Transfer of Technology through FDI to New Member States:

How Important are Direct Effects, Horizontal and Vertical Spillovers?

Jože P. Damijan

University of Ljubljana, and Institute for Economic Research, Ljubljana LICOS, KU Leuven Copyright with the author

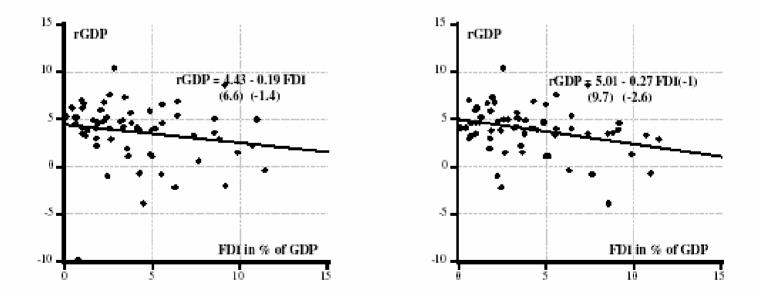
1

Motivation (1)

Huge inflows of FDI into CEECs in 1990s

	1998	1999	2000	2001	FDI/GDP
Czech Rep.	3700	6313	4583	4916	52,8 %
Estonia	581	305	387	538	47,1 %
Hungary	2037	1977	1692	2414	49,6 %
Latvia	357	348	407	170	34,5 %
Lithuania	926	487	379	405	23,5 %
Poland	6365	7270	9342	8830	24,5 %
Slovakia	562	354	2053	1475	30,5 %
Slovenia	248	181	176	724	18,2 %

Motivation (2)


- Existing empirical evidence focussing on spillovers from FDI is inconclusive (see Hanson 2001; GG 2001)
- The evidence, however, relies on horizontal spillovers only
- One should differentiate between macro, sectoral and firm level effects of FDI
- Three effects at the firm level: direct effects, horizontal and vertical spillovers

Evidence (1)

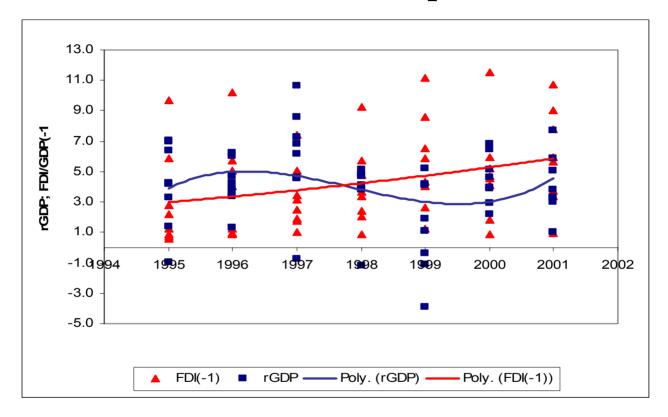

Macro effects (Mencinger, Kyklos, 2003)

Figure 1

Growth and Foreign Direct Investment in Eight Candidate Countries, 1994-2001

Problems with this specification

- Agreggate data, small dataset
- Unobserved external shocks (Czech rep., Russian crisis), which affected growth but not FDI inflows

Evidence (2) Searching for horizontal spillovers in CEECs

Study	Country	Period	Result
Djankov & Hoekman (2000)	Czech Republic	1993-96	-
Kinoshita (2001)	Czech Republic	1995-98	? or + in R&D int.
	Czeen Republic	1775-70	firms
Bosco (2001)	Hungary	1993-97	?
Konings (2001)	Bulgaria	1993-97	-
	Poland	1994-97	?
	Romania	1993-97	-
Domitor at $a1(2002)$	BG, CZ, E, H,	1994-98	? or -, + only for
Damijan et al (2003)	PL, RO, SK, SI	1994-98	RO

However ...

- Macro and sectoral studies are questionable
- Most firm-level studies on spillovers are conducted
 - in search for horizontal spillovers
 - as single country cases
- A plausible study should focus on firm-level effects:
- distinguish between direct effects of FDI as well as horizontal and vertical spillovers
- conduct a comparative analysis on importance of different FDI effects on a set of comparable countries
- by using a common methodology and up-to-date dynamic panel data techniques

Benefits of FDI for CEEC's (1)

1. Direct effects on recipient firms

- Transfer of technology
- Transfer of »management skills«
- Helping the strategic restructuring of firms
- Use of »intangible assets« of parent firms
- Efficient corporate governance

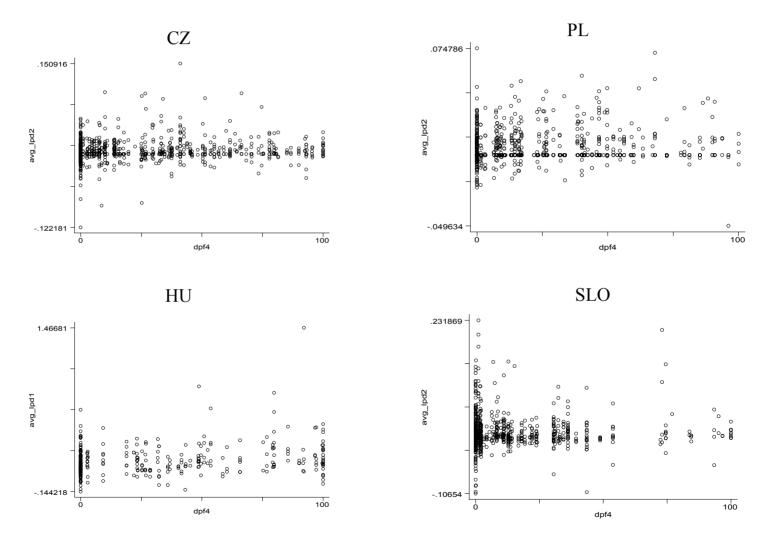
Benefits of FDI for CEEC's (2)

- 2. Spillover effects on other firms (1)
- Horizontal (intra-industry) spillovers
 - **Positive effects:** intra-sector diffusion of technology, mainly through
 - (i) labor turnover (job reallocation),
 - (ii) imitation processes and
 - (iii) entry of international supporting professional service firms (accounting firms, etc.)
 - Negative effects: business stealing effects

Benefits of FDI for CEEC's (3)

- 2. Spillover effects on other firms (2)
- Vertical (inter-industry) spillovers (organisation of vertical supply-chains)
 - **backward linkages:** local firms serve as suppliers of inputs to FIE's (downstream FDI)
 - forward linkages: FIE's serve as suppliers of inputs to local firms

Measuring horizontal spillovers


Common measure:

(4)
$$HS_{kt} = \frac{\sum_{i=1}^{n} FA_{ikt}}{\sum_{i, j=1}^{n, m} (FA_{ikt} + DF_{jkt})},$$

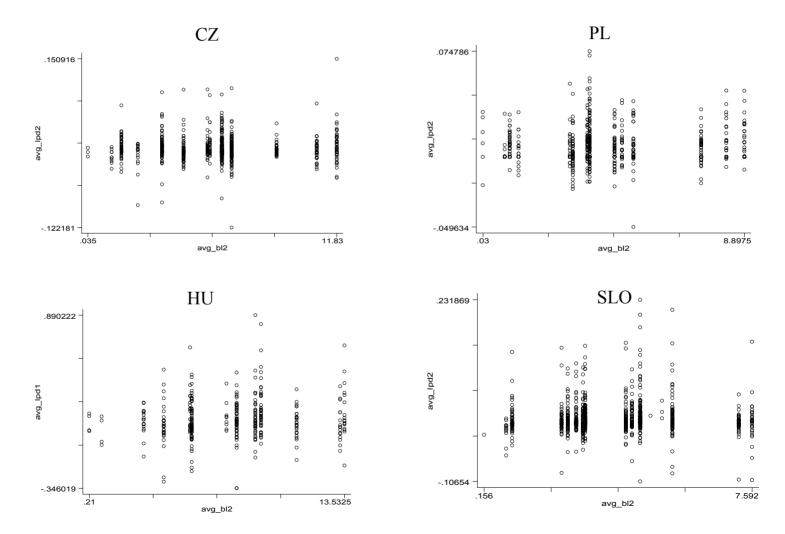
Corrected HS measure:

(5)
$$\overline{HS}_{kt} = \frac{\sum_{i=1}^{n} FA_{ikt}}{\sum_{i, j=1}^{n, m} (FA_{ikt} + DF_{jkt})} * (1 - \sum_{i=1}^{n} \frac{EX_{ikt}}{Y_{ikt}}).$$

Scope for horizontal spillovers FIEs' penetration of industries and firms' average growth)

12

Measuring vertical spillovers


Common measure:

(6)
$$VS_{kt}^{B} = \sum_{r,k=1}^{p} (\alpha_{krt} * HS_{kt})$$

Corrected VS^B measure:

(7)
$$\overline{VS}_{kt}^{B} = \sum_{r,k=1}^{p} \left(\alpha_{krt} * HS_{kt} * \left(1 - \sum_{i=1}^{n} \frac{IM_{ikt}}{MC_{ikt}} \right) \right).$$

Scope for vertical spillovers Backward linkages by FIEs and firms' average growth)

Empirical model (1)

(1)
$$y_{it} = \alpha k_{it} + \beta l_{it} + \delta_t + \eta_i + \gamma \mathbf{a}_{it} + e_{it}, \qquad r = \alpha + \beta \neq 1$$

where:

- y_{it} log value added, k_{it} and l_{it} are log capital stock and log labor inputs,
- δ_t is a year specific intercept.
- η_i time-invariant un observed firm -specific effect and e_{it} is the usual error term.
- \mathbf{a}_{it} an identified productivity (TFP) shock (due to foreign ownership, spillovers).

Potential simultaneity between firm's performance and ownership:

Exogeneity assumption between inputs and the error term $E(\mathbf{z}_{it} \cdot \mathbf{e}_{it}) = 0$

But: \mathbf{a}_{it} possibly correlated with the error term, i.e. $E(\mathbf{a}_{it}e_{it}) \neq 0$,

which means that the ownership structure is endogenous.

Table 1: Descriptive statistics for foreign vs. domestic manufacturingfirms in 1999

	BG	CZ	EST*	HU	LT	LV	PL	RO	SK	SLO	Avg.
No. of all firms	1334	1168	373	360	171	194	1540	1711	151	1093	810
No. of FIEs	95	191	108	84	6	36	198	289	9	118	113
% of FIEs in no. firms	7.1	16.4	29.0	23.3	3.5	18.6	12.9	16.9	6.0	10.8	14.4
% of FIEs in sales	26.6	62.3	92.1	96.4	9.1	51.7	53.3	30.9	8.5	38.0	46.9
% of FIEs in emp.	15.2	30.0	56.0	48.9	3.4	31.6	18.8	19.4	6.2	17.3	24.7
% of FIEs in R&D	33.7	34.8	90.1	36.9	18.0	19.0	56.5	32.1	32.7	14.5	36.8
wage FIE / wage DE	1.73	1.34	1.41	1.31			0.74	1.21	1.25	1.16	1.22

* 1998 for Estonia

Possible ways to deal with the simultaneity:

- 2SLS IV approach (taking initial values of variables)
- Fixed effects approach (which is not efficient)
- Heckman (1979) two step method:

Probability [0, 1] of firms to be selected by MNC:

• (2)
$$\operatorname{Pr}(p_{it} = 1 | \mathbf{M}_{it}) = G(\omega \mathbf{M}_{it})$$

• where Mit is a matrix of operational characteristics of firms.

Table 2: Probability of foreign investment decisions in 1995(Results of probit model)

	BG	CZ	EST#	HU	LT	LV	PL	RO	SK	SLO
Size	-1.8E-07	1.2E-06	-3.4E-05	8.7E-07	-7.0E-05	8.1E-06	-1.8E-10	8.3E-07	-2.3E-06	3.7E-0
z-stat.	(-0.080)	(1.255)	(-1.627)	(0.440)	(-0.460)	(0.350)	(0.000)	(0.490)	(-0.540)	(1.294
Capital intensity	*0.019	*0.003	***0.024	*-0.004	0.018	**0.072	***0.009	**0.008	0.004	-0.00
z-stat.	(1.854)	(2.180)	(3.457)	(-1.856)	(0.509)	(2.503)	(5.201)	(2.231)	(0.222)	(-0.70
Skill intensity	**0.216	-0.015	0.080	*0.038				-0.017	-0.056	**0.02
z-stat.	(2.252)	(-1.237)	(1.002)	(1.769)				(-0.457)	(-1.135)	(2.436
Labor productivity	-0.001	-0.001	***0.015	0.001	-0.004	0.006	0.000	*0.002	-0.009	7.2E-0
z-stat.	(-0.218)	(-0.784)	(2.648)	(1.531)	(-0.079)	(0.759)	(-0.363)	(1.667)	(-0.253)	(0.154
Sector size	**0.036	0.015	0.002	0.018	0.005	0.007	0.011	-0.004	***0.037	-0.00
z-stat.	(2.210)	(1.589)	(0.250)	(1.581)	(0.119)	(0.262)	(0.973)	(-0.206)	(4.447)	(-0.584
Foreign penetration	***0.024	***0.023	***0.012	***0.026	**0.050	***0.031	***0.021	***0.025	***-0.026	***0.02
z-stat.	(10.835)	(13.518)	(3.347)	(8.538)	(2.539)	(5.783)	(11.736)	(13.521)	(-4.056)	(8.488
Number of obs.	1334	1168	373	360	171	194	1540	1711	151	109
Pseudo R2	0.281	0.232	0.146	0.358	0.336	0.453	0.230	0.162	0.623	0.14
# 1004 for Estamia and Cla										

#1994 for Estonia and Slovenia

Empirical model (2)

Potential correlation between input levels and the unobserved firm-specific shocks:

(3)
$$y_{it} = \alpha k_{it} + \beta l_{it} + \gamma n_{it} + \delta_t + (\eta_i + v_{it} + m_{it}), \quad r = \alpha + \beta + \gamma \neq 1$$
$$v_{it} = \rho v_{i,t-1} + \mathbf{a}_{it} + e_{it} \qquad |\rho| < 1$$
$$e_{it}, m_{it} \approx MA(0)$$

where:

 v_{it} is an autoregressive part of productivity shock,

 \mathbf{a}_{it} is identified productivity shock and m_{it} represent serially uncorrelated measurment errors.

Inputs are potentially correlated with firm-specific effects, and with both productivity shocks $(\mathbf{a}_{it}, e_{it})$ and measurement errors (m_{it}) .

Given the AR(1) process in v_{it} , a firm's respond to positive productivity shock in the past ($v_{it}>0$) by using more inputs in the period *t* clearly violates the OLS assumption on strict exogeneity between inputs and the error term ($E(\mathbf{z}_{it}'u_{it}) \neq 0$).

Ways to deal with the endogeneity problem

- Olley and Pakes (1996):
 - investment expenditure as a proxy for unobservable technological shocks
- Levinsohn and Petrin (2000):
 - materials as a proxy for unobservable technological shocks
- Blundell and Bond (1998, 1999):
 - system-GMM approach, which in addition to lagged levels uses also lagged first differences as instruments for equations in levels.
 - as model is estimated in first differences, corresponding instruments for Xit-1 are (Xit-2, Xit-3, ...) and (ΔXit-2, ΔXit-3, ...)

Empirical model (3)

Dynamic version of the model (1):

(4)
$$y_{it} = \rho y_{i,t-1} + \alpha k_{it} - \rho \alpha k_{i,t-1} + \beta l_{it} - \rho \beta l_{i,t-1} + (\delta_t - \rho \delta_{t-1}) + \gamma \mathbf{a}_{it} + \eta_i (1 - \rho) + e_{it} + m_{it} - \rho m_{i,t-1})$$

Where firm's productivity shocks t_{it} are determined as:

(5)
$$\mathbf{a}_{it} = f^{i}(\mathbf{G}_{it}, \mathbf{Z}_{it})$$
$$(F_{i}, M_{i}, R \& D_{it}) \in \mathbf{G}_{it}$$
$$(ES_{jt}, HS_{jt}, VS_{jt}^{B}) \in \mathbf{Z}_{it}$$

where G_{it} accounts for technology determinants internal to the firm, and Z_{it} accounts for factors external to the firm, i.e. spillovers.

Estimated models

Search for direct effects and spillovers (test 1):

(6)
$$y_{it} = \rho y_{it-1} + \alpha k_{it} - \rho \alpha k_{it-1} + \beta l_{it} - \rho \beta l_{it-1} + \gamma n_{it} - \rho \gamma n_{it-1} + \pi F_i k_{it} - \rho \pi F_i k_{it} + \psi F_i l_{it} - \rho \psi F_i l_{it-1} + \omega F_i n_{it} - \rho \omega F_i n_{it-1} + \kappa F_i + \mu M_i + \varepsilon E S_{it} + \chi H S_{it} + \omega F_i H S_{it} + \upsilon V S^B_{it} + \varpi F_i V S^B_{it} + \lambda A_{it} + \delta_t + u_{it}$$

Importance of absorptive capacity (test 2)

(7)
$$y_{it} = \rho y_{it-1} + \alpha k_{it} - \rho \alpha k_{it-1} + \beta l_{it} - \rho \beta l_{it-1} + \gamma n_{it} - \rho \gamma n_{it-1} + \phi R D_{it} - \rho \phi R D_{it} + \chi H S_{it} + \theta H S_{it} R D_{it} + v V S^{B}_{it} + \tau V S^{B}_{i} R D_{itt} + \varepsilon E S_{it} + \delta_{t} + u_{it}$$

Estimation process

- Estimation of a dynamic model (included lagged variables for sales and inputs)
- Estimation of data in log first differences
- Endogeneity problem
- No valid instruments for dependent as well as independent variables can be found
- System GMM estimator is used which combines both lagged levels as well as lagged first differences in order to instrument for the first-differences equation
- Explicit control for selection bias due to non-random foreign investment decisions using Heckman two-step procedure

Data

- Firm level panel data for ten transition countries
- Manufacturing firms only, with more than 100 employees
- Period 1994 (5)-1999
- Source: local Statistical offices; Amadeus

Table 3: Impact of FDI: Direct effects and spillovers (Test 1)(Sample of domestic and foreign owned firms)

Test1	BG	CZ	EST	HU	LT	LV	PL	RO	SK	SLO
FDI dummy	-0.027	***-0.126	**0.162	*0.070	***-0.544	-0.001	***-0.091	*-0.050	0.047	**0.052
	(-0.99)	(-3.82)	(2.50)	(1.73)	(-2.69)	(-0.01)	(-2.92)	(-1.70)	(0.81)	(2.12)
Majority FDI	0.013	0.002	**0.041	0.002	***0.492	0.015	-0.001	**0.015	0.004	-0.002
	(1.07)	(0.20)	(2.16)	(0.14)	(4.82)	(0.76)	(-0.25)	(2.48)	(0.26)	(-0.37)
Hor_Spill	0.0001	***0.0003	-0.0004	0.0002	-0.0010	-0.0001	**0.0002	***0.0003	*0.0006	0.00004
	(0.69)	(2.67)	(-1.35)	(1.60)	(-1.24)	(-0.41)	(2.09)	(3.02)	(1.87)	(0.98)
Hor_Spill_FDI	*0.0007	0.0002	0.0001	0.0003	-0.0076	0.0002	0.000002	0.0002	0.0003	-0.00001
	(1.79)	(1.40)	(0.25)	(0.89)	(-0.86)	(0.37)	(0.02)	(1.55)	(0.63)	(-0.08)
Backward_Spill	-0.001	***0.003	-0.001	-0.003	0.032	0.002	**0.002	0.001	0.010	**0.001
	(-0.94)	(2.65)	(-0.59)	(-1.31)	(1.40)	(1.25)	(2.29)	(0.83)	(0.29)	(2.21)
Backward_Spill_FDI	***0.009	0.002	0.002	0.000	*-0.984	***-0.013	0.002	0.000	-0.053	-0.002
	(2.59)	(0.60)	(0.90)	(0.01)	(-1.83)	(-2.74)	(0.63)	(0.11)	(-1.28)	(-0.94)
No. of obs.	4123	3985	1047	760	422	555	4271	6018	426	5170
AR(1)	***-10.62	***-5.68	***-6.28	**-2.31	**-2.71	**-2.63	***-7.37	***-10.82	**-2.05	***-10.20
AR(2)	0.08	-0.40	-	-	1.30	0.17	0.26	-1.68	-0.80	0.55

Table 4: Impact of R&D - Importance of innovative and absorptive
capacity (Test 2)
(Sample of domestic firms only)

Test2	BG	CZ	EST	HU	LT	LV	PL	RO	SK	SLO
R&D	0.021	0.001	-0.006	-0.005	*0.115	***0.015	0.000	*0.009	**-0.011	-0.002
	(0.98)	(1.60)	(-0.40)	(-1.48)	(1.88)	(2.98)	(0.21)	(1.70)	(-2.09)	(-0.92)
R&D(-1)	-0.024	-0.001	0.017	*0.016	-0.069	*-0.011	0.000	-0.009	0.009	0.005
	(-1.05)	(-1.60)	(0.67)	(1.68)	(-0.82)	(-1.82)	(-0.10)	(-1.57)	(1.49)	(1.46)
Hor_Spill	-0.0001	-0.0001	0.0001	0.0001	-0.0011	-0.00004	0.0001	**0.0001	-0.0004	0.0001
	(-0.79)	(-0.81)	(0.21)	(0.32)	(-1.45)	(-0.21)	(1.57)	(2.45)	(-1.05)	(1.41)
Hor_Spill_R&D	4.6E-05	-2.8E-07	**-0.0001	**5.4E-05	3.3E-04	*-5E-06	4.9E-06	4.3E-07	**0.0004	-3.8E-06
	(1.24)	(-0.55)	(-2.24)	(2.18)	(0.75)	(-1.80)	(0.59)	(0.56)	(2.31)	(-0.51)
Backward_Spill	-0.001	***0.004	-0.001	-0.0002	0.014	0.002	**0.002	0.0004	-0.009	***0.002
	(-1.18)	(2.74)	(-0.58)	(-0.06)	(0.54)	(0.84)	(2.28)	(0.59)	(-0.34)	(2.95)
Backward_Spill_R&D	-0.0004	0.00001	0.0002	-0.0004	0.010	0.0001	0.00002	*-0.0001	-0.002	**-0.0002
	(-0.86)	(0.50)	(0.46)	(-0.76)	(0.47)	(0.71)	(0.16)	(-1.83)	(-0.86)	(-2.06)
No. of obs.	3820	3308	759	583	411	438	3712	5075	398	4633
AR(1)	-9.99	-4.49	-4.91	-2.72	-2.73	-3.36	-7.71	-8.94	-1.79	-9.69
AR(2)	0.44	-0.17	-	-	1.30	0.61	-1.00	-1.82	-1.27	0.54

UNIVERSITY OF LIUE UNIVERSITY OF LIUE UNIVERZAV LIUEL EKONOMS FAKULTET

Conclusions

- Existing empirical evidence focussing on spillovers from FDI is inconclusive
- However, the latest evidence show:
 - Direct FDI effects provide by far the most important productivity spillover for local firms
 - Impact of backward vertical spillovers is higher by factor 10 relative to horizontal spillovers
- In general, the characteristics of the home economic environment are the most important factors attracting domestic as well as foreign investments
- If any FDI promotion, then careful linkages promotion program is desired

Is there a need for a policy?

- FDI promotion should focus not only on the quantity of FDI but also on its quality, including linkages
- A clear vision of how FDI fits into the overall development strategy
- Setting up a linkage program that should, in particular, address the competitive needs of domestic enterprises
- The capabilities of local firms are the single most important determinant of success.