ESTIMATING SOVEREIGN DEFAULT RISK

Huixin Bi (BoC) & Nora Traum (NC State)

March 2, 2012

WHERE WE ARE TODAY

TABLE 1: 10-yr Nominal Interest Rate Spread (against Germany)

	2010	2011
Italy	1.65	5.19
Greece	8.99	16.05

WHERE WE ARE TODAY

Theory

- Ability to service debt is country specific
- Rational expectations → default probabilities forward looking
- e.g. Bi (2011), Juessen, et al (2011)

WHERE WE ARE TODAY

Theory

- Ability to service debt is country specific
- Rational expectations → default probabilities forward looking
- e.g. Bi (2011), Juessen, et al (2011)

• Empirical

- Panel regressions, e.g. Alesina, et al (1992)
- Backward looking debt limits, e.g. Ostry, et al (2010)

THIS PAPER

- Estimate RBC model of sovereign default
- Use Bayesian methods; Italian and Greek post-EMU data
- Main Results
 - For given debt level, Greece had lower default probability
 - Italy more willing to service debt than Greece

MODEL

- RBC, closed economy model
- Fiscal instruments: spending, taxes, transfers, debt
- Endogenous probability of sovereign (partial) default

MODEL: HOUSEHOLDS

Preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \log \left(c_t - h \bar{c}_{t-1} \right) + \phi \log(1 - n_t) \right\}$$

Budget constraint:

$$(1 - \tau_t)A_t n_t + z_t - c_t = \frac{b_t}{R_t} - (1 - \Delta_t)b_{t-1}$$

$$A_t - A = \rho_A(A_{t-1} - A) + \epsilon_t^A. \qquad \epsilon_t^A \sim \mathcal{N}(0, \sigma_A^2)$$

MODEL: GOVERNMENT

• Government budget constraint:

$$\tau_t A_t n_t + \frac{b_t}{R_t} = g_t + z_t + \underbrace{(1 - \Delta_t)b_{t-1}}_{b_{t-1}^d}$$

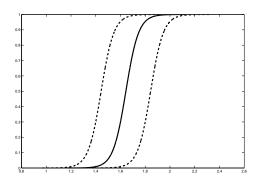
Fiscal Rules:

$$g_t - g = \rho_g(g_{t-1} - g) - \gamma_g \left(b_{t-1}^d - b\right) + \epsilon_t^g, \quad \epsilon_t^g \sim \mathcal{N}(0, \sigma_g^2)$$

$$\tau_t - \tau = \rho_\tau(\tau_{t-1} - \tau) + \gamma_\tau \left(b_{t-1}^d - b\right) + \epsilon_t^\tau, \quad \epsilon_t^\tau \sim \mathcal{N}(0, \sigma_\tau^2)$$

$$z_t - z = \rho_z(z_{t-1} - z) + \epsilon_t^z, \qquad \epsilon_t^z \sim \mathcal{N}(0, \sigma_z^2)$$

Model: Government


• Effective, stochastic fiscal limit b_t^* implying default scheme:

$$\Delta_t = \begin{cases} 0 & \text{if } b_{t-1} < b_t^* \\ \delta & \text{if } b_{t-1} \ge b_t^* \end{cases}$$

- b_t^* related to
 - · Dynamic tax Laffer curve
 - Political willingness to finance debt
- b_{+}^{*} drawn from Logistic distribution

MODEL: FISCAL LIMIT

- Estimate point: $P(\tilde{b}^* \ge b) = 0.3$
- Assume $\hat{b}^* \tilde{b}^* = 0.4$, where $P(\hat{b}^* \ge b) = 0.999$
- Prior: $\tilde{b}^* \sim U(1.4, 1.8)$

EQUILIBRIUM

Competitive equilibrium:

- HH maximize utility subject to budget
- Gov. policy satisfies its budget
- Markets clear, implying

$$c_t + g_t = A_t n_t$$

ESTIMATION

Italy (1999:2-2010:3) and Greece (2001:2-2010:3)

• Observables: y, g, T, b, R

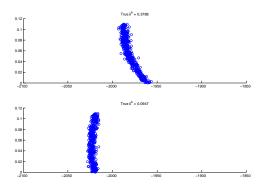
Assume measurement error

Priors: standard in literature

SOLVING MODEL

- Use monotone mapping method
 - Coleman (1991), Davig (2004)
 - Discretize state space
 - Iterate on policy functions

ESTIMATING MODEL


- Sequential Monte Carlo approximation of likelihood [Doh (2011)]
 - Initialize state x_0 with N particles
 - ullet Drawn N particles $u^{t|t-1,i}$
 - \bullet Construct $x^{t|t-1,i}$ and assign weight

$$w_t^i = \frac{1}{(2\pi)^{5/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} \left(y_t - Ax^{t|t-1,i}\right)' \Sigma \left(y_t - Ax^{t|t-1,i}\right)\right]$$

- Normalize weights & resample w/ replacement
- Log-likelihood approximation: $\sum_{t=1}^T \ln \left(\frac{1}{N} \sum_{i=1}^N w_t^i \right)$
- · Posterior distribution from Metropolis-Hastings algorithm

ESTIMATING MODEL

Identifiability of parameters

• Calibrate $\delta = \{0.0978, 0.05, 0.0245\}$

CALIBRATED PARAMETERS

	Italy	Greece
β	0.99	0.99
\bar{n}	0.75	0.75
$ar{g}/ar{y}$	0.1966	0.1795
$ar{b}/ar{y}$	1.19*4	1.14*4
au	0.4148	0.3387

• Estimated parameters: \tilde{b}^* , h, γ^g , γ^τ , ρ^a , ρ^z , ρ^g , ρ^τ , σ_a , σ_g , σ_τ , σ_z

	Prior	$\delta^A =$ 0.3788	
$ ilde{b}^*$	1.60 [1.42, 1.78]	1.52 [1.46, 1.60]	
$\gamma^{g,L}$	0.40 [0.12, 0.82]	0.30 [0.16, 0.56]	
$\gamma^{\tau,L}$	1.1 [0.64, 1.67]	0.53 [0.45, 0.66]	

• \tilde{b}^* informed from data

	Prior	$\delta^A =$ 0.3788	$\delta^A = extbf{0.2}$	
$ ilde{b}^*$	1.60 [1.42, 1.78]	1.52 [1.46, 1.60]	1.47 [1.44, 1.51]	
$\gamma^{g,L}$	0.40 [0.12, 0.82]	0.30 [0.16, 0.56]	0.59 [0.17, 0.82]	
$\gamma^{ au,L}$	1.1 [0.64, 1.67]	0.53 [0.45, 0.66]	0.56 [0.45, 0.68]	

	Prior	$\delta^A=$ 0.3788	$\delta^A=$ 0.2	
$ ilde{b}^*$	1.60 [1.42, 1.78]	1.52 [1.46, 1.60]	1.47 [1.44, 1.51]	
$\gamma^{g,L}$	0.40 [0.12, 0.82]	0.30 [0.16, 0.56]	0.59 [0.17, 0.82]	
$\gamma^{ au,L}$	1.1 [0.64, 1.67]	0.53 [0.45, 0.66]	0.56 [0.45, 0.68]	

$$\bullet \ \downarrow \delta \Longrightarrow \downarrow \tilde{b}^*$$

-	Prior	$\delta^A = extbf{0.2}$	$\delta^A =$ 0.0978
\tilde{b}^*	1.60	1.47	1.60
	[1.42, 1.78]	[1.44, 1.51]	[1.44, 1.78]
$\gamma^{g,L}$	0.40	0.59	0.54
	[0.12, 0.82]	[0.17, 0.82]	[0.25, 0.80]
$\gamma^{ au,L}$	1.1	0.56	0.56
	[0.64, 1.67]	[0.45, 0.68]	[0.28, 0.70]

	Prior	$\delta^A = extbf{0.2}$	$\delta^A = extbf{0.0978}$
$ ilde{b}^*$	1.60	1.47	1.60
	[1.42, 1.78]	[1.44, 1.51]	[1.44, 1.78]
$\gamma^{g,L}$	0.40	0.59	0.54
	[0.12, 0.82]	[0.17, 0.82]	[0.25, 0.80]
$\gamma^{ au,L}$	1.1	0.56	0.56
	[0.64, 1.67]	[0.45, 0.68]	[0.28, 0.70]

• Low δ calibration $\Longrightarrow \tilde{b}^*$ not well-identified

	Prior	$\delta^A = extbf{0.0978}$
\tilde{b}^*	1.60 [1.42, 1.78]	1.45 [1.40, 1.57]
$\gamma^{g,L}$	1.1 [0.64, 1.67]	1.51 [1.08, 1.78]
$\gamma^{ au,L}$	1.1 [0.64, 1.67]	1.14 [0.94, 1.48]

• \tilde{b}^* informed from data

	Prior	$\delta^A=$ 0.2	$\delta^A =$ 0.0978
\tilde{b}^*	1.60	1.69	1.45
	[1.42, 1.78]	[1.57, 1.79]	[1.40, 1.57]
$\gamma^{g,L}$	1.1	1.53	1.51
	[0.64, 1.67]	[1.22, 1.85]	[1.08, 1.78]
$\gamma^{\tau,L}$	1.1	0.76	1.14
	[0.64, 1.67]	[0.46, 1.00]	[0.94, 1.48]

	Prior	$\delta^A = extbf{0.2}$	$\delta^A =$ 0.0978
\tilde{b}^*	1.60 [1.42, 1.78]		1.45 [1.40, 1.57]
$\gamma^{g,L}$	1.1 [0.64, 1.67]		1.51 [1.08, 1.78]
$\gamma^{\tau,L}$	1.1 [0.64, 1.67]	0.76 [0.46, 1.00]	1.14 [0.94, 1.48]

$$\bullet \ \downarrow \delta^A \Longrightarrow \downarrow \tilde{b}^*$$

	Prior	$\delta^A =$ 0.3788	$\delta^A=$ 0.2	
$ ilde{b}^*$	1.60 [1.42, 1.78]	1.67 [1.58, 1.78] 1.73 [0.87, 2.97] 0.82 [0.54, 1.09]	1.69 [1.57, 1.79]	
$\gamma^{g,L}$	1.1 [0.64, 1.67]	1.73 [0.87, 2.97]	1.53 [1.22, 1.85]	
$\gamma^{ au,L}$	1.1 [0.64, 1.67]	0.82 [0.54, 1.09]	0.76 [0.46, 1.00]	

	Prior	$\delta^A =$ 0.3788	$\delta^A=$ 0.2	
$ ilde{ ilde{b}}^*$	1.60 [1.42, 1.78]	1.67 [1.58, 1.78]	1.69 [1.57, 1.79]	
$\gamma^{g,L}$	1.1 [0.64, 1.67]	1.73 [0.87, 2.97]	1.53 [1.22, 1.85]	
		0.82 [0.54, 1.09]		

• \tilde{b}^* same for high/mid δ^A

	Prior	$\delta^A=$ 0.3788	$\delta^A=$ 0.2	
$ ilde{b}^*$	1.60 [1.42, 1.78]	1.67 [1.58, 1.78]	1.69 [1.57, 1.79]	
$\gamma^{g,L}$	1.1 [0.64, 1.67]	1.73 [0.87, 2.97]	1.53 [1.22, 1.85]	
		0.82 [0.54, 1.09]		

• \tilde{b}^* same for high/mid δ^A , γ 's adjust

ESTIMATED FISCAL LIMIT

 How close is estimated fiscal limit to maximum serviceable debt implied by model?

LAFFER CURVE & FISCAL LIMIT

- τ_t^{max} : tax rate at Laffer curve peak
- T_t^{max} : tax revenue at Laffer curve peak
- Maximum debt level in model:

$$\mathcal{B}^{max} = E \sum_{t=0}^{\infty} \beta^{t+1} \frac{u_c^{max}(A_{t+1}, g_{t+1})}{u_c^{max}(A_0, g_0)} (T^{max}(A_t, g_t) - g_t - z_t)$$

FISCAL LIMIT IN PRACTICE

- Political obstacles to achieve tax peak
- Reduced-form political economy representation
- Introduce "political factor" β^{pol} :

$$\mathcal{B}^* = E \sum_{t=0}^{\infty} \beta^{t+1} \beta^{pol} \frac{u_c^{max}(A_{t+1}, g_{t+1})}{u_c^{max}(A_0, g_0)} \left(T^{max}(A_t, g_t) - g_t - z_t \right)$$

• Ratio of \tilde{b}^{max} to \tilde{b}^* is political factor estimate

FISCAL LIMIT IN ITALY

	$\delta^A = 0.3788$		$\delta^A = 0.0947$	
	median	[5, 95]	median	[5, 95]
$ ilde{b}^{max}$	2.45	[2.38, 2.49]	2.47	[2.24, 2.51]
$ ilde{b}^*$	1.52	[1.46, 1.6]	1.6	[1.44, 1.78]
eta^{pol}	0.62	[0.59, 0.67]	0.65	[0.58, 0.73]

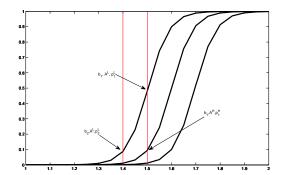
FISCAL LIMIT IN

GREECE

	$\delta^A=0.3788$ median $[5,95]$		$\delta^A = 0.0947$ median $[5, 95]$	
$ ilde{b}^{max}$	3.32	L ' J	3.26	[3.07,3.35]
$ ilde{b}^*$	1.67	[1.58, 1.78]	1.45	[1.40,1.57]
eta^{pol}	0.5	[0.48, 0.54]	0.45	[0.42, 0.48]

FISCAL LIMIT IN ITALY/GREECE

$\delta^A =$	$\delta^A = 0.3788$		$\delta^A = 0.0947$	
median	[5, 95]	median	[5, 95]	


 β^{pol} : Italy 0.62 0.65 β^{pol} : Greece 0.5 0.45

EXTENSION: STATE DEPENDENT FISCAL LIMIT

• Issue: Model has difficulty w/ recent recession

EXTENSION: STATE DEPENDENT FISCAL LIMIT

- Issue: Model has difficulty w/ recent recession
- Stochastic fiscal limit drawn from conditional distribution, $b_t^* \sim \mathcal{B}^*(A_{t-1})$
- $P(b_{t-1} \ge b^*) = \frac{\eta_3 \exp(\eta_1 + \eta_2 b_{t-1} + \eta_5 A_{t-1})}{\eta_4 + \exp(\eta_1 + \eta_2 b_{t-1} + \eta_5 A_{t-1})}$

CONCLUSION

- Show how to estimate DSGE model of sovereign default
- For given debt level, Greece had lower default probability
- Italy more willing to service debt than Greece

CONCLUSION

- Show how to estimate DSGE model of sovereign default
- For given debt level, Greece had lower default probability
- Italy more willing to service debt than Greece
- Ongoing research:
 - Estimate model with broader set of Eurozone countries
 - · Incorporate state dependence in fiscal limit