#### Searching for the Sources of Productivity from Macro to Micro (and back)

Eric Bartelsman\* Oct. 16, 2008 DG ECFIN 5th Annual Research Conference

\*Vrije Universiteit Amsterdam; Tinbergen Institute;.IZA Bonn.

## Overview

- Growth theory and empirics
  - Micro foundations of representative firm
  - Applied to macro/sectoral data
  - Limited role for policy
- Firm-level studies:
  - Single country applied micro analysis
- 'Macro' analysis with micro data
  - ICT (with Office of National Statistics, et al.)
  - Reallocation (with Haltiwanger, Scarpetta)
  - Labor Policy (with Perotti, Scarpetta; and with Gautier, de Wind)

## **Results from EUKLEMS**

| 1995-<br>2005 |     | EU   |      |      | US   |     |
|---------------|-----|------|------|------|------|-----|
|               | VA% | Kict | TFP  | VA%  | Kict | TFP |
| Market        | 2.1 | .4   | 1.0  | 3.7  | .6   | 1.7 |
| EleCom        | 3.8 | .8   | 2.8  | 10.5 | .8   | 8.7 |
| MfgxElc       | 1.2 | .2   | 1.7  | 1.8  | .2   | 2.2 |
| DISTR         | 2.6 | .3   | 1.5  | 4.1  | .5   | 2.1 |
| FinBus        | 3.5 | .9   | -1.0 | 4.3  | .7   | .4  |

Source: Timmer, O'Mahony, and van Ark (2007)

## Results from EU KLEMS

Questions still needing answers

- Why is contribution from IT capital lower in EU Or... Why is ICT investment lower
- Why is growth in high-tech so much lower Or... Why is high-tech sector small, especially in fast growing parts
- Why is unexplained growth so high? Why is TFP growth so much lower in EU Or... Why is TFP growth especially low in ICT intensive sectors
- What, if anything, is the role of policy Or... If policy affects firms and market interactions, what can industry data tell us about policy

## **Growth Theory**

- Effects of policy on growth:
  - Production Factors
  - Externalities

$$y_i = A_i + \sum_{s \in \{klems\}} \alpha_s X_s$$

$$\Delta A_i = G(I_i, A_i, \overline{A})$$

## Searching for the Sources of Productivity

- How do the following policies affect productivity?
  - Employment protection
  - Trade policy
  - Competition policy
  - Business conditions
- Difficult to identify with standard theory, even using micro data

#### Models of Firm Dynamics

- Heterogeneous agents at micro level Diversity in firm-level (innovation) strategies Frictions, uncertainty, expectations
- Market selection

Sales and input growth, conditional on productivity and economic 'environment'

 Combination of firm-level productivity impact and market share evolution gives total impact on industry productivity

#### Models of Firm Dynamics



#### Models of Firm Dynamics

 $S_i \in \{N, E, C\}$ conditional on C:  $y_i = A_i + \sum \alpha_s X_s$ , where  $i \in C$  $s \in \{k lems\}$  $\Delta A_i = G(I_i, A_i, \overline{A})$ and aggregate productivity  $\overline{A} = \sum A_i + \sum (\phi_i - \overline{\phi})(A_i - \overline{A})$  $\overline{i \in C}$   $\overline{i \in C}$ 

#### Firm-level, cross-country comparisons

- Policy environment affects all firms in country (and industry) in the same manner
- Cross-country firm-level comparisons may provide means to observe/identify the impacts of policy changes
- Policy affects:
  - Externalities, production factors
  - Selection
  - Allocation

#### From firm data to macro indicators



#### **Distributed Micro Data Analysis**



#### **Selected Firm-level indicators**

|                                   | US      | EU    | US       | EU     | US   | EU   |
|-----------------------------------|---------|-------|----------|--------|------|------|
| (percent)                         | Average | Manuf | ICT Proc | ducing | Non- | ICT  |
| Entrant Size rel. to<br>incumbent | 21.0    | 38.6  | 6.3      | 35.7   | 24.0 | 40.8 |
| Productivity Gap of<br>Exiters    | 10.0    | 15.4  | 1.2      | 9.1    | 7.9  | 17.7 |
| Employment Share<br>of Exiters*   | 18.9    | 23.1  | 20.2     | 31.8   | 19.8 | 22.3 |
| Employment growth, top qrt.       | 68.6    | 50.1  | 91.8     | 65.1   | 70.8 | 45.0 |

#### Policy and productivity

- Allocation of resources across firms
  - Demand and supply conditions affect firm-level input decisions
- Selection
  - Entry and exit decisions
- Choice of innovation strategy
  - Intangible investments
  - Technology adoption

#### Covariance Between Size and Producitivity?

• Olley and Pakes (1996) static decomposition:

$$P_{t} = (1/N_{t})\sum_{i} p_{it} + \sum_{i} (\theta_{it} - \bar{\theta}_{t})(p_{it} - \bar{P}_{t})$$

where: N: # of firms in a sector;

- > The first term is the unweighted average of firm-level productivity
- The second term (OP cross term) reflects allocation of resources: do firms with higher productivity have greater market share.



#### Model-based analysis of OP-gap

- Idiosyncratic distortions to profit:
  - Opportunistic taxes, bureaucratic control of resources
- Lead to distortions in firm size
  - lowers correlation between productivity and size
- But also affect selection
  - Some good firms may not enter
  - Inefficient churn

## Why does old EU lag in new technology'?

- Stylized facts from firm-level data
  - Indicators from EU differ from those in US, especially in ICT industries
    - Firm demographics (entry/exit)
    - Firm-level inputs
    - Productivity distribution
  - Points towards 'safe' behavior of firms in EU

## **Choice of Innovation Strategy**

- Experimental
  - High payoff,  $\Pi$
  - very low probability of success, p.
- Follower
  - Low payoff,  $\pi$ ;
  - diversifiable risk for follower strategy.
- When experiment fails: reconfigure, try again
  - Partial exit costs  $P_{EX}$ . (Firms continue to experiment)
  - Total exit cost  $T_{EX}$  (Firms give up experimentation)

#### Payoffs for Experimentation



# FYI: ICT and variability of outcomes



## **Testable implications**

- With more experimentation average productivity is higher
- With higher exit costs, experimentation is lower, especially at frontier
- So:
  - Exit costs lower productivity more in those sectors where potential gain from experimentation is higher
  - Exit costs lower experimentation, and more so near frontier

#### Data

| Source       | Periods | Countries       | Coverage       | Variables                                |  |
|--------------|---------|-----------------|----------------|------------------------------------------|--|
|              |         |                 |                |                                          |  |
| EUKLEMS      | 1970-04 | EU+US           | All industries | Output, factor inputs, prices            |  |
|              |         |                 |                |                                          |  |
| OECD-EPL     | 1985-03 | OECD            |                | EPL indicators                           |  |
|              |         |                 |                |                                          |  |
| WB-CDB       | 2004-07 | World           |                | Entry costs, firing costs,<br>rigidities |  |
| BHS          | 1990s   | Selection of    | 30 industries, | Moments and correlations                 |  |
|              |         | OECD, Asia,     | mostly mfg     | from underlying firm-                    |  |
|              |         |                 |                | level busiliess surveys                  |  |
| ONS/Eurostat | 2001-04 | 13 EU countries | All industries | Moments and correlations                 |  |
|              |         |                 |                | firm-level datasets                      |  |

## **Empirical specification**

Main regression: TFP effect of exit costs

$$V_{c,i,t} = \alpha + \sum_{x \in lkk^{IT}} \beta_x X_{c,i,t} + I_{c,t} (\gamma_0 + \gamma_1 F)_i + \sum \delta_j D_j + \varepsilon_{c,i,t}$$
  
where  $I_{c,t} = EPL_{c,t}$  or  $CDB_c$ 

- Frontier indicators (by industry for US or UK):
  - Top quartile productivity relative to mean
  - Standard deviation of productivity
  - Adoption of Broadband

#### Exit costs and productivity

| Dependent var:      | Log(VA) | Log(VA)                | Log(VA)       |  |
|---------------------|---------|------------------------|---------------|--|
| Regressor:          |         |                        |               |  |
| Log: Kit,Knit,Hours | ***     | ***                    | ***           |  |
| EPL                 | .47     | .34                    | .46           |  |
|                     | (0.02)  | (0.14)                 | (0.19)        |  |
|                     |         |                        |               |  |
| EPL x Rank          |         | -1.18                  | -1.13         |  |
|                     |         | (3.07)                 | (3.08)        |  |
|                     |         |                        |               |  |
| Rank variable       |         | Top quartile prod/mean | Broadband-use |  |
| Num. obs.           | 7032    | 6790                   | 7031          |  |
| R-sq                | .97     | .97                    | .97           |  |

#### Innovation strategy and employment

- Mortensons-Pissarides type model with 2 sectors
  - 1: safe sector, known technology
  - 2: risky sector, draw from prod. distribution
- With firing costs, option of closing down conditional on bad draw is more expensive
  - So, fewer jobs created in risky sector

### Exit costs and employment

| Dependent var: |     | Labor share in sector  | Labor share in sector |  |
|----------------|-----|------------------------|-----------------------|--|
| Regressor:     |     |                        |                       |  |
| EPL            |     | .02                    | .02                   |  |
|                |     | (0.74)                 | (0.74)                |  |
|                |     |                        |                       |  |
| EPL x Ranl     | K   | -0.82                  | -0.84                 |  |
|                |     | (10.30)                | (10.55)               |  |
|                |     |                        |                       |  |
| Rank varial    | ole | Top quartile prod/mean | Broadband-use         |  |
| Num. obs.      |     | 5518                   | 5518                  |  |
| R-sq           |     | .84                    | .84                   |  |

## Value added per hour EU relative to US (source: EU KLEMS, market sector, EU15)



## Exit costs and productivity

- Productivity is reduced in industries that have potential gain from experimentation
- Employment share in innovative industries is reduced
- => High exit costs lower aggregate productivity

## **ICT** Adoption

- Carrot and Stick:
  - Profits to be gained if succesful (taking into account market share gains)
  - Competitive pressure: Market share/profit losses when others adopt successfully
- Costs and benefits:
  - Readiness: skilled workers, high wages,
    - complementary inputs
  - Profits from being successful and scaling up business

#### **Broadband Adoption and Impact**

 $a: v_{ijt} = a_0 + a_1 DSL\% + a_2 k^{TT} + a_3 k^N + a_4 hrs + dummies$ 

 $b: DSL_{ijt} = b_0 + b_1 w_{-1} + b_2 Cap_{-1}^{T} + b_3 HiSkl_{-1} + b_4 Churn + dumnies$ 

| Churn  | Interquartile range of firm-<br>level growth rate<br>distribution |
|--------|-------------------------------------------------------------------|
| DSL%   | Broadband penetration                                             |
| HiSkl  | High skilled worker share                                         |
| Cap%it | ICT-capital as share of cap.                                      |
| w      | Average wage                                                      |
| Hrs    | hours                                                             |
| Kn     | Non-IT capital service                                            |
| Kit    | ICT capital service                                               |
| V      | (log) real value added                                            |

#### **Broadband Adoption and Impact**

 $a: v_{ijt} = a_0 + a_1 DSL\% + a_2 k^{IT} + a_3 k^N + a_4 hrs + dummies$ 

 $b: DSL\%_{ijt} = b_0 + b_1 w_{-1} + b_2 Cap\%_{-1}^{IT} + b_3 HiSkl_{-1} + b_4 Churn + dummies$ 

|    | Variable                      | a:Log (value added);<br>b:DSL% |     |
|----|-------------------------------|--------------------------------|-----|
| a1 | Broadband Penetration (DSL%): | 1.24                           | .90 |
| a2 | Non-ICT Capital               | .35                            | .27 |
| a3 | ICT Capital                   | 07                             | .05 |
| a4 | Labor Hours                   | .72                            | .68 |
| b1 | Wage(t-1)                     | .24                            | .02 |
| b2 | ICT capital share(t-1)        | .31                            | .20 |
| b3 | High-skill labor share(t-1)   | .18                            | .38 |
| b4 | Churn                         | .30                            | .15 |
|    | Fixed effects                 | c,t                            | i,t |
|    | Num. Obs.                     | 659                            | 646 |

32

## Conclusions

- Country/Industry/Time panel regressions are useful to assess role of policy
- Expanding modelling framework to include selection and allocation increases understanding/identification of policyproductivity link
- Frictions in resource reallocation reduce intangible investment (ICT)