions of the structural parameters 

t T,...,1=

θ : )(θAA = , )(θBB = , )(θCC = , 
)(θDD = , the algorithm for optimisation also implies that, for each parameter trial, the whole 

procedure previously presented (log-linearisation, solution of the LRE model, implementation 
of the Kalman filter and computation of the likelihood value) must be repeated.  
The likelihood-based inference can present further problems, specifically regarding the lack of 
identification. 

• global: the likelihood function may have multiple maxima; 
• local: the likelihood function does not have a unique maximum in the 

neighbourhoods of some *θ . 
 
To better explain the latter case, in such situations there exist many combinations of model 
parameters that provide the same likelihood value, i.e. the maximum is not given by a single 
point in the parameter space, but by a complex multidimensional structure. In some 
disciplines this is referred as over-parameterisation, i.e. there are many parameter values or 
model specifications that are compatible with the same empirical evidence. This also means 
that the number of parameters to estimate is too large. A trivial remedy to it can be to fix some 
parameters (in some cases most of them!) and maximise with respect to the remaining ones, 
even if this solution can be regarded as arbitrary. 
 
This also implies that the maximisation is computationally more difficult than for standard 
state space models. Moreover, also the representation and summary of results is difficult. For 
example, ML inference is often accompanied by asymptotic theory to provide confidence 
intervals, sampling distribution of the ML estimates, etc. But what if the maximum is not 
unique? Moreover, the lack of identification often leads to ill-conditioned covariance matrices 
(i.e. the Hessian matrix is often nearly singular). Taking into account parameter uncertainties 
(or in other words the shape of the likelihood function) can be therefore a very difficult 
problem. 
 
All these issues call for a Bayesian approach, in which prior information is combined with the 
likelihood and which is especially useful in problems with many parameters and few 
observations. The use of priors is very ‘natural’, since economists have strong beliefs about 
plausible values of structural parameters; parameters have a well-defined interpretation and 
have a bounded domain. From the computational point of view, the use of a prior makes the 
optimisation algorithm more stable, namely because curvature is introduced in the objective 
function. Maximisation of the posterior is hence (relatively) easier than the maximisation of 
the likelihood. Moreover, parameter uncertainties and the shape of the likelihood (or better of 
the posterior distribution) are treated ‘naturally’ by applying stochastic simulation approaches. 
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The price to pay is that Bayesian methods are extremely computationally intensive. We 
describe the Bayesian route in the next section. 
 
3.3 Bayesian estimation and inference 
Roughly speaking, Bayesian inference is based on pulling the maximum likelihood estimates 
toward values thought as plausible a priori. From the Bayes theorem, the posterior distribution 
is obtained as 

(19)  
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summarising all our information (prior and likelihood) about the parameter vector θ . The 
likelihood function is any function . )|()|( θθ TT YpYL ∝
Knowing the posterior distribution, allows implementing the Bayesian inference. In general, 
the objective of Bayesian inference can be expressed as  

]|)([ TYgE θ  
where )(θg  is a function of interest (a forecast, the vector of model parameters itself, etc.) 
and 
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where  is any posterior density kernel for )|()()|()|(* TTT YLpYpYp θθθθ ∝∝ θ . For 
example, for a quadratic loss function, the point estimate of model parameters is given by the 
posterior mean: 

∫= θθθθ dYp T )|(ˆ . 
The problem in Bayesian inference is that the integrals involved have almost never an 
analytical solution and need a numerical approach, specifically through stochastic simulation. 
The key strategy is to generate draws of θ  from the posterior distribution . This is 
discussed in the next section. 

)|( TYp θ

3.3.1 Implementation: MCMC (Metropolis-Hastings) 
The key concept of Monte Carlo simulation is as follows. Assume a vector of random 
variables θ  with a joint pdf )(θπ . If we can draw an i.i.d. sample nθθθ ,...,, 21  from )(θπ , we 
can approximate the integrals by discrete sums: 

(20) θθπθθθ dggEgng
n

i
i )()())(()(/1

1
∑ ∫
=

=→=   “almost surely” as . ∞→n

If the variance  of 2σ )(θg  is finite, then 

(21) ),0(~))(()(( 2σθθ NgEgn −  
provides an estimation error.  
 
The generic distribution )(θπ  can be the posterior distribution  and hence Monte 
Carlo simulation can be applied to solve the Bayesian inference problem. The Monte Carlo 
approximations can be then used to compute predictions, impulse response functions, etc. 

)|( TYp θ
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The “almost surely” in equation (20) above means that convergence is subject to some 
regularity conditions of the function )(θg ; specifically absolute convergence of the integral 
must be satisfied, see Geweke (1999). 
 
The required sample from the posterior distribution is a multivariate sample. This is not an 
easy problem and has been the subject of a huge amount of literature to find techniques for 
this sampling problem: from acceptance sampling, importance sampling, to Markov Chain 
Monte Carlo approaches (Gibbs sampler and Metropolis-Hastings algorithm). The latter 
approach is probably the best suitable for the problem at hand and is the one which is applied 
in all the recent literature on Bayesian analysis of DSGE models. 
 
Let us first define an m-states Markov process . We denote the possible states of xt by 

 and define the transition probabilities 
tx

},...,{ 1 mssS =
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where  is the probability of moving from state i to state j. Let  an 
 vector of probabilities of  being in state i in period t, then the corresponding 

probabilities for period t+1 are 

ijp )](),...,([)( 1 twtwtw m=

m×1 tx

Ptwtw )()1( =+  
• The Markov chain has an equilibrium distribution if there exits a distribution π  

such that Pππ = ; 
• A Markov chain is reversible if probability of ji →  is the same as ij → : 

jijij pp ππ = . 
A chain that is reversible has an equilibrium distribution and to sample from the equilibrium 
distribution one can start the chain from any  until it settles down to the equilibrium 
distribution. 

)0(w

A Markov chain is not iid, since the sample is serially correlated. 
 
The idea of the Metropolis algorithm is to construct the transition matrix P from an ‘easy’ 
transition matrix Q (e.g. corresponding to a multivariate normal distribution), such that P has 
the desired equilibrium distribution π  (i.e. the posterior distribution). This because we are not 
able to draw from the posterior distribution (corresponding to π  in our case), but we are able 
to draw sample form a normal distribution (corresponding to using Q). Of course, only the Q 
transition is not sufficient to assure convergence to π , so we have to add an additional rule 
for the transition to one state to another. Suppose at t iteration we are in state  and based on 
Q we draw a proposed state . We define a probability 

is

js ijα  that the proposed state is 
accepted (or a probability ijα−1  that the new state is rejected and we stay in ). To define 
the probability 

is

ijα , we use the objective distribution π  as follows: 
]/,1min[ ijij ππα =  

and the resulting chain is reversible and has equilibrium distribution π . 
 
In our specific problem, the Metropolis –Hastings algorithm is implemented as follows: 
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1) Conditional on data TY  and a set of parameter values θ , the Kalman Filter is used to 
evaluate the log-posterior density up to a constant: ; )()|()|( θθθ pYLp T∝Y T

~2) With a numerical optimisation routine the mode θ  of the posterior density can be 
estimated, and the inverse Hessian Σ~  at the mode computed; 

3) Implement the Random Walk Metropolis Algorithm: 
a) Draw a candidate parameter vector ϑ  from a jumping distribution , with )|( )1( −s

sJ θϑ

)~,(~ 2)1( Σ− cNJ s
s θ  [the Q transition defined above) 

b) The jump from  is accepted ( ) with probability )1( −sθ ϑθ =)(s
1, −ssα =min(r, 1) and 

rejected ( ) otherwise, with )1( −sθ)( =sθ

)()|(
)()|(

)1()1( −−
= sTs

T

pYL
pYLr
θθ
ϑϑ  

The series of draws {  is serially correlated (not iid) but, after a burn in period, converges 
to the desired posterior distribution (e.g., draw 10,000 samples and reject the first 2,000). The 
speed of convergence is a critical issue of MCMC methods. There no general rule of criterion 
that can assure that the chain has converged. There are a number of informal techniques to 
assess convergence, such as: 

})(sθ

• plot 1  as a function of n ; ∑
=

sn

s

s
s gn

1

)( )(/ θ s

• start the Markov-Chin at over-dispersed (i.e. extreme) values of θ  and check 
whether different runs of the chain settle to the same distribution; 

• more general methods, which combine in a more rigorous way the two above 
‘empirical’ ideas, such as the potential scale reduction factor (PSRF) and its 
multivariate extension (Brooks and Gelman, 1998; implemented in DYNARE). 
Roughly speaking, this test aims at verifying that the samples obtained with a 
number of parallel chains are drawn from the same distribution. 

 
When converged, the chain satisfies a weak low of large numbers, i.e. the approximations (20) 
and (21) apply for the Markov chain, which can then be sued for the Bayesian inference. 
 
3.4 Model comparison 
In the Bayesian framework, models are compared and ranked according to the integrated 
likelihood (or marginal data density). Having a set of models i=1,…,M, the posterior weight 
of the i-th model is 
(22)   ∫

Θ

=
i

iii
T

i
T

i dpYpYw θθθ )()|()(

and, if the models have equal prior probabilities, the posterior probability on model i is 
. As usual, the computation of this integral is unfeasible analytically in most cases, 

but can be estimated using a sample from the posterior distribution. Specifically, the marginal 
data density of the DSGE model is here approximated with Geweke's (1999) modified 
harmonic mean estimator (implemented in DYNARE). 

∑ j ji ww /

In the present report we make a preliminary comparison with a VAR(1) model, using 
RMSE’s. Recently, Sims (2003) provided a general discussion about pitfalls of Bayesian 
model comparison methods, highlighting several ways they tend to misbehave. In this view, 
there is no point in showing a ‘preliminary’ Bayesian comparison, comparing, e.g., the 
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marginal data density obtained here with the data density of a VAR(1) where the priors are 
defined with a training set. As discussed by Sims, such kind of comparison could be totally 
arbitrary and meaningless. A full Bayesian comparison is being implemented, trying to 
carefully address the issues raised by Sims. 
 
 
 

4 Estimation 
 
4.1 Prior distributions 
 
Structural shocks. After in initially setting priors to inv-gamma, the traditional priors of 
standard errors in Bayesian analysis, we preferred to set up flat priors in a relatively large 
interval of values, reflecting more clearly our prior ‘ignorance’ about possible values of 
shocks. Above all in view of a complete Bayesian comparison with other models (VARs), this 
assumption might be revisited by considering, e.g., a training set. This because too large a 
prior range might unduly penalise the present model, by giving too low weight to the 
likelihood (a totally uninformative prior in the range [-inf, inf] would give a uniformly zero 
weight to any likelihood value, implying the rejection of any model; see Sims, 2003, for a full 
discussion on these matters). 
Concerning the shock to time-varying δ ( ), we set a much smaller range, since we do not 
want δ to absorb whatever is missed by the rest of the model, but we just allow the minimum 
shock necessary to reconstruct the depreciation path. 

δε t

 
Table 1.a  Priors structural shocks 
 

 Distrib. Min Max 
Firms:    
TFP shock    U

tε uniform 1.e-6 0.2 

Depreciation shock  δε t
uniform 1.e-6 0.0001 

Risk premium shock      rp
tε uniform 1.e-6 0.2 

Mark-up shock       τε t
uniform 1.e-6 0.2 

Wage cost shock  W
tε uniform 1.e-6 0.2 

    
Households:    
Consumption Preference shock  C

tε uniform 1.e-6 0.2 

Labour supply shock    L
tε uniform 1.e-6 0.2 

    
Policy:    
Government expenditure shock    G

tε uniform 1.e-6 0.2 

Inflation target shock   
T

t
πε uniform 1.e-6 0.2 

Interest rate shock    M
tε uniform 1.e-6 0.2 
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Table 1.b Priors shock persistence 
 

Parameter Distribution Mean St. dev. Support  
Firms:      
TFP  Uρ beta 0.9 0.04 [0 1]

Depreciation  δρ beta 0.9 0.04 [0 1]

Risk premium  rpρ beta 0.5 0.2 [0 1]

Wage costs  Wρ beta 0.5 0.2 [0 1]
      
Households:      
Labour supply  Lρ beta 0.5 0.2 [0 1]
      
Policy:      
Government expenditure  Gρ beta 0.9 0.04 [0 1]

Inflation target  
Tπρ beta 0.5 0.2 [0 1]

 
 
 
Model parameters.  
The model parameters to be estimated have a structural economic interpretation and are 
therefore restricted to lie in certain intervals dictated by economic theory or implied by long 
run constraints. The following ranges have been chosen for the individual coefficients: 
  
Table 2  Priors model parameters 
 

Parameter Distribution Mean St. dev. Support 
      
Firms:      
Depreciation rate        δ                   beta 0.015 0.005 [0 0.2] 
Capacity utilisation                  2a beta 0.05 0.028 [0 0.1] 
Adjustment cost, capital  Kγ        beta 15 5 [0 30] 
Adjustment cost, inv. Iγ             beta 10 3 [0 20] 
Adjustment cost, labour Lγ        beta 15 5 [0 30] 
Adjustment cost, price Pγ          beta 15 5 [0 30] 
Adjustment cost, wage Wγ         beta 15 5 [0 30] 
Mark-up, cyclical 1τ                  beta -0.1 0.03 [-0.2 0] 
Share of fwd looking price setters sfp  beta 0.6 0.05 [0.5 1] 
      
Households:      
Habit persistence  hab                    beta 0.6 0.15 [0 0.9] 
Labour supply elast.   κ                gamma 0.5 0.4 [0 Inf] 
Labour supply const ω                 gamma 0.2 0.15 [0 Inf] 
Bargaining strength  bg            beta 0.375 0.18 [0 0.75]
Wage mark-up   θ                 gamma 2 0.8 [1 Inf] 
Share of fwd looking wage setters sfw beta 0.8 0.1 [0.5 1] 
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Policy:      
Fiscal response to ygap t                Y

G
beta 0 0.4 [-1 1] 

Interest rate smoothing ilag            beta 0.8 0.1 [0 1] 
Interest rate response,               π∆

Mt beta 0.2 0.09 [0 0.4] 

Interest rate response,               Y
Mt ∆ beta 0.1 0.045 [0 0.2] 

Interest rate response,                π
Mt beta 1.25 0.3 [0.5 2] 

Interest rate response,       Y
Mt beta 0.3 0.06 [0 0.5] 

Smoothness, trend GDP  YPOTρ      beta 0.9 0.05 [0.7 1] 
Note: The following parameters were fixed: output elasticity of labour α = 0.5940, discount factor β = 0.989, 
interest elasticity money demand ζ = -0.4 , Mark-up level 0τ = 0.1; 

 
The remaining parameters are determined by steady state constraints. 

)1)((1 +++= δγδ Ipss rra    1st parameter of capacity utilisation 
αα −= 1

ssss KLA      Technology constant.  

ssIssP rIr −−+−−= δδγδατ )1/(/)1)(1(  Risk premium. 
 
We identified beta or gamma prior distributions for model parameters3. The prior 
specification of sfp and t  required a particular attention, whereby we had to give lower 
weight to values that were “preferred” by the likelihood, but that implied unreasonable 
dynamical behaviour in the impulse responses. So, we set asymmetric distributions that 
privileged the lower part of range for sfp and higher part for t . This implied only a slightly 
worse fit, but a much better model behaviour in terms of theoretical considerations. This kind 
of approach is legitimate in a Bayesian framework, and distinguishes from a plain constrained 
optimisation, which would be considered much more arbitrary. The fact that we give a smaller 
(but non-zero!) prior probability to some portion of the parameter ranges, always gives the 
possibility to the likelihood to override this assumption, if the data strongly supports 
hypotheses about such values that were unlikely a priori. Moreover, this approach does not 
rule out possible misspecification or the rejection of the present model with respect to 
competing ones. In the latter case, the integrated likelihood of the present model would be 
penalised with respect to a competing one that provided more “agreement” between prior 
assumptions and likelihood shape. 

Y
M

Y
M

 
The plots of the prior distributions are given below. The model was estimated using the 
following eight series as observations: Y, I, C, K, L, π , P

W ,  inom. 

                                                 
3 Please note that the support of beta distributions might be larger than the ranges specified in Section 1, but 
means and the standard deviations are set in such a manner that prior probability is larger than zero only in the 
acceptable range. 
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Figure 1 Prior distributions 
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Figure 1 (cont’d)  Prior distributions 
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4.2 Parameter estimates and shocks identified 
 
The posterior estimation followed the methodology of Section 2. First the mode of the 
posterior is estimated using a non-linear optimisation routine (values reported in the Annex). 
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Then, a sample from the posterior distribution is obtained with the Metropolis algorithm using 
the inverse Hessian at the posterior mode as the covariance matrix of the jumping distribution. 
The scale coefficient was set to 0.25, allowing a good acceptation rate (25%). We ran 4 
parallel Markov chains. Since the refinement of the convergence tests proceeded slowly by 
increasing the length of the chains, we decided to update the covariance matrix of the jumping 
distribution according to the last portion (30%) of the chains based on the inverse Hessian. 
This allowed us to obtain good convergence tests of 4 new chains (of 40,000 runs each) based 
on the updated covariance matrix.  
 
 
Figure 2  Convergence test Metropolis MCMC 
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This Figure shows the convergence tests for Metropolis MCMC. Upper panel shows the 
multivariate potential scale reduction factor, which should be near to 1 at convergence. Lower 
panel shows the determinant of the ‘between chains’ and ‘within chains’ covariance matrices 
of the Monte Carlo sample. 
 
After discarding the initial 70% of runs, we could proceed to the Bayesian inference. The 
following figures show the estimated marginal posterior distributions (black lines), compared 
to priors (grey lines) and the point estimate of the multivariate mode (vertical dashed lines). It 
is interesting to note that for some parameters the maximum of the marginal distribution is 
shifted with respect to the mode of the multivariate distribution (in particular Kγ  and Iγ ). 
This implies that such a local maximum is in a very narrow region with almost zero mass, 
related to very specific parameter combinations. To give an idea of this, it is interesting to 
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note that the log-posterior at the mode is about 3800, while the Markov chains evolve in a 
range [3760 – 3792] i.e. almost 10 log-points lower with respect to the mode. In spite of this 
quite high difference in level, even imposing a starting point very near to the mode, the 
evolution of the Markov chain evolved similarly to the ones shown here, implying that such a 
local optimum is located in a region so small to imply an almost zero probability for a chain to 
fall there. In the Annex we also report the values of the posterior mean with confidence bands 
for the estimated parameters. The logarithm of the marginal likelihood for this model is about 
3663. 
 
Finally, Figure 4 shows the 1-period ahead predictions of the model for the main model 
variables, including the depreciation rate δ and government expenditure G. Dashed lines are 
observations; continuous lines are model predictions. On the whole, the model fits the data 
remarkably well. One point that is particularly noteworthy is that the model over-predicts 
inom in the last years (coupled with loose ). M

tε
 
 
 
 
Figure 3  Prior and posterior distributions standard errors structural shocks and parameters 
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Figure 3 (cont’d)  Prior and posterior distributions standard errors structural shocks and parameters 
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Figure 4 1-step ahead prediction 
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4.3 VAR comparison 
 
If we compare the RMSE’s of the DSGE model computed at the posterior mean, with the 
RMSE’s of a VAR(1) model with the same 8 observed series : Y, I, C, K, L, π , P

W ,  inom.  

 
Table 3  RMSE comparison with VAR 
 
RMSE's    VAR          model (post. mean) 
C       5.9398e-006  8.5811e-006 
I       5.5508e-006  8.388e-006 
inom    1.4206e-006  2.2686e-006 
K       0.00037479   1.0741e-005 
L       5.2953e-007  6.7359e-007 
π       4.5673e-006  9.9136e-006 
W/P     1.9294e-005  2.3478e-005 
Y       1.9422e-005  2.6547e-005 

 
RMSE’s of the DSGE are higher but of the same order of magnitude than the VAR, except for 
K, where the VAR performs much worse (RMSE is forty times larger). 
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5 Which structural shocks drive the euro economy? 
 
One of the major advantages of the modelling approach used here is that system estimation of 
the model yields, besides the posterior distribution of the model parameters, structural shocks 
which have an unambiguous interpretation and which can help us understand the current 
economic situation. The structural shocks identified in the estimation of this model are shocks 
to households, firms, government and fiscal policy. Households are affected by shocks to 
preferences for consumption and labour supply. Firms are hit by shocks to technology, mark-
ups, adjustment costs for labour and capital and a risk premium shock.  
Several aspects of the estimated shocks (figure 5) and implied unobserved variables (figure 6) 
are worth highlighting.  
 
Demand Shocks 
The consumption preference shock   appears slightly negative at the end of the estimation 
sample. This suggests lower preferences for consumers spending and may be a reflection of 
savings uncertainty concerning future pensions and tax liabilities. Notice, however, the size of 
the shock is not extraordinary large, given the fluctuations of  over the entire sample 
period.  Investment is hit by two autonomous shocks, a risk premium shock and a shock to 
adjustment costs. The latter are unimportant and not further considered. The risk premium 
shock ( ) does not show any particular trend and appears to behave normally in recent 
years. This suggests that investment fluctuations are explained by fundamentals. The 
smoothed auto-correlated fiscal policy shock z( ) displays a turnaround in 2000-01. The fall 
in this auto-correlated shock shows clearly the fiscal consolidation period starting in the late 
1980s, but the declining trend in government spending is reversed in the early 2000s. This 
refutes the view that fiscal policy has been overly restrained by the SGP and been less 
countercyclical over the last years.  

C
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C
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rp
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G
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Supply shock 
Our Kalman filter estimation allows to decompose observed total factor productivity into a 
capacity utilisation and a ‘true TFP’ component (denoted as U). According to these estimates 
U shows a trend increase in the second half of the 1980s, a movement along the trend in the 
90s, but a sharp decline in the late 1990s- early 2000s. Thus the fall in TFP in the recent past 
is largely a structural phenomenon and not the result of a lack in demand, since capacity 
utilisation (UCAP) shows a normal cyclical behaviour in recent years. Notice, TFP is also one 
of the major driving forces of investment and is therefore one of the fundamental factors for 
the slowdown of investment. Trends and fluctuations in mark-ups are important measures for 
the supply potential of the euro area economy. According to these estimates the mark-up has 
declined on average since the early 1990s (η=1-mark-up) from around 10 to 8%. This could 
reflect increased competitive pressure due to goods market reforms (internal market 
programme) but also increased pressure from global competition.      
 
Labour market shocks 
The model identifies a labour supply ( ) and a labour demand shock ( ). The trend 
increase in labour supply (or in model terms a trend decline in the preference for leisure 
(Z( )) after 1995 is consistent with the observation of increased labour force participation 
and a declining NAIRU in the Euro area. Notice, however, the shock to labour supply has a 
pronounced cyclical pattern, which suggests that the simple wage rule used here does not 

L
tε

W
tε

L
tε

- 26 - 



 

properly account for the dynamic adjustment of wages over the business cycle. On the other 
hand, the upward trend of Z( ) reflects the increase in non-wage labour costs over the 
sample. Interestingly this trend has stopped in the late 1990s, possibly reflecting a success of  
various labour market reform measures intended to reduce regulatory burdens for firms 
related to employment. 
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Monetary policy shocks 
The monetary policy shock  is negative for the years after 2000. This would suggest a 
looser monetary stance than suggested by the estimated Taylor rule. This could be linked to an 
underestimation of the decline in the inflation objective π

ε

T, which shows a clear trend decline, 
but may nevertheless underestimate the actual decline in the monetary policy’s inflation 
objective. This is one aspect that may need further attention in future extensions of this model. 
 
 
Figure 5 Estimated smoothed shocks at the posterior mean  
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Figure 6   Unobserved variables 
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6 Estimated impulse responses of structural shocks 
 
In this section, we present the estimated impulse responses of the nine structural shocks in our 
model. The impulse response are generated on the basis of the reduced form representation of 
the model (policy and reaction functions - see annex). This is particularly simple, since the 
reduced form is a linear model (formally equivalent to a multivariate ARMA). They depict the 
responses for the endogenous variable following a one-period shock to each of the structural 
shocks (which are in most cases auto-correlated), each for a 5 year (20 periods) horizon. A 
full Bayesian IRF analysis is here presented, picking 1,000 samples out of the full Monte 
Carlo sample and computing IRF’s for each of them. Finally, the mean path (solid lines) and 
the confidence band (dashed lines) can be obtained, as shown in the Figures. 
 
 
Figure 7 Consumption preference shock C

tε  
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Figure 7 presents the estimated effect of a consumption preference shock ( ). This shock is 
a combined shock affecting consumption and leisure choice and has a direct impact on 
consumption and labour supply (through λ). The effect of this preference shock is to raise 
consumption by 0.06 percent, and employment by 0.007 per cent (in the second period after 
the shock). The boost to demand raises inflation and nominal interest rates rise, but the 
presence of adjustment costs limits the extent of the price rise. The shock leads to crowding 
out of investment and a decumulation of capital.  
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Figure 8 Shock to depreciation rate ( δε t ) 
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Figure 8 depicts a shock to the depreciation rate of 0.25 per cent on impact. This implies an 
increase in the cost of capital of 0.012 percentage points. This shock is highly persistent, in 
fact is has not disappeared after 100 periods, due to the large estimated autocorrelation term in 
the depreciation rate. The increase in the cost of capital leads to a decline in investment and 
the capital stock, lower real rates, higher consumption, higher real wages and lower 
employment. Note however, the large confidence bands, which suggest a large margin of 
uncertainty surrounding this type of shock.  
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Figure 9 Shock to price mark-up ( τε t ) 
 

0 10 20
-15

-10

-5

0

5
x 10-3 Y(%) vs ετ

0 10 20
-0.04

-0.03

-0.02

-0.01

0

0.01
I(%) vs ετ

0 10 20
-15

-10

-5

0

5
x 10-3 C(%) vs ετ

0 10 20
-2.5

-2

-1.5

-1

-0.5

0
x 10-3 K(%) vs ετ

0 10 20
-6

-4

-2

0

2
x 10-3 L(%) vs ετ

0 10 20
-15

-10

-5

0

5
x 10-3 M/P(%) vs ετ

0 10 20
-1

0

1

2

3
x 10-4 π vs ετ

0 10 20
-0.03

-0.02

-0.01

0

0.01
W/P(%) vs ετ

0 10 20
-0.2

0

0.2

0.4

0.6
inom(%) vs ετ

 
 
Figure 9 shows that, following a positive price mark-up shock, there is a jump increase in 
inflation and investment, output and consumption decline. As output and investment fall, 
labour demand is also lower and employment falls. As the shock is transitory, the effects fade 
away and have disappeared after 3 years. 
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Figure 10  Shock to government spending ( G
tε ) 
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Figure 10 shows the impulse response to a government spending shock. This shock is a 
persistent shock with an autocorrelation of 0.98, but the overall effect on GDP is short-lived. 
The impact multiplier is small, not larger than 0.2, and the increase in spending leads to 
crowding-out of consumption, and in particular of investment, which falls by 0.4 per cent at 
its peak. This crowding-out of investment leads to a reduction in the capital stock. The effect 
on output is temporary and over a longer horizon, output becomes negative. The small 
multiplier for a persistent fiscal spending shock is in line with results of the QUEST model, in 
which permanent fiscal expansions have much smaller output effects than transitory shocks.  
The jump in inflation is surprising and seems at odds with empirical regularities. It appears 
that the peak inflation response is already reached in the second quarter. This high 
responsiveness of inflation is partly due to the high estimate of the forward inflation term sfp. 
Empirical studies employing VARs show generally positive output effects of an increase in 
government spending, but often these estimates are surrounded by large confidence intervals. 
Perotti (2002) finds for most countries positive output effects after an increase in spending, 
but in the post 1980 sample, these positive effects are small and short-lived. The effect on 
investment is in accordance with many empirical studies which find the strongest crowding-
out of spending shocks for investment (Alessina et al., 2002). 
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Figure 11  Negative shock to employment L
tε  
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Figure 11 shows the impulse response of a positive shock to leisure (a negative employment 
shock). This is a highly auto-correlated shock with a high persistence of 0.99, as is clear from 
Z( ).  Employment falls, and the reduction in labour supply has a negative impact on 
investment and output. As consumers anticipate lower incomes, consumption also falls. 
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Figure 12 Productivity shock U
tε  
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Figure 12 plots the estimated effect of a productivity shock in the model. Output, investment 
and consumption rise, while prices fall. However, the fall in inflation is moderated by the 
presence of price adjustment costs. Employment falls on impact, but over time labour supply 
increases as real wages are higher. Monetary policy reacts by lowering nominal interest rates, 
but monetary policy is not accommodating enough to prevent prices falling. It is important to 
note that this productivity shock is not a permanent supply shock, but fades away gradually.
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Figure 13  Inflation objective shock  
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Two types of monetary policy shocks can be considered with the model. Figure 13 shows the 
effects of a persistent change in the inflation objective. Nominal interest rates increase 
immediately as inflation expectations rise. With inflation up by 0.15 percentage points, 
nominal interest rates are also higher by 15 percent (roughly 60 basispoints for annualised 
interest rates). Consumption, investment and output are all higher, with the peak response 
reached after three quarters.  
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Figure 14 Monetary policy shock M
tε  
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Figure 14 shows the impulse responses of a direct monetary policy shock. This shock is a 
transitory 1 percentage point hike in interest rates, which has disappeared after one year. The 
temporary increase in interest rates lowers output, investment and consumption, which all 
display a hump-shaped response with the peak occurring in the second and third quarter. The 
maximum effect on output is between 0.4-0.5%, within the range of VAR estimates and 
similar to simulations with the QUEST model. The output effect is mainly driven by the sharp 
response of investment, which maximum impact is more than twice than that of 
consumption.4 Prices fall on impact (there is thus no ‘price puzzle’ as in some VAR studies), 
and the speed with which prices react to the interest rate tightening is remarkably fast, with 
the peak inflation response reached in the third quarter. Some VAR studies have found a 
slower response of inflation. Again, this seems to be linked to the degree of forward 
lookingness in the inflation determination. The maximum effect on inflation is -0.25 
percentage points on an annualised basis, but displays little persistence. Both output and price 
effects are within the range found in many VAR studies. Paul De Grauwe and Claudia Costa 
Storti (2004) find in a meta-analysis of VAR studies the output effect after one year to lie in 
the range between 0 and -0.7 (mean -0.33) and the price level between 0 and -0.4 (mean -
0.07).   
 

                                                 
4 In QUEST, following a 1 percentage point interest rate shock, consumption declines on average by 0.3 per cent 
in the euro area and investment by 1.1 per cent. 
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Figure 15 Negative risk premium shock rp
tε  
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Figure 15 shows the effects of a reduction in the risk premium. This transitory reduction in the 
cost of capital, which displays almost no persistence, has the effect of boosting investment. 
Output increases, and higher interest rates raise savings and lower consumption. The increase 
in employment is smaller than the output effect and productivity gains lead to higher real 
wages.  
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Figure 16 Wage costs shock W
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Finally, Figure 16 shows the effects of a persistent shock to wages ( non-wage labour costs) in 
the model. This has an immediate and persistent negative impact on employment. Investment 
and consumption also fall, as does output. This is a highly persistent shock, as is clear from 
the last chart Z( ) , and the effects are long-lasting. W

tε
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7 Conclusions 
 
This paper has described our first efforts to estimate a small-scale model in the spirit of the 
New Keynesian models that have become the new workhorse in the macro modelling 
industry. Estimated for the euro economy over the period 1980-2003, the model is able to 
show confidence intervals of the estimated parameters which are in some cases remarkably 
precise.  
It also is able to identify several structural shocks that have impacted on the euro economy 
over that period. Examples are a declining trend in government spending, reversed in recent 
years, a decline in price mark-ups, reflecting increased competitive pressures, a trend increase 
in total factor productivity in the 1980s, followed by a decline in the late 1990s and a trend 
increase in labour supply, reflecting a declining NAIRU. The model also produces impulse 
responses which are generally in line with those found in other empirical studies, with the 
additional benefit of providing confidence intervals for these responses which show the 
uncertainty surrounding them. 
 
The model described in this paper is only our first attempt to estimate a model of this type and 
there are many aspects which can be improved upon in future work. As already mentioned in 
the introduction, the model estimated here differs in some important characteristics from the 
QUEST II model used in the Commission for macro economic analysis. The first objective 
should therefore be to adapt the model in a direction that makes it more suitable for macro 
economic analysis. First and foremost, the closed-economy setting of this model should be 
abandoned to allow for trade interactions with the rest of the world. The consumption 
framework should also be adjusted to allow for non-Ricardian households to make the model 
better suitable for fiscal policy analysis. This can be done by the introduction of liquidity 
constrained households in the model. The labour market specification could also be brought 
more in line with the QUEST model as the richness of the search bargaining labour market 
model would enhance the model’s usefulness in analysing labour market problems. 
 
 
 
 
 
 

- 39 - 



 

 

8 References 
Alesina, A., S. Ardagna, R. Perotti, and F. Schiantarelli, (2002), “Fiscal policy, profits, and 

investment”, American Economic Review, 92, 571-89. 
Blanchard O. J. and Kahn, The solution of linear difference models under rational 

expectations, Econometrica, 48, 1305-1312, 1980. 
Brooks S.P., Gelman A., General methods for monitoring convergence of iterative 

simulations, J. Computational and Graphical Statistics, 7, 434-455, 1998. 
Christiano, Lawrence, Martin Eichenbaum, and Charlie Evans (2001). “Nominal Rigidities 

and the Dynamic Effects of a Shock to Monetary Policy.” National Bureau of Economic 
Research Working Paper 8403. 

Collard F. and Juillard M. (2003), Stochastic simulations with DYNARE. A practical guide, 
Mimeo.  

Geweke, J., Using simulation methods for Bayesian econometric models: inference, 
development and communication, mimeo, Federal Reserve Bank of Minneapolis, 1999. 

De Grauwe, P. and Claudia Costa Storti (2004) ,  The effects of monetary policy: a meta 
analysis, CESifo Working paper no. 1224. 

Ireland, P. N., A method for taking models to the data, J. of Economic Dynamics & Control, 
28, 1205-1226, 2004. 

Juillard M. (1996, 2003), DYNARE, A program for solving rational expectation models. 
Edition 2.6.1.1 for Dynare version 2.6.1, August 2003, Mimeo. 

Kalman, R.E.. A new approach to linear filtering and prediction problems. ASME Trans., 
Journal Basic Eng., 82D, 35–45, 1960. 

Kalman, R.E. and R. S. Bucy. New results in linear filtering and prediction theory. ASME 
Trans., Journal Basic Eng., 83D, 95–108, 1961. 

Klein P., Using the generalized Schur form to solve a multivariate linear rational expectations 
model, Journal of Economic Dynamics & Control, 24, 1405-1423, 2000. 

Koopman, S. J., Exact initial Kalman filtering and smoothing for nonstationary time series 
models, J. American Statistical Association, 92, 1630-1638, 1997. 

Ireland P.N. (2004) A method for taking model to the data, J. Econ. Dynamics and Control, 
28, 1205-1226. 

Lubik T. A., F. Schorfheide, Do central banks target exchange rates? A structural 
investigation, Working Paper, 2003, Mimeo. 

Schorfheide, F. (2000), Loss function-based evaluation of DSGE models, J. Applied 
Econometrics, 15, 645-670. 

Shi, S. and Q. Wen (1999), Labor Market Search and the Dynamic Effects of Taxes and 
Subsidies. Journal of Monetary Economics, 43, 457-95. 
Sims C. and Zha T. (1998), Error bands for impulse responses, Working Paper, Mimeo. 
Sims C. (2003), Remarks on Bayesian methods for macro policy modelling, Working Paper, 

Mimeo. 
Smets F. and Wouters R. (2003), An Estimated Dynamic Stochastic General Equilibrium 

Model of the Euro Area, Journal of the European Economic Association, 1, 1123-1175. 
 

- 40 - 



 

Annex: 
 
A1. Results from posterior maximization 
Objective function at mode: 3800.713558 
 
parameters 
           prior mean     mode    s.d. t-stat prior pstdev 
          A2   0.050   0.0007  0.0004  1.6228 beta 0.0280 
        BARG   0.375   0.1176  0.1008  1.1670 beta 0.1800 
       DELTA   0.015   0.0126  0.0001 154.1201 beta 0.0050 
          G1   0.000  -0.2029  0.0213  9.5167 beta 0.4000 
        GAMI  15.000  20.9047  4.8567  4.3043 beta 5.0000 
       GAMI2  10.000   8.6001  2.7083  3.1755 beta 3.0000 
        GAML  15.000  26.7436  1.7125 15.6163 beta 5.0000 
        GAMP  15.000  22.4146  3.6221  6.1883 beta 5.0000 
        GAMW  15.000   6.1163  4.3002  1.4223 beta 5.0000 
         HAB   0.600   0.7353  0.0583 12.6078 beta 0.1500 
        ILAG   0.800   0.8893  0.0197 45.1071 beta 0.1000 
      INFLAG   0.500   0.9894  0.0047 211.4941 beta 0.2000 
       KAPPA   0.500   1.2019  0.3272  3.6733 gamm 0.4000 
        OMEG   0.200   0.3222  0.1328  2.4266 gamm 0.1500 
         RHO   0.900   0.9953  0.0017 572.8255 beta 0.0400 
     RHODELT   0.900   0.9925  0.0031 321.7083 beta 0.0400 
        RHOG   0.900   0.9419  0.0193 48.8082 beta 0.0400 
        RHOL   0.500   0.9974  0.0013 761.1845 beta 0.2000 
    RHOTPINF   0.500   0.0776  0.0548  1.4140 beta 0.2000 
        RHOW   0.500   0.9779  0.0095 102.7016 beta 0.2000 
         SFP   0.600   0.5890  0.0465 12.6697 beta 0.0500 
         SFW   0.800   0.9597  0.0376 25.5012 beta 0.1000 
        TAU1  -0.100  -0.1120  0.0338  3.3091 beta 0.0300 
       TDINF   0.200   0.2636  0.0527  4.9981 beta 0.0900 
         TDY   0.100   0.1282  0.0334  3.8401 beta 0.0450 
       THETA   2.000   2.2816  0.7984  2.8576 gamm 0.8000 
        TINF   1.250   1.6794  0.2004  8.3820 beta 0.3000 
          TY   0.300   0.2261  0.0661  3.4218 beta 0.0600 
        YLAG   0.900   0.9165  0.0196 46.6441 beta 0.0500 
 
standard deviation of shocks 
           prior mean     mode    s.d. t-stat prior pstdev 
       EPS_C   0.000   0.0142  0.0040  3.5351 unif 0.2000 
    EPS_DELT   0.000   0.0000  0.0000 13.6287 unif 0.0001 
     EPS_ETA   0.000   0.0371  0.0066  5.5873 unif 0.2000 
       EPS_G   0.000   0.0010  0.0001 13.2884 unif 0.2000 
     EPS_INF   0.000   0.0022  0.0003  6.9760 unif 0.2000 
       EPS_L   0.000   0.0153  0.0031  4.8651 unif 0.2000 
       EPS_M   0.000   0.0018  0.0002 10.4079 unif 0.2000 
     EPS_TFP   0.000   0.0048  0.0007  6.6825 unif 0.2000 
   EPS_TPINF   0.000   0.0173  0.0056  3.0852 unif 0.2000 
       EPS_W   0.000   0.0082  0.0011  7.2337 unif 0.2000 
 
A = 0.41207 
A1 = 0.021508 
BETA = 0.989 
RP = -0.0067164 
TAU = 0.1 
ZET = 0.4 
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A.2 Posterior simulation:  
4 parallel chains of 40000 runs; first 70% of runs discarded. 
ESTIMATION RESULTS 
  
Log data density is 3662.778532. 
parameters 
           prior mean post. mean conf. interval prior pstdev 
 
          A2   0.050   0.0020  0.0007  0.0031 beta 0.0280 
        BARG   0.375   0.1655  0.0088  0.3003 beta 0.1800 
       DELTA   0.015   0.0125  0.0123  0.0127 beta 0.0050 
          G1   0.000  -0.2060 -0.2410 -0.1699 beta 0.4000 
        GAMI  15.000  14.3751  8.5182 20.2044 beta 5.0000 
       GAMI2  10.000  12.0733  8.0709 16.1478 beta 3.0000 
        GAML  15.000  26.1438 23.3680 28.7457 beta 5.0000 
        GAMP  15.000  22.7744 17.9836 28.1251 beta 5.0000 
        GAMW  15.000  12.0756  4.7057 18.8104 beta 5.0000 
         HAB   0.600   0.7767  0.7033  0.8526 beta 0.1500 
        ILAG   0.800   0.8795  0.8398  0.9162 beta 0.1000 
      INFLAG   0.500   0.9844  0.9740  0.9969 beta 0.2000 
       KAPPA   0.500   1.4513  0.7917  2.0542 gamm 0.4000 
        OMEG   0.200   0.3401  0.1001  0.5799 gamm 0.1500 
         RHO   0.900   0.9909  0.9846  0.9967 beta 0.0400 
     RHODELT   0.900   0.9781  0.9636  0.9932 beta 0.0400 
        RHOG   0.900   0.9367  0.9085  0.9691 beta 0.0400 
        RHOL   0.500   0.9947  0.9905  0.9982 beta 0.2000 
    RHOTPINF   0.500   0.1235  0.0174  0.2225 beta 0.2000 
        RHOW   0.500   0.9718  0.9554  0.9895 beta 0.2000 
         SFP   0.600   0.5936  0.5256  0.6554 beta 0.0500 
         SFW   0.800   0.9451  0.8970  0.9976 beta 0.1000 
        TAU1  -0.100  -0.1085 -0.1563 -0.0596 beta 0.0300 
       TDINF   0.200   0.2624  0.1814  0.3472 beta 0.0900 
         TDY   0.100   0.1233  0.0768  0.1766 beta 0.0450 
       THETA   2.000   2.6593  1.5455  3.6551 gamm 0.8000 
        TINF   1.250   1.5153  1.1577  1.8927 beta 0.3000 
          TY   0.300   0.2324  0.1286  0.3332 beta 0.0600 
        YLAG   0.900   0.9053  0.8745  0.9411 beta 0.0500 
standard deviation of shocks 
           prior mean post. mean conf. interval prior pstdev 
 
       EPS_C   0.000   0.0193  0.0116  0.0274 unif 0.2000 
    EPS_DELT   0.000   0.0000  0.0000  0.0000 unif 0.0001 
     EPS_ETA   0.000   0.0394  0.0279  0.0499 unif 0.2000 
       EPS_G   0.000   0.0011  0.0009  0.0012 unif 0.2000 
     EPS_INF   0.000   0.0026  0.0017  0.0033 unif 0.2000 
       EPS_L   0.000   0.0187  0.0129  0.0251 unif 0.2000 
       EPS_M   0.000   0.0018  0.0015  0.0020 unif 0.2000 
     EPS_TFP   0.000   0.0054  0.0042  0.0065 unif 0.2000 
   EPS_TPINF   0.000   0.0246  0.0147  0.0346 unif 0.2000 
       EPS_W   0.000   0.0087  0.0066  0.0107 unif 0.2000 
 
A = 0.41748 
A1 = 0.021268 
BETA = 0.989 
RP = -0.0055613 
TAU = 0.1 
ZET = 0.4 
 
RMSE's    VAR          model (post. mean) 
C       5.9398e-006  8.5811e-006 
I       5.5508e-006  8.388e-006 
INOM    1.4206e-006  2.2686e-006 
K       0.00037479  1.0741e-005 
L       5.2953e-007  6.7359e-007 
PHI     4.5673e-006  9.9136e-006 
WR      1.9294e-005  2.3478e-005 
Y       1.9422e-005  2.6547e-005 
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STEADY-STATE RESULTS at the posterior mean: 
  
C             0.5795 
DELTAA        0.0124731 
ETA           0.9 
G             0.2062 
GS            0.2062 
I             0.2143 
INOM          0.0111223 
K             17.181 
L             0.62301 
LAM           1.72563 
MR            0.995585 
PHI           0 
Q             1.1793 
R             0.0111223 
TFP           0 
UC            1.72563 
UCAP          1 
VL            1.40093 
WPHI          0 
WR            0.858092 
WRPHI         0 
Y             1 
YPOT          1 
ZEPS_G        0 
ZEPS_L        0 
ZEPS_TPINF    0 
ZEPS_W        0 
ZPHIT         0 
 
MODEL SUMMARY 
  
  Number of variables:         28 
  Number of stochastic shocks: 10 
  Number of state variables:   17 
  Number of jumpers:           6 
  Number of static variables:  9 
 

- 43 - 



 

POLICY AND TRANSITION FUNCTIONS 
                  Y          I          C          K          L          MR         PHI        WR         INOM       TFP      DELTAA   ZEPS_L   ZEPS_TPINF ZEPS_W 
Constant          1.000000   0.214300   0.579500  17.181037   0.623010   0.995585   0          0.858092   0.011122   0        0.012473 0        0          0 
C          (-1)   0.691604  -0.061061   0.739018  -0.061061   0.089079   0.640533   0.103558  -0.044643   0.121919   0        0        0        0          0 
DELTAA     (-1)  -0.921541  -3.207231   2.303876  -20.012038 -0.756693  -0.917438   0.480831   2.937257  -0.000088   0        0.978102 0        0          0 
INOM       (-1)  -1.113647  -0.559801  -0.531870  -0.559801  -0.187520  -1.341397  -0.519187  -0.920738   0.590744   0        0        0        0          0 
K          (-1)   0.000350   0.000720  -0.000377   0.988247  -0.000407   0.000504  -0.001692  -0.000218  -0.000396   0        0        0        0          0 
TFP        (-1)   0.036566   0.025032   0.010812   0.025032  -0.088443   0.061370  -0.260680   0.058703  -0.063387   0.990885 0        0        0          0 
WR         (-1)  -0.007737  -0.006642  -0.000942  -0.006642  -0.033940  -0.008817   0.014825   0.654867   0.002830   0        0        0        0          0 
Y          (-1)   0.156157   0.078496   0.074580   0.078496   0.026294   0.188092   0.072801   0.129107  -0.082835   0        0        0        0          0 
YPOT       (-1)   0.261156   0.031192   0.038343   0.031192   0.040185   0.239184   0.117195   0.088222   0.052860   0        0        0        0          0 
ZEPS_G     (-1)   0.753786  -0.122981  -0.074826  -0.122981   0.113085   0.697144   0.122341  -0.078216   0.135366   0        0        0        0          0 
ZEPS_L     (-1)   0.003813   0.006729  -0.002991   0.006729  -0.028943  -0.001178   0.046149   0.176897   0.012631   0        0        0.994667 0          0 
ZEPS_TPINF (-1)   0.010028   0.010458  -0.000628   0.010458   0.001385   0.009281   0.001562  -0.000679   0.001784   0        0        0        0.123527   0 
ZEPS_W     (-1)  -0.007810  -0.009548   0.001892  -0.009548  -0.051924  -0.011851   0.043509  -0.133395   0.010346   0        0        0        0          0.971833 
ZPHIT      (-1)   0.965873   0.471622   0.475191   0.471622   0.151350   0.857092   0.739999   1.055642   0.265371   0        0        0        0          0 
I          (-1)   0.686645   0.711347  -0.038252   0.711347   0.087450   0.636371   0.098649  -0.046270   0.119951   0        0        0        0          0 
L          (-1)   0.064856   0.047840   0.015737   0.047840   0.642295   0.076473  -0.149045   0.611962  -0.030221   0        0        0        0          0 
PHI        (-1)  -0.067443  -0.052890  -0.013222  -0.052890   0.001112  -0.089388   0.554715  -0.350633   0.056476   0        0        0        0          0 
WPHI       (-1)  -0.000398  -0.000343  -0.000047  -0.000343  -0.001700  -0.000453   0.000760   0.031513   0.000145   0        0        0        0          0 
EPS_C             0.115219  -0.010173   0.123118  -0.010173   0.014840   0.106711   0.017253  -0.007437   0.020311   0        0        0        0          0 
EPS_DELT         -0.942172  -3.279035   2.355455  -20.460072 -0.773634  -0.937977   0.491596   3.003017  -0.000090   0        1.000000 0        0          0 
EPS_ETA          -0.018206  -0.011203  -0.006644  -0.011203  -0.001719  -0.022811   0.054838  -0.046910   0.011894   0        0        0        0          0 
EPS_G             0.804709  -0.131289  -0.079881  -0.131289   0.120725   0.744241   0.130606  -0.083500   0.144511   0        0        0        0          0 
EPS_INF           0.981222   0.479117   0.482742   0.479117   0.153755   0.870712   0.751758   1.072418   0.269588   0        0        0        0          0 
EPS_L             0.003834   0.006765  -0.003007   0.006765  -0.029098  -0.001185   0.046397   0.177845   0.012699   0        0        1.000000 0          0 
EPS_M            -1.266181  -0.636475  -0.604719  -0.636475  -0.213204  -1.525125  -0.590299  -1.046849   0.671656   0        0        0        0          0 
EPS_TFP           0.036902   0.025263   0.010912   0.025263  -0.089257   0.061934  -0.263078   0.059243  -0.063970   1.000000 0        0        0          0 
EPS_TPINF         0.081179   0.084659  -0.005082   0.084659   0.011212   0.075134   0.012647  -0.005499   0.014440   0        0        0        1.000000   0 
EPS_W            -0.008037  -0.009825   0.001947  -0.009825  -0.053429  -0.012194   0.044770  -0.137261   0.010646   0        0        0        0          1.000000 
 
 
THEORETICAL MOMENTS 
 
VARIABLE      MEAN       STD. DEV.  VARIANCE    
Y                1.0000     0.0259     0.0007 
I                0.2143     0.0119     0.0001 
C                0.5795     0.0113     0.0001 
K               17.1810     0.7255     0.5263 
L                0.6230     0.0065     0.0000 
MR               0.9956     0.0254     0.0006 
PHI              0.0000     0.0145     0.0002 
WR               0.8581     0.0210     0.0004 
INOM             0.0111     0.0120     0.0001 
TFP              0.0000     0.0186     0.0003 
DELTAA           0.0125     0.0002     0.0000 
ZEPS_L           0.0000     0.0242     0.0006 
ZEPS_TPINF       0.0000     0.0025     0.0000 
ZEPS_W           0.0000     0.0106     0.0001 
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VARIANCE DECOMPOSITION (in percent) 
 
              EPS_C      EPS_DELT   EPS_ETA    EPS_G      EPS_INF    EPS_L      EPS_M      EPS_TFP    EPS_TPINF  EPS_W       
Y                  0.02       1.27       0.01       1.42      10.82       9.12      13.53      62.85       0.01       0.95 
I                  0.01       7.90       0.01       7.95       9.27       6.31      12.53      54.76       0.07       1.19 
C                  0.15       1.35       0.01       3.65      21.12       8.46      17.54      47.22       0.01       0.50 
K                  0.00      20.49       0.00       3.74       0.77       8.61       0.82      64.73       0.01       0.83 
L                  0.02       1.67       0.01       3.15      12.06      52.76      18.12       5.84       0.01       6.36 
MR                 0.02       1.28       0.01       1.21       7.41       9.44      14.63      65.02       0.01       0.98 
PHI                0.00       0.01       0.01       0.21      86.39       0.11      11.64       1.55       0.00       0.07 
WR                 0.00       0.53       0.02       0.16      16.58       0.53      10.73      56.24       0.00      15.20 
INOM               0.01       0.01       0.00       0.47      95.62       0.05       3.22       0.60       0.00       0.02 
TFP                0.00       0.00       0.00       0.00       0.00       0.00       0.00     100.00       0.00       0.00 
DELTAA             0.00     100.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 
ZEPS_L             0.00       0.00       0.00       0.00       0.00     100.00       0.00       0.00       0.00       0.00 
ZEPS_TPINF         0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00     100.00       0.00 
ZEPS_W             0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00     100.00 
  
 
COEFFICIENTS OF AUTOCORRELATION 
 
Order         1       2       3       4       5        
Y             0.9779  0.9379  0.8925  0.8494  0.8125 
I             0.9774  0.9328  0.8818  0.8336  0.7927 
C             0.9760  0.9269  0.8688  0.8118  0.7616 
K             0.9999  0.9997  0.9993  0.9988  0.9982 
L             0.9846  0.9484  0.9008  0.8499  0.8012 
MR            0.9758  0.9351  0.8900  0.8478  0.8121 
PHI           0.9767  0.9284  0.8712  0.8156  0.7671 
WR            0.9770  0.9341  0.8878  0.8460  0.8113 
INOM          0.9807  0.9589  0.9365  0.9146  0.8940 
TFP           0.9909  0.9819  0.9729  0.9640  0.9552 
DELTAA        0.9781  0.9567  0.9357  0.9152  0.8952 
ZEPS_L        0.9947  0.9894  0.9841  0.9788  0.9736 
ZEPS_TPINF    0.1235  0.0153  0.0019  0.0002  0.0000 
ZEPS_W        0.9718  0.9445  0.9179  0.8920  0.8669 
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