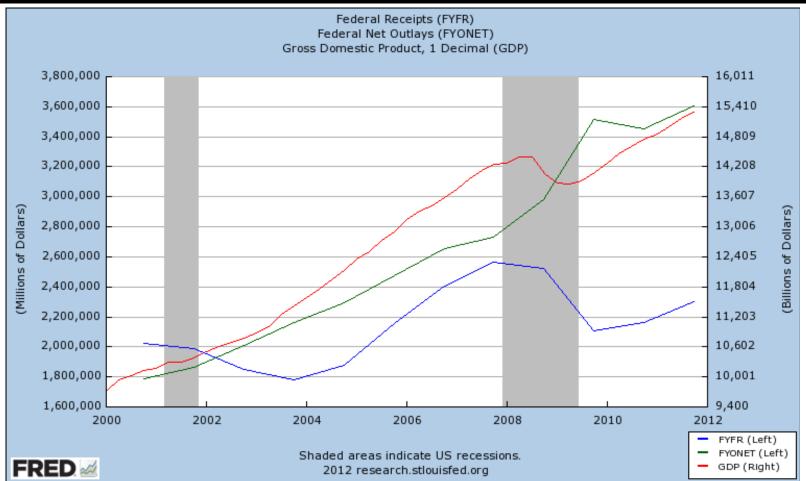
Fiscal Consolidation Strategies

John B. Taylor¹, Volker Wieland², Maik Wolters²

¹Hoover Institution and Stanford University ²Goethe University Frankfurt and Institute for Monetary and Financial Stability

Fiscal Policy in the Aftermath of the Financial Crisis Brussels, March 2-3, 2012

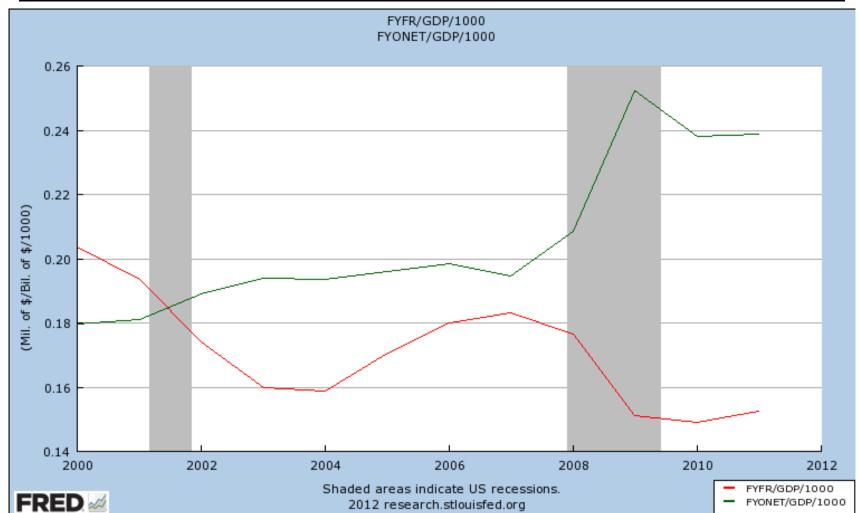

U.S. fiscal developments after the financial crisis

- Financial crisis and recession have led to substantial government deficits and debt
- Recession

 Iower GDP and tax revenues

- Higher government outlays (purchases, transfers, stimulus +automatic)
- Higher expenditure-to-GDP ratio is projected to persist!

Federal Outlays, Federal Receipts and GDP

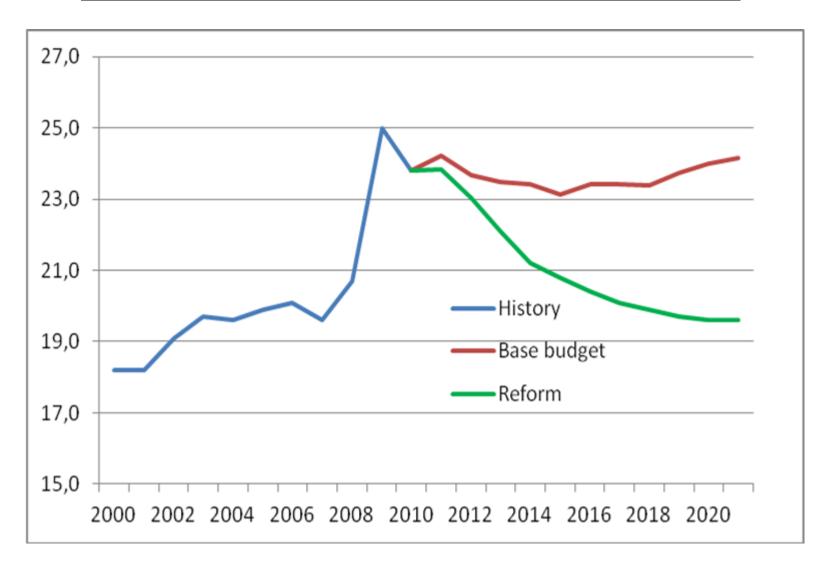

Blue: Federal Receipts (FYFR), Annual, Fiscal Year

Green: Federal Net Outlays (FYONET)

Red: Gross Domestic Product

Source: FRED Economic Data, St. Louis Fed

Federal Outlays/GDP and Federal Receipts/GDP



Red: Federal Receipts (FYFR), Annual, Fiscal Year divided by Gross Domestic Product

Green: Federal Net Outlays (FYONET) divided by Gross Domestic Product

Source: FRED Economic Data, St. Louis Fed

Outlays/GDP (CBO Forecast 2011)

Need for fiscal consolidation

- Higher spending has to be financed
- Currently: increased debt
- Increase of taxes in the future → distortionary taxes may dampen economic activity for a long time
- Proposal: Return outlays to GDP to pre-crisis levels

Need for model-based analysis

- We cannot simply choose paths for government spending G, transfers TR and taxes.
- Outlays/GDP ratio is also influenced by endogenous response of the economy.
- Need a structural economic model to explain endogenous response to specific modificiations to the fiscal regime.

From simple models to large DSGE models used at policy institutions

- Flexible prices with constant trend output. G/Y down, C/Y and I/Y up.
- Long-run: Simple neoclassical growth model.
 - (King-Plosser-Rebelo 1988, Ljunqvist-Sargent 2004)
- DSGE: Cogan-Cwik-Taylor-Wieland (2010)
 - Christiano-Eichenbaum-Evans 05 with Smets-Wouters modifications and estimation, extended with rule-of-thumb consumers.
- DSGE: Coenen-McAdam-Straub (2008), 2 countries, detailed government sector, ...

Neoclassical model

- Used to review long-run effects of permanent changes in fiscal regime.
- Government purchases, lump-sum taxes and transfers, consumption tax rate, labor income and capital tax rates.

$$\tau_{ct}, \tau_{lt}, \tau_{kt}, \tau_{ht}, g_t$$

<u>Households</u>

Households maximize:

$$\sum_{t=0}^{\infty} \beta^{t} U(c_{t}, l_{t}), \quad \beta \in (0,1) \qquad U(c_{t}, l_{t}) = \frac{c_{t}^{1-\sigma_{1}}}{1-\sigma_{1}} - \frac{l^{1+\sigma_{2}}}{1+\sigma_{2}}$$

Household budget:

$$\sum_{t=0}^{\infty} \left\{ p_{t} (1 + \tau_{ct}) c_{t} + p_{t} i_{t} \right\} \leq \sum_{t=0}^{\infty} \left\{ r_{t} (1 - \tau_{kt}) k_{t} + w_{t} (1 - \tau_{lt}) l_{t} - p_{t} \tau_{ht} \right\}$$

Government budget

$$\sum_{t=0}^{\infty} p_{t} g_{t} \leq \sum_{t=0}^{\infty} \left\{ \tau_{ct} p_{t} c_{t} + r_{t} \tau_{kt} k_{t} + w_{t} \tau_{lt} l_{t} + p_{t} \tau_{ht} \right\}$$

Production, capital, investment

• Technology: $y_t = F(k_t, l_t) = k_t^{\alpha} l_t^{(1-\alpha)}$

• Capital accumulation: $k_{t+1} = (1 - \delta)k_t + i_t$

• Market clearing: $y_t = c_t + i_t + g_t$

Perfect foresight, perfect competition

Calibration

- $\beta = 0.95$
- $\sigma_1 = 2$
- $\sigma_2 = 2$ \rightarrow labor supply elasticity = 0.5
- $\tau^{C} = 7.7\%$
- $\tau^N = 22.5\%$ $(\tau^N + \tau^{W_h} = 15.4\% + 7.1\%$ in NAWM)
- $\tau^{K} = 18.41\%$
- $\tau^h = \text{residual}$

Solution

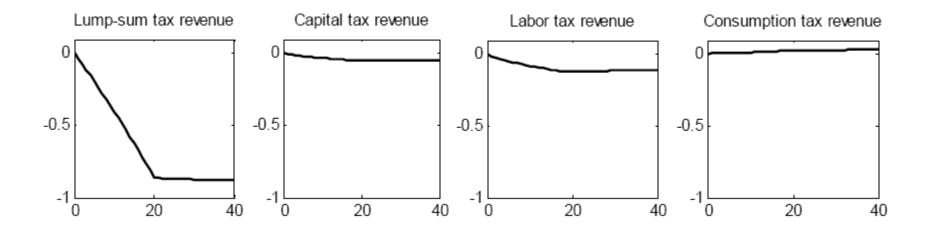
Euler equation: $c_t^{-\sigma_1} = \beta c_{t+1}^{-\sigma_1} R_{t+1}$

$$R_{t} = \frac{(1+\tau_{ct})}{(1+\tau_{ct+1})} \left[(1-\delta) + (1-\tau_{kt+1})\alpha \left(\frac{k_{t+1}}{l_{t+1}}\right)^{\alpha-1} \right]$$

Labor/leisure: $\frac{l_t^{\sigma_2}}{c_t^{-\sigma_1}} = \frac{(1-\tau_{lt})}{(1+\tau_{ct})}(1-\alpha) \left(\frac{k_t}{l_t}\right)^{\alpha}$

Capital accu.: $k_{t+1} = k_t^{\alpha} l_t^{1-\alpha} + (1-\delta)k_t - c_t - g_t$

Reduction of goverment consumption



A permanent reduction in government spending: -1% of GDP, phased-in over 5 years Variables are measured as $\frac{X_1}{GDP_1} \frac{X_t - X_1}{X_1} 100$

Reduction of goverment consumption

- Distortionary tax rates are unchanged
 - Implies a reduction in per-capita lump-sum taxes
 - Boost to households' life-time income
 - Increase consumption
 Depends crucially on the labor supply elasticity
 - Increase leisure
 - Output falls (see Aiyagari et al., 1992, for analysis of positive income on leisure effect)
 - Capital and investment decline

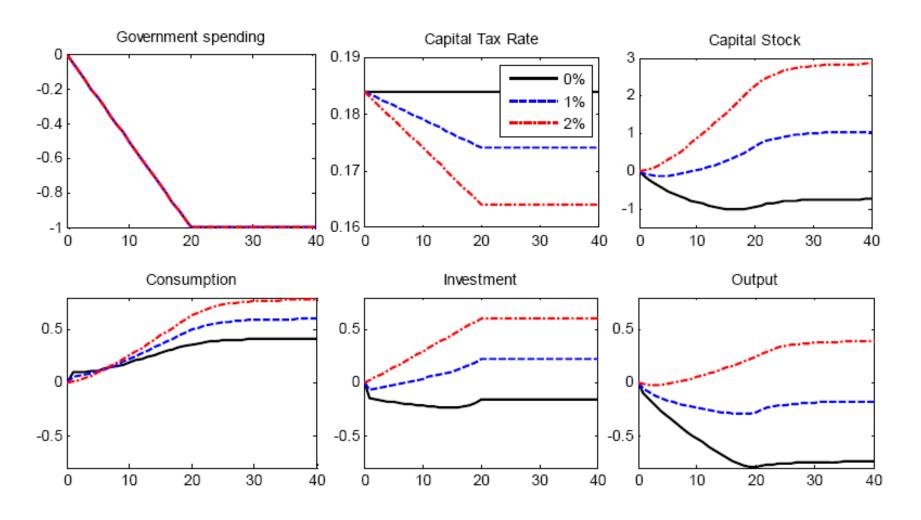
Implications for government budget

 Almost all of the savings are used to decrease lump-sum taxes


Reduction in transfers

•
$$\tau_{ht} = g_t - (\tau_{ct}c_t + r_t / p_t\tau_{kt}k_t + w_t / p_t\tau_{lt}l_t)$$

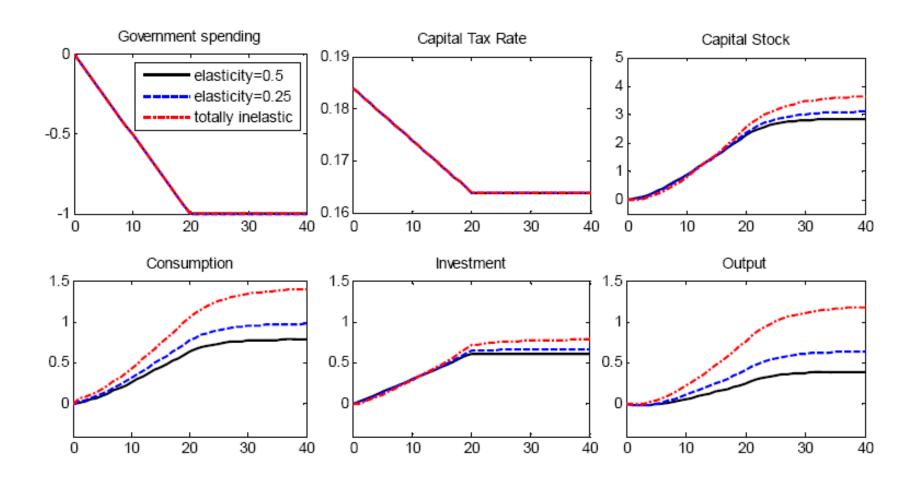
 Reduction in transfer needs to be offset by another tax rate or government spending


 Reduce income tax so that a decrease in transfers by 1% of GDP is achieved

Reduction in transfers and labor income tax

A permanent reduction in transfers with savings applied to labor taxes: -1% of GDP, phased-in over 5 years Variables are measured as $\frac{X_1}{GDP_1} \frac{X_2 - X_1}{X_1} = 100$

Reduction of distortionary taxes: capital tax



G reduced by 1% of GDP, capital tax by 1 and 2 percentage points

Sensitivity to the labor supply elasticity

- DSGE: 0.5 (Smets & Wouters, Coenen et al)
- Microevidence: 0.75 (Chetty et al, 2011)
- RBC literature: 4 (King and Rebelo, 1999), 2.61 (Cho and Cooley, 1994)
- Micro vs Macro: Heterogeneity of elasticities for different demographic groups
- Current situation: extensive margin for quitting a job is likely very low given the high unemployment rate

The role of the labor supply elasticity

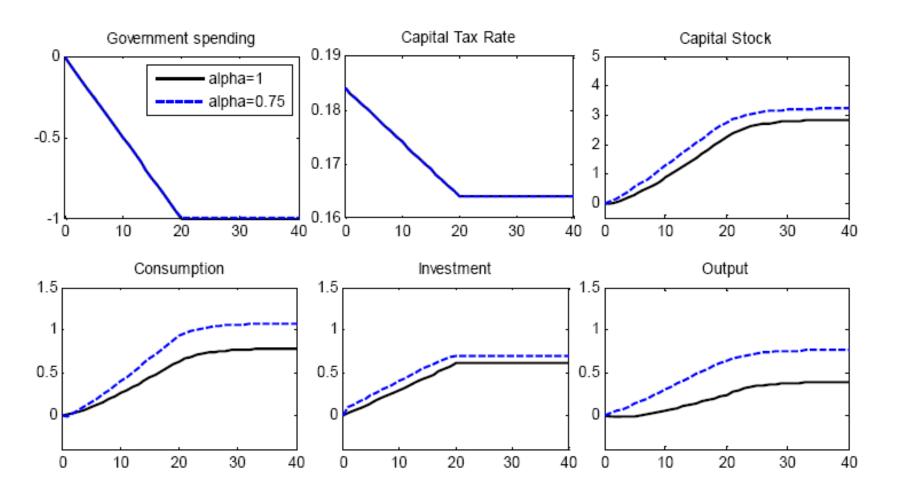
Government consumption and household utility

 Some categories of government consumption might provide utility to households: infrastructure, policy, fire protection, national defence, education...

$$\sum_{t=0}^{\infty} \beta^t U(\widetilde{c}_t, l_t), \quad \beta \in (0,1)$$

$$\widetilde{c}_t = \widetilde{c}_t(c_t, g_t) = \left[\alpha c_t^{\gamma} + (1 - \alpha)g_t^{\gamma}\right]^{1/\gamma}, \quad \gamma \in (-\infty, 1), \quad \alpha \in (0, 1)$$

Amano-Wirjanto 1998, Linnemann-Schabert 2004


Public and private goods

Amano and Wirjanto (1998) estimate γ =0.36

private and public goods are substitutes

We then consider different values of α in simulation. no private utility from g: α =1

Government consumption and household utility

A permanent reduction in G and a decrease of the capital tax rate

Transition to new steady state in models with short run frictions

- We consider 2 state-of-the art medium size
 DSGE models
 - Cogan et al (2010): version of Smets & Wouters
 with rule-of-thumb consumers
 - Coenen et al (2008): ECB's New Area Wide Model (NAWM), two country model with rich fiscal sector

Cogan et al (2010)

- Christiano-Eichenbaum-Evans (2005) with Smets-Wouters 2007 modifications.
- Parameters are estimated with Bayesian methods and data as in Smets-Wouters.
- Extension to include also households that choose to consume their current income (28,5%).
- No Ricardian-equivalence, reaction function for lump-sum taxes to government debt.

Coenen-McAdam-Straub 2008 (NAWM)

- Two-country model covering the U.S. and euro area economies (blue-print for ECB's NAWM)
- 2 economies are largely symmetric, but differ in size.
- Same fiscal instruments as in neoclassical model + government debt and money supply
- Transfers are differently distributed than lump-sum taxes.

Fiscal sector in NAWM

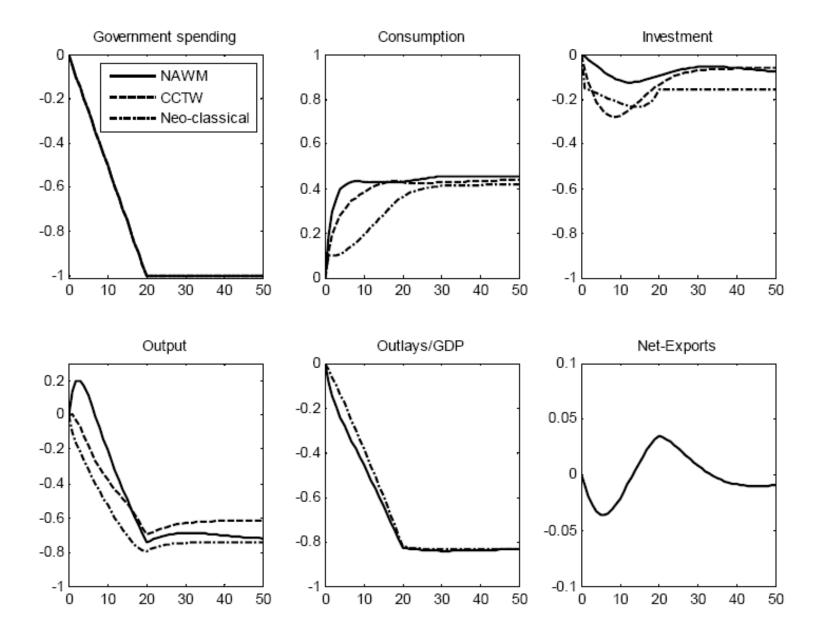
Government Budget:

$$P_{G,t}G_{t} + TR_{t} + B_{t} + M_{t-1} = \tau_{t}^{C}P_{C,t}C_{t} + \tau_{t}^{N}(W_{I,t}N_{t}^{I} + W_{J,t}N_{t}^{J})$$

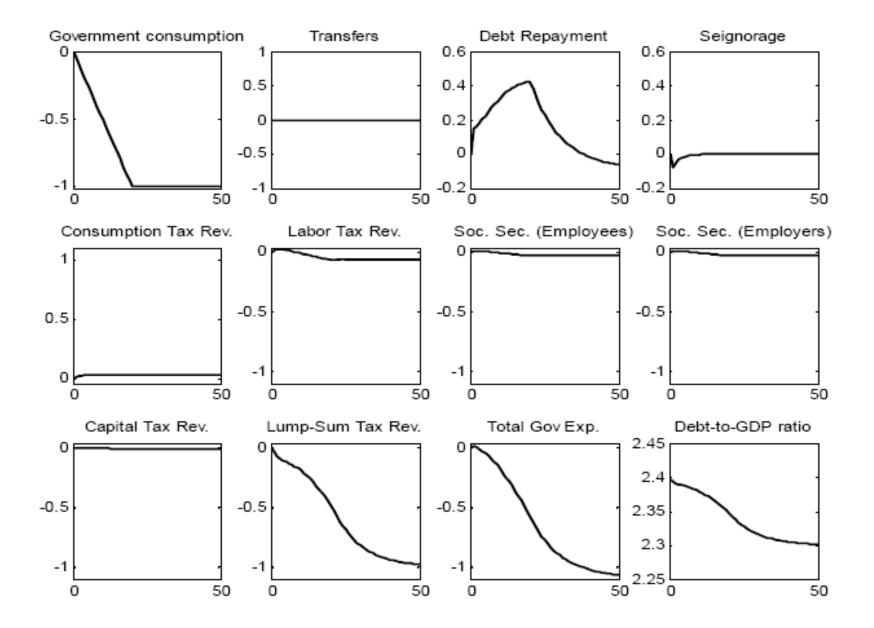
$$+ \tau_{t}^{K}(R_{K,t}u_{t} - (\Gamma_{u}(u_{t}) + \delta)P_{I,t})K_{t}$$

$$+ \tau_{t}^{W_{h}}(W_{I,t}N_{t}^{I} + W_{J,t}N_{t}^{J}) + \tau_{t}^{W_{f}}W_{t}N_{t}$$

$$+ T_{t} + R_{t}^{-1}B_{t+1} - M_{t}$$


Reaction function of lump-sum taxes:

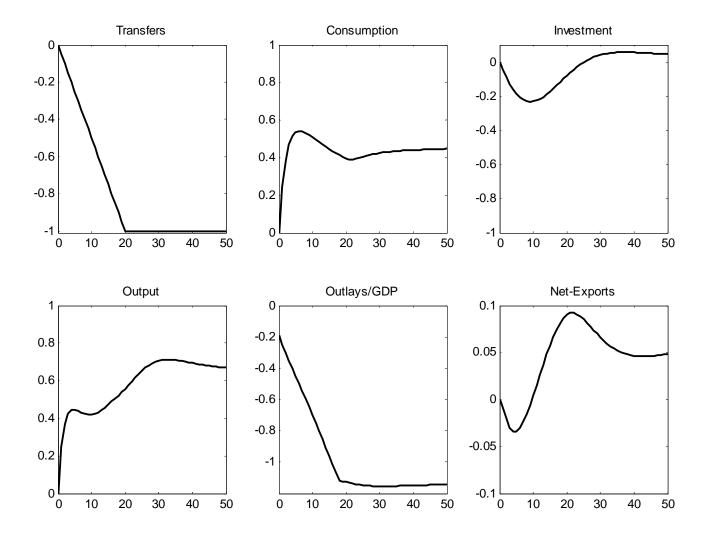
$$\frac{T_t}{P_{y,t}Y_t} = \phi_{B_Y} \left(\frac{B_t}{P_{y,t}Y_t} - B_Y \right)$$


NAWM Parametrization

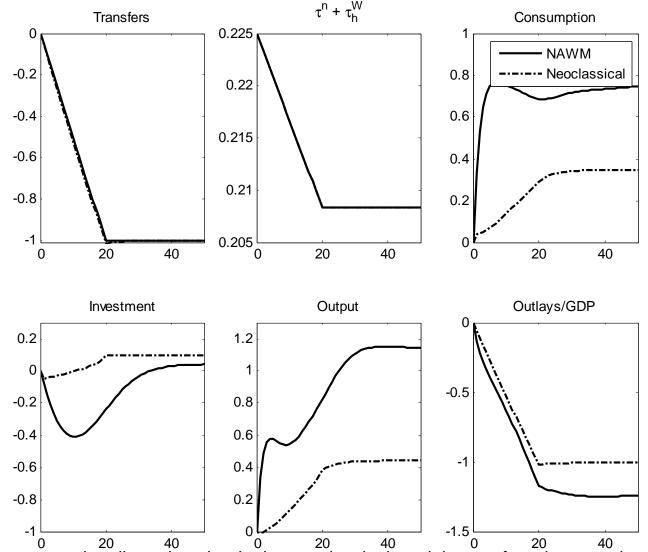
- Labor supply elasticity: 0.5
- Transfer are disributed in ratio 3:1 to households J and I
 - Households J: access to money market only
 - Households I: access to bonds, money, capital
- Lump-sum taxes are collected 1:3 for J and I
- Consumption and investment respond with low sensitivity to changes in the terms of trade.
- $\tau^{C,US} = 7.7\%$, $\tau^{l,US} = 15.4\%$, $\tau^{W_h,US} = 7.1\%$, $\tau^{W_f,US} = 7.1\%$, $\tau^{K,US} = 18.41\%$, $B_V = 2.4$ (= 60% per annual GDP)

Reduction in government purchases

Tax revenues in NAWM



Results from fiscal policy simulations in NAWM


Reduction of government consumption

- Quicker reaction of consumption and investment
- Long run effects very similar to neoclassical model and CCTW (2010)
- Reduction of government consumption leads to substantial reduction in output
- Debt-to-GDP ratio is reduced
- Lump-sum taxes are reduced

Reduction in Transfers in NAWM (lump-sum taxes adjust)

Reduction in Transfers in NAWM and neoclassical model (labor tax adjusts)

- Labor Income tax is adjusted so that in the neoclassical models transfers decrease by 1% of GDP.
- There is an additional slight decrease in lump-sum taxes in the NAWM model.

Results from reduction of transfers

- Joint reduction of transfers and the income tax rate
- Consumption and output increase
- Increase is stronger in the NAWM model
- Investment decreases in the short run
- Outlays-to-GDP ratio is reduced by 1% in the neoclassical model and 1.2% in the NAWM model

Summary

Assessment of different strategies for reducing outlays/GDP ratio.

- Consumption/leisure effects depend strongly on the labor supply elasticity.
- Decrease in G leads to a decrease in Y
- Decrease in TR leads to an increase in Y
- Results on G and lump-sum taxes very similary across 3 models, transfers quite different.

Issues and Outlook

- Capital taxes in NAWM (not shown)
- Welfare
- Evolution of government debt
- Design a specific proposal for return to precrisis outlays/GDP.
- Include current state as starting point for simulations leading to different long-run steady states.
- Robustness across (estimated) models.