European Commission

Directorate-General for Economic and Financial Affairs

Survey data and uncertainty - Which measure to capture disagreement in expectations?

Roberta Friz Business and Consumer Surveys and short-term Forecast (DG ECFIN A3.2)

EC WORKSHOP Brussels, 14 and 15 November 2016

Outline

- Introduction
- Overview of uncertainty measures
- Measuring uncertainty based on 'dispersion'
- Limitations of the measure and remedies
- Do we really measure 'dispersion' of expectations? – a test

Introduction

- Increasing interest in measuring uncertainty since the 2008 crisis
- When decisions are costly to revert: 'waitand-see' approach, postponement of action
- Economic uncertainty has a negative impact on economic activity, depressing
 - hiring
 - o investment
 - o consumption

However: difficult to measure!

Overview of uncertainty measures

- > Different uncertainty measures based on :
 - Stock market volatility
 - Dispersion in forecasts by professional forecasters
 - Prevalence of terms such as 'economic uncertainty' in the media (EPU indicator (Baker et al. (2010/13))
- Relatively new approaches using surveys:
 - Expectation errors of survey participants
 - 'Disagreement'/'dispersion' in responses

Uncertainty measure based on 'dispersion'

Underlying idea:

growing divergence of economic agents' expectations \rightarrow higher uncertainty about the future course of the economy

→ take e.g. cross-sectional standard deviation of individual survey responses, where 'increase' is quantified by +1, 'decrease' by -1 and 'equal' by 0.

Uncertainty measure based on 'dispersion'

This cross-sectional standard deviation is equivalent to:

$$U = \sqrt{(p_{+} + p_{-} - (p_{+} - p_{-})^{2})},$$

where e.g. p_+ is the share of 'increase' responses to a survey question (at time t)

Uncertainty index (U) [Bachmann et al. (2010)]

Other disagreement measure using survey data

(Theil's) Entropy: $U_T = -\sum_{i=1}^{n} p_i^* \log(p_i)$ (n=3 or 6 categories)

Drawback: no sense of 'cognitive distance' between the categories

(50% POS and 50% NEG is equivalent to 50% POS and 50% 'unchanged')

Limitations of the uncertainty measure

Uncertainty (based on different 'equal' shares)

 \rightarrow Dispersion in survey data appears useful to illustrate uncertainty among managers and consumers in times of crisis.

However: interpretation of the measure is not straightforward – difficult to separate two main forces explaining the changes:

- (1) the rising or falling dominance of 'increase' over 'decrease'-replies (or vice versa) and
- (2) the increasing or decreasing share of 'equal' replies

Remedies?

'Corrected Uncertainty' I

Share of "unchanged" replies is equally split between positive and negative answers

European

Commission

 \bigcirc

'Corrected Uncertainty' II

Share of "unchanged" replies is distributed proportionally between positive and negative answers

European Commission → There are ways to cope with the issue of the impact of the 'unchanged/equal' category, resulting in a symmetric measure

Not symmetric (low in good periods, high in bad periods)

Symmetric (low in good AND bad periods)

More fundamental questions

There are still doubts about: 1.The appropriateness of operationalising uncertainty as dispersion 2.The suitability of the formulas used to measure dispersion in expectations

Inspired by the work by Mokinski/Sheng/Yang (2015), we used an unique dataset on quantitative consumer price expectations to investigate question 2

Do we really measure dispersion? – a test

Do the disagreement measures using *qualitative* survey responses approximate the conventional measure of dispersion in statistics, i.e. *the standard deviation of a set of continuous data values*?

Exploit the fact that EU consumer survey contains questions on both qualitative and quantitative price expectations

Unique data set

Consumer survey: "Q6: "By comparison with the past 12 months, how do you expect that consumer prices will develop over the next 12 months? They will:

- [++] increase more rapidly; [+] increase at the same rate;[=] increase at a slower rate;
- [-] stay about the same; [--] fall; [DN] don't know."

Q61 - By how many percent do you expect consumer prices to go up/down in the next 12 months? (Please give a single figure estimate): Consumer prices will increase by.....% / decrease by.....%.

Disagreement measures using survey data

1. 'Bachmann measure':

$$\mathbf{U}_{\mathbf{B}} = \sqrt{(p_{+} + p_{-} - (p_{+} - p_{-})^{2})},$$

2. (Theil's) Entropy:
$$U_T = -\sum_{i=1}^{n} p_i^* \log(p_i)$$
 (n=3 or 6 categories)

3. 'Corrected Bachmann measure':

$$\mathbf{U_{e}}^{*} = = \sqrt{(p_{+}^{*} + p_{-}^{*} - (p_{+}^{*} - p_{-}^{*})^{2})}$$

with $p_{+}^{*} = p_{+} + 0.5^{*} p_{-}$ and $p_{-}^{*} = p_{-} + 0.5^{*} p_{-}$

Uncertainty measures applied to qualitative price expectations ('increase, unchanged, fall')

U_B and U_e* versus the standard deviation of individual replies to Q61 (*quantitative* price expectations)

U_T versus the standard deviation of individual replies to Q61 (*quantitative* price expectations)

Correlations (U versus the standard deviation of Q61):

	U _B	U _e *	U _T
Euro area	0.85	0.87	0.27
EU	0.82	0.79	0.49

 \rightarrow U_B and U_e^{*} (but less U_T) closely reflect the standard deviation of consumers' quantitative inflation expectations

Country results I

Country results II

Country results III

Correlations

	U _B	U _e *	U _T
DE	0.77	0.68	0.51
FR	0.64	0.52	0.43
IT	0.51	0.82	-0.44
ES	0.79	0.91	-0.29
PL	0.80	0.47	0.79
UK	0.85	0.80	0.61

HICP inflation versus stdev of Q61

 \rightarrow comparison between HICP inflation and dispersion measure suggests that the latter correctly indicates periods of uncertainty:

It increases when HICP gets very low/deviates too much from the "below, but close to 2%" ECB target.

Conclusions

- Highest correlation (with the normalised standard deviation of question Q61) reached using the Bachmann formula U_B
- Good results also obtained with the U_{e*}
- This is valid at EU and euro area level and for most of the largest EU Member States
- Normalised standard deviation of Q61 seems to correctly indicate uncertainty phases
- Also uncertainty measures using *qualitative* data should be suitable indicators

Thank you!

