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What is this paper about? Why relevant?
I Survey data often skewed, most outlier detection

approaches not optimal for asymmetric or long-tailed data
I We propose two alternative outlier detection approaches
I In general, lot of subjectivity is involved in outlier detection
I Size weights
I Data Generating Process unknown
I Let yi be the (year-on-year) growth rate of a company i and

wi be its size weight. Then the simple point estimator for
the weighted mean of the sample with n observations is as
follows

µ̂n =

∑
wiyi∑
wi



Overview of outlier detection methods
I Rule based methods:

I Relative distance (a location estimate l divided by a scale
estimate s)

rdi =
|yi − l |

s
I Tolerance interval: l − kls, l + khs

I Method of Hidiroglou and Berthelot (1986)
I Parametric approaches



Method of Hidiroglou and Berthelot (1986)
(HB-method) I

I First step: transformation

si =

{
1− q0.5/ri if 0 < ri < q0.5

ri/q0.5 − 1 if ri ≥ q0.5

where ri = yi,t+1/yi,t and q0.5 is the median of r values.
I Second step:

Ei = si{max([yi(t), yi(t + 1)]}V

where 0 ≤ V ≤ 1. The parameter V controls the
importance of the magnitude of the data.



Method of Hidiroglou and Berthelot (1986)
(HB-method) II

I Acceptance interval

{Emed − CDQ1,Emed + CDQ3}

where DQ1 = max{Emed − EQ1, |aEmed |} and
DQ3 = max{EQ3 − Emedian, |aEmed |} and the a parameter
takes usually the value of 0.05.

I The idea of the term |aEmed | is to hinder that the interval
becomes very small in the case that the observations are
clustered around some value. The parameter C defines
the width of the acceptance interval.

I We set a = 0.05 and C = 7



Right-left scale approach I

I Hubert and Van Der Veeken (2008) propose adjusted
outlyingness (AO) measure based on different scale
measures on both sides of the median:

AOi =

{
yi−q0.5
wu−q0.5

if yi > q0.5
q0.5−yi
q0.5−wl

if yi < q0.5

where wl and wu are the lower and upper whisker of the
adjusted boxplot as in Hubert and Vandervieren (2008):

wl = q0.25 − 1.5−4MC IQR;wu = q0.75 + 1.53MC IQR for MC ≥ 0

wl = q0.25 − 1.5−3MC IQR;wu = q0.75 + 1.54MC IQR for MC < 0

where MC equals to the medcouple, a measure of
skewness, introduced by Brys et al. (2004).



Right-left scale approach II

I We adjust the denominator to account for the cases where
it could become relatively low or high as follows:

rli =


yi − q0.5

min(max(wu − q0.5, range(y)/n0.6
y ), IQR(y))

if yi ≥ q0.5

yi − q0.5

min(max(q0.5 − wl , range(y)/n0.6
y ), IQR(y))

if yi < q0.5

I In the second step, this measure is also multiplied by the
size weight:

rlwi = rli ∗ wV
i

where the parameter 0 ≤ V ≤ 1 again controls the
importance of the weights.

I The interquartile range interval q0.25 − 3IQR,q0.75 + 3IQR
is applied to identify the outliers.



Qn-approach
I We apply the Qn estimator of Rousseeuw and Croux

(1993) as scale estimator:

Qn = d{|xi − xj |; i < j}(k) (1)

where d is a constant and k =
(h

2

)
≈
(n

2

)
/4 and

h = [n/2] + 1.
I First step: the distance to median divided by Qn is

calculated for unweighted values:

Qi =
yi −median(y)

Qn(y)

I Second step
Qw

i = Qi ∗ wV
i

I We apply the following interquartile interval for Qw
i :

q0.25 − 3IQR,q0.75 + 3IQR.



Empirical influence function analysis
I With empirical influence function (EIF) the influence of a

single observation on the estimator can be studied
I We define the EIF as follows:

EIFµ̂(w0y0) = µ̂(w1y1, ...,wn−1yn−1,w0y0)

where y0 is the additional observation which takes values
between -40 and 40 and w0 = 5.

I Data: the weights of the observations wi are drawn from
exponential distribution with λ = 1/6 and truncated at 20
and round up to make sure no zero values are possible.
Therefore, 1 to 20 is the range of the size weight classes
we take into account. Thereafter, the actual observations
y1, ..., yn−1, which are in this case growth rates respectively
ratios, are randomly generated from normal distribution
with mean = 0 and standard deviation = 3.



Empirical influence function analysis

µ̂n−1 = −0.88

−0.5

0.0

0.5

−200 −150 −100 −50 0 50 100 150 200

µ̂

HB rl Qn

Sample Size n = 20

µ̂n−1 = −1.61

−2.0

−1.5

−1.0

−0.5

−200 −150 −100 −50 0 50 100 150 200

µ̂

HB rl Qn

Sample Size n = 30

µ̂n−1 = −0.85

−1.4

−1.2

−1.0

−0.8

−200 −150 −100 −50 0 50 100 150 200

µ̂

HB rl Qn

Sample Size n = 50

µ̂n−1 = −0.07

−0.2

−0.1

0.0

0.1

0.2

−200 −150 −100 −50 0 50 100 150 200

µ̂

HB rl Qn

Sample Size n = 80

Figure 1 : Influence of one additional observation on the estimators



Empirical influence function analysis
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Figure 2 : Effect of multiple increasing (positive) replacements on the
estimators



Simulation analysis
I Within each simulation, we generate 1000 samples of

sizes 15, 30, 50 and 100 observations
I The weights of the observations wi are drawn from

exponential distribution with λ = 1/6 truncated at 20
I Asymmetric data, we generated data as a sum of two

random variables drawn from at zero truncated normal (sd
equal to 0.01 for big companies, and 0.02 for smaller
companies) and exponential distribution where as the
mean of the normal distribution was set to between 0.6 and
1.0 and the mean of the exponential distribution was
adjusted so that the total mean stays constant at 1.05 or
respectively 5%.

I Fat-tailed data, the actual observations yi are generated
from truncated non-standard t-distribution distribution with
varying values for degrees of freedom. For observation
with smaller weight higher standard deviation is applied.



Simulation analysis - asymmetric data
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Figure 3 : Average percentage of observation declared as outliers
depending on the skewness of the data



Simulation analysis - asymmetric data
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Figure 4 : Average estimates of weighted growth rate depending on
the skewness of data



Simulation analysis - asymmetric data
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Figure 5 : Original weighted growth rates and test statistics of each
method with acceptance boundaries for an example data set n = 30



Simulation analysis - long-tailed data
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Figure 6 : Average percentage of observation declared as outliers
depending on the heavy-tailness of data



Simulation analysis - long-tailed data
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Figure 7 : Average estimates of weighted growth rates depending on
the heavy-tailness of data



Simulation analysis - long-tailed data
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Figure 8 : Original weighted growth rates and test statistics of each
method with acceptance boundaries for an example data set n = 30



Conclusions
I We show that the HB-method (with fixed parameter C

value) can be too sensitive in case of asymmetric
respectively right-skewed data and detecting too many
outliers in the left tail of data.

I The other two newly introduced approaches (rl- and
Qn-approaches) seem to be able deal better with
right-skewed data. As the Qn-approach is easier to
understand and simpler to calculate, we prefer this
approach as outlier detection method for asymmetric data.

I The HB-method could surely also work better in case of
asymmetric data if the parameter C is always optimally
determined for each data set depending on the
characteristics of the data distribution.

I However, for the Qn-approach there is no need to adjust
any parameters, expect the weighting parameter V
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