Cross-country Efficiency of Secondary Education Provision: a Semi-parametric Analysis with Non-discretionary Inputs

<u>António Afonso</u> (ECB and ISEG/UTL), <u>Miguel St. Aubyn</u> (ISEG/UTL)

Brussels, 12 March 2007

These slides reflect the views of the authors and do not necessarily reflect those of the ECB. All errors are the responsibility of the authors

1

Introduction

In this paper we:

- i) estimate output efficiency scores for 25 countries, taking into account the resources employed;
- ii) **explain efficiency scores**, controlling for environment factors (non-discretionary inputs).
- Methodology:
 - "raw" efficiency scores: **DEA** (data envelopment analysis);
 - explaining inefficiency: tobit regression, bootstrap technique.

Motivation ...

Two main motivations:

(1) <u>Public finances</u>

- In 2001 OECD countries expended an average of 6.2% of GDP on education institutions, of which 4.8% of GDP were from public sources.

- In primary and secondary education, on average, 92% of spending is public.

(2) Education and growth

Concern with education also comes from the belief that this is an important source of human capital formation and therefore of economic growth.

Table 1 – Public expenditure on education, 2001

(% of total expenditure in e	each level)
------------------------------	-------------

	Pre-primary	Primary and	Tertiary	All levels of
	education	secondary	education	education
		education		
Australia	68.9	84.4	51.3	75.6
Austria	79.3	96.3	94.6	94.4
Belgium	96.6	95.0	84.1	93.0
Czech Republic	91.8	92.1	85.3	90.6
Denmark	81.7	98.0	97.8	96.1
Finland	91.0	99.1	96.5	97.8
France	95.9	93.0	85.6	92.0
Germany	62.3	81.1	91.3	81.4
Greece	na	91.4	99.6	94.2
Hungary	90.6	93.1	77.6	89.0
Iceland	na	95.3	95.0	91.7
Indonesia	5.3	76.3	43.8	64.2
Ireland	33.2	95.3	84.7	92.2
Italy	97.0	98.0	77.8	90.7
Japan	50.4	91.5	43.1	75.0
Korea	48.7	76.2	15.9	57.1
Mexico	86.7	87.2	70.4	84.6
Netherlands	98.2	95.1	78.2	90.9
Norway	na	na	96.9	95.9
Portugal	na	99.9	92.3	98.5
Slovak Republic	97.4	98.5	93.3	97.1
Spain	83.4	93.3	75.5	87.8
Sweden	100.0	99.9	87.7	96.8
Switzerland	na	84.8	na	na
Thailand	97.8	na	82.5	95.6
Tunisia	na	100.0	100.0	100.0
Turkey	na	na	95.8	na
United Kingdom	95.7	87.2	71.0	84.7
United States	68.1	93.0	34.0	69.2
Uruguay	81.3	93.5	99.5	93.4
Mean	78.3	92.2	79.3	88.2
Median	86.7	93.3	85.3	91.9
Minimum	5.3	76.2	15.9	57.1
Maximum	100.0	100.0	100.0	100.0
Standard deviation	24.3	6.8	21.8	10.8
Observations	23	27	29	28

4

... and literature on education efficiency

- Previous research on the performance of the public sector in general and of education systems in particular suggest the <u>existence of inefficiencies</u>:
- Afonso, Schuknecht and Tanzi (2005), public expenditure in the OECD; St. Aubyn (2003), education spending in the OECD; Gupta and Verhoeven (2001), education and health in Africa; Afonso and St. Aubyn (2005) health and education in OECD.
- Methodologies used in the literature
 - FDH or DEA, or both;
 - Non-discretionary inputs are seldom considered.
 - Separate research strand: study of the determinants of schooling quality across countries using cross-country regressions, Barro and Lee (2001), Hanushek and Luque (2003).

DEA - Data Envelopment Analysis

$$\begin{aligned} &Max_{\lambda,\delta_i} \delta_i \\ &\text{s. to} \quad \delta_i y_i \leq Y\lambda \\ & x_i \geq X\lambda \quad (1) \\ & n1'\lambda = 1 \\ & \lambda \geq 0 \end{aligned}$$

- y column vector of outputs,x column vector of inputs,X input matrix,
- *Y* output matrix.
- δ efficiency score ($\delta \ge 1$).

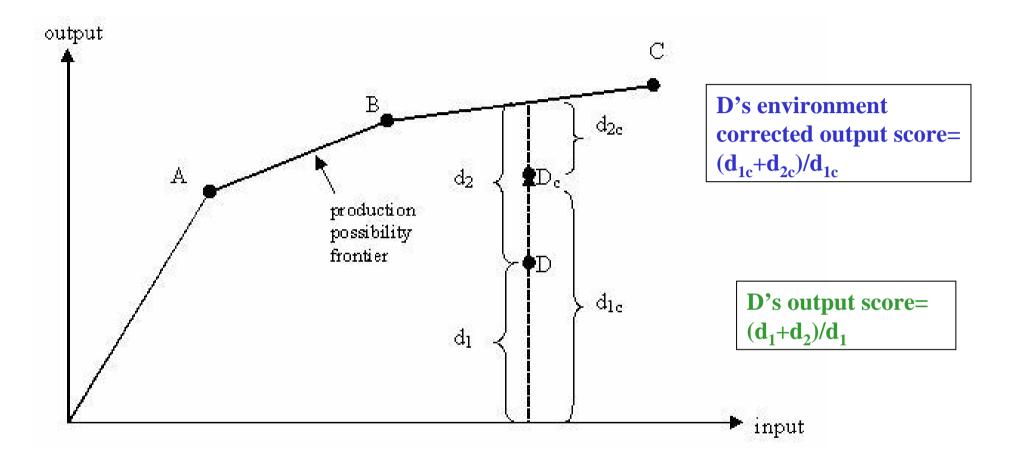
 $\delta > 1$, inefficiency $\delta = 1$, efficiency

DEA and FDH illustration ¥. DEA CR frontier С 75 **D's output** inefficiency DEA VR frontier e D 70 FDH frontier ÷ Β 66 65 A X <u>``</u> 800 950 1000 1300 **D's input inefficiency** 7

Non-discretionary inputs and tobit two-steps procedure

Non-discretionary inputs:

Socio-economic differences may play a relevant role in determining heterogeneity across DMUs – either secondary schools, universities or countries' achievements in an international comparison – and influence educational outcomes.


Typical two stage approach:

The output efficiency score is regressed on non-discretionary outputs (z):

$$\hat{\delta}_i = z_i \beta + \varepsilon_i \tag{2}$$

The output score is not smaller than 1. This has led researchers to use a tobit regression approach.

Non-discretionary inputs and tobit two-steps procedure

 $1 < (d_{1c}+d_{2c})/d_{1c} < (d_1+d_2)/d_1$, the environment corrected score is closer to the frontier.

Non-discretionary inputs and tobit two-steps procedure

Problems with tobit traditional procedure: $\hat{\delta}_i = z_i \beta + \varepsilon_i$

- Each efficiency score estimate depends on all observed inputs and outputs: ε_i is serially correlated.

- The environmental variables are correlated with both inputs and outputs: ε_i is not independent from z_i .

Simar and Wilson (2007) propose alternative estimation and inference procedures based on bootstrap methods. They assume:

$$\delta_i = \psi(z_i, \beta) + \varepsilon_i \ge 1,$$

where $\boldsymbol{\varepsilon}_i$ is a left truncated normal random variable.

Country	PISA (2003)	Hours per year in school, 2000-2002 2/	Teachers per 100 students, 2000-2002 3/	GDP per capita, 2003 (USD) 4/	Parental education attainment, 2001-2002 5/	Public-to-tota expenditure ratio 2001- 2002 6/
Australia	526.15	1023.7	8.0	29143.4	61.1	84.6
Austria	498.35	1072.5	10.0	29972.5	81.9	96.0
Belgium	517.59	1005.0	10.5	28396.1	64.6	94.4
Brazil	379.84	800.0	5.5	7767.2	57.3	
Czech Republic	511.16	867.0	7.5	16448.2	90.5	91.9
Denmark	499.65	860.0	7.8	31630. 2	80.5	97.9
Finland	545.90	807.0	7.3	27252.2	84.7	99.3
France	509.34	1037.0	8.1	27327.2	67.9	93.0
Germany	502.53	886.0	6.6	27608.8	85.6	80.8
Greece	461.67	1064.0	10.1	19973.2	59.4	91.6
Hungary	494.06	925.0	8.7	14572.3	78.6	92.9
Iceland	501.57	821.9	na	30657.3	61.0	95.2
Indonesia	374.55	1274.0	5.5	3364.5	22.7	76.4
Ireland	505.54	896.3	7.0	36774.8	63.7	95.7
Italy	474.31	1020.0	9.8	27049.9	49.4	97.9
Japan	531.79	875.0	6.7	28162.2	94.0	91.6
Korea	541.29	867.0	_5.1	17908.4	77.8	78.5
Mexico	393.56	1166.9	3.3	9136.2	15.6	86.7
Netherlands	523.87	1066.9	6.1	29411.8	69.9	94.8
New Zealand	524.68	952.6	6.1	21176.9	79.6	na
Norway	492.23	826.8	9.6	37063.4	90.8	99.2
Poland	492.81	na	6.8	11622.9	47.9	na
Portugal	470.29	881.7	11.5	18443.5	20.0	99.9
Russian Federation	469.61	989.0	8.9	9195.2	na	na
Slovak Republic	488.49	886.3	7.4	13468.7	90.3	98.1
Spain	483.75	907.2	8.6	22264.	45.3	93.1
Sweden	509.50	740.9	7.3	26655.5	86.8	99.9
Switzerland	514.99	887.0	na	30186. 1	87.3	86.9
Thailand	422.73	1167.0	5.6	7580.3		97.8
Tunisia	365.70	890.0	4.6	7082.9	na	100.0
Turkey	426.54	841.3	5.7	6749.3	24.7	na
United States	486.67	na	6.5	37352.1	88.5	91.5
Uruguay	426.35	913.0	6.9	8279.9	35.1	93.5
Mean	480.82	942.5	7.4	21202.3	63.9	92.8
Minimum	365.70	740.9	3.3	3364.5	15.6	76.4
Maximum	545.90	1274.0	11.5	37352.1	94.0	100.0
Standard deviation	48.87	122.0	1.9	10168.7	24.6	6.5
Observations	33	31	31	33	31	28

Data set

11

Table 3 – Results for education efficiency (n=25)

2 inputs (teachers-students ratio, hours in school) and 1 output (PISA 2003 indicator)

	DEA Output oriented		Peers	
Country	VRS TE	Rank		
Australia	1.038	7	Finland	
Austria	1.095	14	Finland	DEA results
Belgium	1.055	8	Finland	
Czech Republic	1.068	9	Finland	
Denmark	1.093	13	Finland	
Finland	1.000	11	Finland	
France	1.072	10	Finland	
Germany	1.083	12	Finland, Korea	
Greece	1.182	21	Finland	
Hungary	1.105	15	Finland	
Indonesia	1.447	25	Finland, Korea	
Ireland	1.079	11	Finland, Korea	
Italy	1.151	19	Finland	
Japan	1.024	4	Finland, Korea	
Korea	1.000	1	Korea	
Netherlands	1.037	6	Finland, Korea	
New Zealand	1.036	5	Finland, Korea	
Norway	1.109	16	Finland	With the same inputs,
Portugal	1.161	20	Finland	it would be possible
Slovak Republic	1.118	17	Finland	to increase the output.
Spain	1.129	18	Finland	to moreuse the output.
Sweden	1.000	1	Sweden	
Thailand	1.283	24	Finland, Korea	
Turkey	1.260	22	Finland, Korea, Sweden	
Uruguay	1.278	23	Finland, Korea	
Average	1.116			12

Results from tobit regression: $\hat{\delta}_i = \beta_0 + \beta_1 Y_i + \beta_2 E_i + \varepsilon_i$

Table 4 – Censored normal robit results						
	Model 1	Model 2	Model 3	Model 1a	Model 3a	
Constant	1.295024	1.342502	1.374361	2.614888	2.237114	
Constant	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
Y	-0.825e-5		-0.427e-5			
	(0.000)		(0.012)			
Log(Y)				-0.152062	-0.101269	
				(0.000)	(0.000)	
Ε		-0.003566	-0.002574		-0.001903	
		(0.000)	(0.000)		(0.001)	
$\hat{\sigma}_{_{arepsilon}}$	0.081428	0.071752	0.062480	0.063324	0.051811	
8	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
	· · ·	· · ·	· · ·		· · · · · · · · · · · · · · · · · · ·	

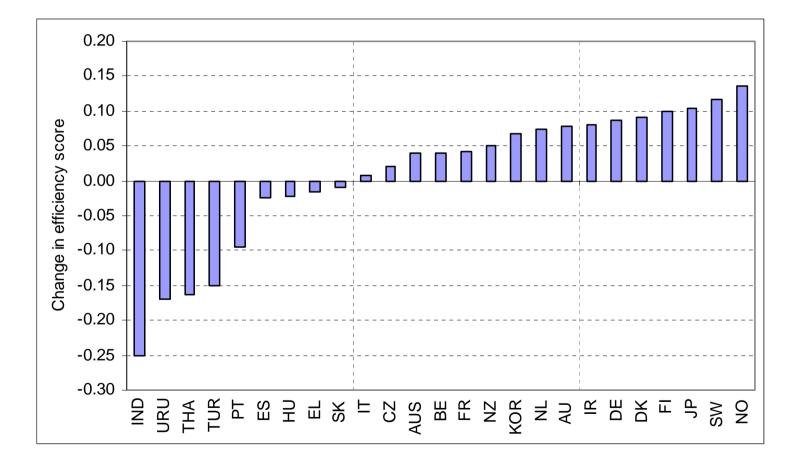
 Table 4 – Censored normal Tobit results

Notes: *Y* – GDP per capita; *E* – Parental educational attainment. $\hat{\sigma}_{\varepsilon}$ – Estimated standard deviation of ε . P- values in brackets.

 $\Delta Y, \Delta E \Rightarrow \nabla \delta \Rightarrow \Delta$ efficiency

		$1 \text{ able } 5 - \mathbf{b} 0$	bolstrap results				
		(25 c	ountries)				
Algorithm 1							
	Model 1	Model 2	Model 3	Model 1a	Model 3a		
Constant	1.367000	1.395726	1.455587	2.907919	2.347747		
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
Y	-0.150344e-4		-0.710790e-5				
	(0.000)		(0.001)				
Log(Y)				-0.184488	-0.112575		
				(0.000)	(0.000)		
E		-0.00523442	-0.00269907		-0.00209274		
		(0.000)	(0.000)		(0.001)		
$\hat{\sigma}_{_arepsilon}$	0.102022	0.0876502	0.0677879	0.0710499	0.0544861		
۵	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
		Alg	orithm 2				
	Model 1	Model 2	Model 3	Model 1a	Model 3a		
Constant	1.435993	1.412244	1.455827	3.028311	2.596005		
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
Y	-0.151096e-4		-0.712013e-5				
	(0.000)		(0.001)				
Log(Y)				-0.191403	-0.135911		
				(0.000)	(0.000)		
E		-0.00482225	-0.00270063		-0.00178054		
		(0.000)	(0.001)		(0.0005)		
$\hat{\sigma}_{_{arepsilon}}$	0.0985940	0.0875667	0.0678872	0.0588680	0.0471327		
ε	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
					·		

Table 5 – Bootstrap results


Notes: *Y* – GDP per capita; *E* – Parental educational attainment. $\hat{\sigma}_{\varepsilon}$ – Estimated standard deviation of *z*; P- values in brackets.

		CDD	Education	Falles as more to d	D 1	
	Bias corrected	GDP correction	attainment correction	Fully corrected	Rank	
	scores	(2)	(3)	scores $(4) - (1) + (2) + (3)$		
Australia	(1)	0.037	-0.007	(4)=(1)+(2)+(3) 1.077	3	
					3 22	
Austria	1.104	0.040 0.033	0.030	1.174	22 7	
Belgium	1.063		-0.001	1.095		
Czech Republic	1.083	-0.041	0.046	1.087	6	
Denmark	1.108	0.048	0.028	1.184	23	richer
Finland	1.037	0.027	0.035	1.100	8	
France	1.082	0.028	0.005	1.115	14	countries
Germany	1.104	0.029	0.037	1.170	21	with lower
Greece	1.191	-0.015	-0.010	1.167	20	levels of
Hungary	1.115	-0.058	0.024	1.082	4	adult
Indonesia	1.528	-0.257	-0.075	1.196	24	
Ireland	1.094	0.068	-0.002	1.159	19	education
Italy	1.160	0.026	-0.028	1.159	18	
Japan	1.044	0.032	0.052	1.127	17	
Korea	1.075	-0.030	0.023	1.068	2	
Netherlands	1.066	0.038	0.009	1.112	13	
New Zealand	1.068	-0.007	0.026	1.087	5	high
Norway	1.131	0.069	0.046	1.246	25	educational
Portugal	1.172	-0.026	-0.080	1.067	1	attainment
Slovak Republic	1.131	-0.068	0.045	1.108	10	
Spain	1.140	0.000	-0.035	1.105	9	and poorer
Sweden	1.052	0.024	0.039	1.116	15	than
Thailand	1.348	-0.146	-0.082	1.120	16	average
Turkey	1.343	-0.162	-0.072	1.109	12	
Uruguay	1.296	-0.134	-0.053	1.109	11	
Average	1.143	-0.018	0.000	1.126		15
						10

Table 6 – Corrected output efficiency scores (for Model 3a)

Bootstrap results

Figure 3 – Change in efficiency scores after correction -/+: DMU moves closer (further away) to (from) the production frontier

Conclusions

- Results from the first-stage imply that inefficiencies may be quite high.
- The fact that a country is seen as far from the efficiency frontier is not necessarily a result of inefficiencies engendered within the education system. GDP per head and parents' educational attainment are highly and significantly correlated to output scores.
- We have applied both the usual DEA/Tobit procedure and two very recently proposed bootstrap algorithms. Results were strikingly similar with these three different estimation processes, which brings increased confidence to obtained conclusions.

SW (2004) bootstrap methods: Algorithm 1

The first algorithm involves the following steps:

[1] The computation of $\hat{\delta}_i$ for all *n* decision units by solving problem (1);

[2] The estimation of equation (2) by maximum likelihood, considering it is a *truncated* regression (and not a censored or Tobit regression). Denote by $\hat{\beta}$ and $\hat{\sigma}_{\varepsilon}$ the maximum likelihood estimates of β and σ_{ε} .

[3] The computation of *L* bootstrap estimates for β and σ_{ε} , in the following way:

For i = 1, ..., n draw ε_i from a normal distribution with variance $\hat{\sigma}_{\varepsilon}^2$ and left truncation at $1 - z_i \hat{\beta}$ and compute $\delta_i^* = z_i \hat{\beta} + \varepsilon_i$. Estimate the truncated regression of δ_i^* on z_i by maximum likelihood, yielding

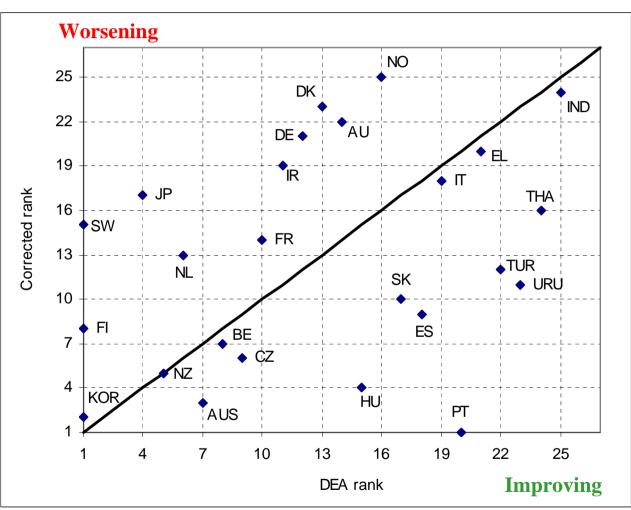
a bootstrap estimate $(\hat{\beta}^*, \hat{\sigma}^*_{\varepsilon})$.

The estimate of the scores is biased towards 1 in small samples. SW (2004) use a second bootstrap procedure, "Algorithm 2", which includes a parametric bootstrap in the first stage problem, to produce bias-corrected efficiency scores.

SW (2004) bootstrap methods: Algorithm 2

[1] Compute $\hat{\delta}_i$ for all *n* decision units by solving problem (1);

- [2] Estimate equation (2) by maximum likelihood, considering it is a truncated regression. Let $\hat{\beta}$ and $\hat{\sigma}_{\varepsilon}$ be the maximum likelihood estimates of β and σ_{ε} .
- [3] Obtain L_1 bootstrap estimates for each δ_i , the following way:


For i = 1, ..., n draw ε_i from a normal distribution with variance $\hat{\sigma}_{\varepsilon}^2$ and left truncation at $1 - z_i \hat{\beta}$ and compute $\delta_i^* = z_i \hat{\beta} + \varepsilon_i$.

Let $y_i^* = \frac{\hat{\delta}_i}{\delta_i^*} y_i$, be a modified output measure.

Compute $\hat{\delta}_i^*$ by solving problem (1), where *Y* is replaced by $Y^* = \begin{bmatrix} y_1^* & \dots & y_n^* \end{bmatrix}$. (But note that y_i is not replaced by y_i^* in the left-hand side of the first restriction of the problem.)

[4] Compute the bias-corrected output inefficiency estimator as $\hat{\hat{\delta}}_i = 2.\hat{\delta}_i - \bar{\hat{\delta}}_i^*$, where $\bar{\hat{\delta}}_i^*$ is the bootstrap average of $\hat{\delta}_i^*$.

Bootstrap results

Figure 2 – Relative change in efficiency rankings